Thermal performance and optical properties of wood–polymer composites
更新时间:2023-05-31 22:33:01 阅读量: 实用文档 文档下载
- thermal推荐度:
- 相关推荐
Article
Thermalperformance
andopticalproperties
ofwood–polymer
composites
SvetlanaButylina,OssiMartikkaand
¨rkiTimoKaJournalofThermoplasticCompositeMaterials26(1)60–73!TheAuthor(s)2011Reprintsandpermissions:sagepub.co.uk/journalsPermissions.navDOI:10.1177/0892705711419694
Abstract
Thethermalperformanceandopticalpropertiesofwood–polypropylenecompositesmadefromuntreatedwoodmaterialwithandwithoutmetal-containingpigments,andcompositesmadefromheat-treatedwoodmaterialwerestudied.Thethermalheatbuildupandlinearshrinkageweredetermined.Theimpactoftheopticalpropertiesofthesurfaceofthecompositesontheheatbuildupwasanalysed.Thewood–polypro-pylenecompositesmadefromuntreatedwoodwithoutpigmentwerefoundtohavethelowestheatbuildup;asimilarcompositecontaininggreypigmenthadthehighestheatbuildup.Thelinearshrinkageofthestudiedwood–polypropylenecompositeswasintherange0.05–0.16%.
Keywords
Wood–polypropylenecomposites,heatbuildup,opticalproperties
Introduction
Compositesmadefromablendofthermoplasticandnatural bershavebeenthesubjectofmuchresearchandbecomeattractivetomanufacturersbecauseoftheirmanyadvantages.Theseadvantagesincludeimprovedenvironmentalperformance,mainlyduetotheuseofbiodegradablematerialsandareductionintheuseofnonrenewable(oil-based)resourcesthroughoutthewholelifecycleofthecom-posite;lowcostofwood ourandnatural-organic llersingeneral;thelowerdensityofthese llersincomparisontotraditional llers,suchasglass bers;LappeenrantaUniversityofTechnology,Lappeenranta,Finland
Correspondingauthor:
SvetlanaButylina,LappeenrantaUniversityofTechnology,P.O.Box20,Lappeenranta,FIN-53851,Finland.Email:butylina@lut.fi
Butylinaetal.61improvementsinthesafetyofproductionemployees(reducedhazardinthecaseofaccidentalinhalation);specialaestheticpropertiesofthecomposites,whichcanbeeasilyprocessedandre ned,obtainingwood-likelookingproducts;andfullrecy-clabilityofthecomposites.1Therearemanypotentialindoorandoutdoorappli-cationswherecompositescanbeused.Forexample,wood–polymercomposites(WPCs),mostlymanufacturedthroughextrusionandinjectionmoldingprocesses,canbeusedintheautomotive(dashboardsorscreendoorsofvehicles)andcon-structionindustries(interior oorcoverings,pro ledpartsfordoorsandwindows,ornamentalpanels,externalshutters,pavements,garageorentrancedoors,etc).2Exteriornonstructuralorsemistructuralcompositebuildingproductssuchasdeck-ing,fencing,siding,androoftilesarebeingintroducedintothemarket.3InEurope,WPCdevelopmenthasstartedwithdecking.4
Theoutdoorapplicationofthesematerialshasraisedconcernsabouttheirdurability,includingfungalresistance,ultravioletresistance,moistureresistance,anddimensionalstability.5Additives,suchaspigments,ultravioletabsorbers,andhinderedaminelightstabilizersareusedtopreventtheWPCsfromcolorfading.AccordingtoastudyreportedbyKiguchietal.,6theadditionofdarkerpigmentsimprovesthecolorstabilityofwood–polypropylenecompositesbetterthantheadditionoflightcolorpigments.Deckingsaremostlystainedwithgreyorbrownasdominantcolors.
Itisknownthatasurfaceexposedtosolarradiationexhibitsbuildupoftem-perature.Theabsorbedsolarenergyisareasonforheatbuildup.TheSunisahighlyenergeticsystemconverting4milliontonsofhydrogenintoheliumandinverselyatthetemperatureofhundredsofmillionsdegreesCelsiuseverysecond,resultinginabout3.86Â1023kWgeneratedperyear.Despitethefactthatonly1.78Â1012kW/yearreachesthesurfaceoftheEarth,theamountofsolarenergyisstill20,000timesmorethanthetotalannualworldenergyproduc-tion.7TheamountofenergyreachingtheEarthgreatlyvarieswithitsverticalangle.ThelargestamountisreceivedatnoonwhentheSun’sraysfallattherightangle,andthesmallestwhentheSunrisesandsets.Thetotalamountofmonthlyradiationkeepsincreasingfromspringtosummer,anddecreasesgrad-uallytowardwintertime.8Theintensityofsolarradiationmayvarysigni cantly.Forexample,inindustrialareasitmayreach600–700W/m2,800–900W/m2inurbanareas,andaround1000–1100W/m2inhighmountainregions.
ThewavelengthrangeoftheSun’sradiationisbetween0.2and3.0mm,andtheenergyvarieswiththewavelength.Thesolarradiationspectrumconsistsoftheultravioletrange0.12–0.45mm(15.89%ofenergyiscollectedinthisregion),thevisiblerange0.45–0.75mm(35.80%),andtheinfraredrange0.75–1.00mm(48.30%).8Thethermalbuildupofasurfaceexposedtosolarradiationhasacor-relationwiththecolorofthesurface,thatis,white-coloredsurfacesstaycoolerthanblack-coloredsurfaces.Thecolorofasurfacecanbeexplainedintermsofthere ectanceforeachcomponentofthevisiblespectrum.Itisveryimportanttoknowtheabsorptance/re ectanceintheinfraredregioninordertopredictthethermalpropertiesofthematerial,becausealmosthalfofthesolarenergyis
62JournalofThermoplasticCompositeMaterials26(1)concentratedinthisregion.Somepigments,socalledcoolpigments,suchastita-niumdioxidein uencetheopticalandnear-infraredpropertiesofcoatings.9
Variousstudieshavebeenperformedtounderstandbetterthethermalandopticalperformanceofconstructionmaterialsandtheirimpactonthecityclimate.9–11Lowersurfacetemperaturescontributetodecreasingthetemperatureoftheambientair,astheheatconvectionintensityfromacoolersurfaceislower.Suchtemperaturereductionscanhavesigni cantimpactsoncoolingenergyconsumptioninurbanareas,afactofparticularimportanceforcitiesinahotclimate.Alaboratorytestwasintroducedtopredicttheincreaseintemperaturesaboveambientairtemperatureduetosolarenergyabsorption,usinganinfraredre ectiveheatlamptoimitatesolarradiation.
Inthepresentstudy,heatbuildupwasdeterminedforwood–polypropylenecompositesmadefromheat-treatedwoodandforcompositesmadefromuntreatedwoodwithandwithoutaddedmetal-containingpigment.Theopticalpropertiesofthesurfaceofthecompositeswerestudiedbyusingvisible(VIS)andFouriertransforminfrared(FT-IR)spectrophotometers.Linearshrinkageofextrudedpro leswasalsodetermined.
Experimental
Materials
Thecompositionofthestudiedwood–polypropylenecompositesareshowninTable1.ThesoftwoodpelletsusedintheexperimentswerepurchasedfromVAPO(Jyvaskyla,Finland).AccordingtothetechnicaldatasheetprovidedbyVAPO,thesizeofthepelletswas6–8mmindiameter,with10–30mmaveragelength.Inthiswork,birchtreatedaccordingtotheFinnishThermoWoodtech-nologywasusedtoprepareheat-treatedwood bers(HTW).
Aneatpolypropylenehomopolymer,EltexHY001P,suppliedbyINEOSOle ns&PolymersEurope(Brussels,Belgium),wasusedinthepreparationTable1.Formulationofwood–polypropylenecomposites.
Wood
No.
1
1a
2
2a
3
4
5TypePelletsPelletsHTWHTWPelletsPelletsPellets(wt%)70757075707069PolypropyleneTypeNeat/RecycledNeatNeatNeatNeatNeatRecycled(wt%)26222722262625MAPP(wt%)3333333PigmentType----GreenGreyGrey(wt%)----111Lubricant(wt%)1-----2MAPP:maleatedpolypropylene.
Butylinaetal.63ofthecomposites.RecycledpolypropylenehomopolymersuppliedbyEkiplastOy(Hauho,Finland)wasalsousedtocompoundthecomposites.Theneatpolypro-pylenehomopolymerhadthedensityof0.91g/cm3andmeltmass- owrateof45g/10min(230 C/2.16kg),andtherecycledpolypropylenehomopolymerhadthemeltmass- owrateof3g/10min(190 C/2.16kg).
Thecouplingagentwasmaleatedpolypropylene(MAPP),OREVACÕCA100(Ato na,France).TheOrevacCA100polymerhaslowfunctionality(1%)andahighmolarmass(25kg/mol).AccordingtoSainetal.,12theoptimumconcentra-tionofacouplingagentisaround3–4%byweightofthecomposite,thus3%MAPPwasaddedineachcase.
Twodi erentpigmentswereusedinthestudy:greenpigment(purchasedfromHollandColoursNV,TheNetherlands);andgreypigment(purchasedfromClariant(Finland)Oy,Vantaa,Finland).Theelementalanalysisofthepigmentswasperformedwithscanningelectronmicroscopy(SEM)coupledtoanenergy-dispersiveX-rayspectrometer(EDS).TheSEM–EDSresultsindicatedthepresenceofcobalt(Co)andchromium(Cr)asmajorcomponentsofthegreenpigment.Theanalysisofthegreypigmentrevealedthattitanium(Ti)wasitsmajorcomponent,althoughotherelements,suchassilicon(Si),sodium(Na),aluminium(Al)andsulfur(S)werealsodetected.
Fortheformulationofthewood–polypropylenecompositesmadefromrecycledpolymer,alubricantwasaddedinordertoimprovethe owabilityofthehotmelt.StructolÕTPW113(Ohio,UnitedStates),whichisablendofcomplex,modi edfattyacidesters,wasusedasthelubricant.
Processing
Thewoodmaterial,plastic,andadditiveswerecompoundedusingaWeberCE7.2conicaltwin-screwextruder(HansWeberMaschinenfabrikGmbH,Kronach,Germany).Thegravimetricfeedingsystemincludedamainfeederconnectedwithsidefeedersforeachindividualcomponent.Allcomponentswerefedintotheextruderthroughthemainfeeder.
Thescrewhadthelength-to-diameter(L/D)ratioof17,andthescrewspeedwas12rpm.Thebarreltemperaturesoftheextruderwere170–200 C,andthemelttem-peratureatthediewas180 C.Thepressureatthedievariedbetween4and7MPa,dependingonthematerialblend,andthematerialoutputwas25kg/h.Thesampleswereextrudedthrougharectangulardie;thehollowpro leisshowninFigure1.Heatbuilduptestinginlaboratoryapparatus
TheheatbuildupintheWPCswastestedaccordingtoTS15534(AnnexF).ThesetupisshowninFigure2.Sampleswithdimensions75mmÂ75mmÂ5mmweretested.Atotalof fteenspecimenspereachtypeofcompositeweremeasured.Awhiteinfraredheatlamphavingthenominalpowerof250W(purchasedfromGeneralElectric,Hungary)wasused.Thedistancebetweenthelowestpartof
64JournalofThermoplasticCompositeMaterials26(1)Figure1.Hollowprofileofwood–polypropylenecomposites.
thedownward-orientedlampandthebottomoftheboxwas400mm.Thetemper-atureofthecompositemeasuredatitsbottom,andtheincreaseofthetemperatureofthecompositecomparedtoambientair(ÁTexp)wererecordedwith1mininter-valsbyadigitalthermometerequippedwithadatalogger.
Opticalcharacteristics
There ectancecurvesofthecompositesinthevisiblerangeweremeasuredwithaMinoltaCM-2500dspectrophotometer(KonikaMinoltaSensingInc.,Japan).ThemeasurementsweremadeusingaD65illuminantanda2degreestandardobserver.ThetristimulusX,Y,andZvaluesofallspecimenswereobtainedfromthespectro-photometer.TheCIELABcolorsystemwasusedtocomputethesurfacecolorinL*,a*,b*coordinates.TheL*representsthelightnesscoordinate,anditvariesfrom100(white)to0(grey);a*representsthered(+a*)togreen(–a*)coordinate;andb*representstheyellow(+b*)toblue(–b*)coordinate.
TheglossvaluesofthecompositesweremeasuredusingaNovo-glossTRIOglossmeter(RhopointInstrumentsLtd,EastSussex,UK).Themeasurementsweremadeattheangleof60degrees,whichisrecommendedforWPCs.
Di use-re ectanceinfraredFouriertransformspectroscopy(DRIFTS)wasusedforpowderedsamplesofcompositeusingaPerkin-ElmerSystem2000FT-IRspectrophotometerequippedwithPerkin-Elmerdi usere ectanceaccessory.Powderofthetoplayerofthecompositewaspreparedbysandingwith
sandpaper
Butylinaetal.65Figure2.Setupforheatbuildupmeasurement.
(gritdesignationP240).Samplesofabout10mgwereanalysed.Potassiumbromide(KBr;Aldrich,FT-IRgrade)wasusedasreference.Re ectancespectrawereobtainedintherange10,000–2700/cm(1.0–3.7mm)using50scansand4/cmresolution.Heatreversion(linearshrinkage)testing
HeatreversionwasdeterminedaccordingtotheEN479standard.Thistestestab-lishesthepercentageoflinearshrinkageofapro leatanelevatedtemperature.Thehollowpro lewiththelengthof250mmwasplacedinanovenat100 Cfor60min.Amarkedlengthofthistestsamplewasmeasuredunderidenticalconditions(23Æ2 C),beforeandafterheatingintheoven.
TheheatreversionRwascalculatedasapercentageusingthefollowingEquation(1):
R¼ðLoÀL1ÞÂ100,Loð1
Þ
66JournalofThermoplasticCompositeMaterials26(1)whereLoandL1arethedistancesbetweenthemarksbeforeandafterheatingintheoven(mm),respectively.
Resultsanddiscussion
Heatbuilduptesting
TheresultspresentedinTable2showthemaximumtemperatures(Tmax)ofthecompositesandtheincreaseofpaneltemperatureabovethetemperatureofambi-entair(ÁTexp).Allcompositesreachedasteadystatetemperaturewithin1h.Forallmeasurements,theambienttemperatureofairwas22.3(Æ0.3 C).Thelowesttemperatures(TmaxandÁTexp)werefoundforthewood–polypropylenecompos-ites(N1andN1a)thatweremadefromuntreatedpelletizedwoodanddidnotcontainanypigments.Thehighesttemperatureswerefoundforthecompositescontaininggreypigmentmadeeitherfromneatorrecycledpolypropylene(N4andN5).Thetemperaturesmeasuredforthecompositesmadefromheat-treatedwood(N2andN2a),andforthecompositesmadefrompelletizedwoodandcontaininggreenpigment(N3)laybetweenthetwoabovementionedgroups.Thedi erencebetweenthecompositeshavingthehighestandlowesttemperaturewasestimatedas8.8degrees.Forcomparison,similarsamplesofuntreatedsoftwoodwoodandheat-treatedwoodweretested.Themaximumtemperaturereachedbyuntreatedwoodwas47.7 C,whileforheat-treatedwooditwas49.3 C.Becausetheheatabsorptionpropertyofamaterialdependsonitsopticalproperties,thelatterweremeasured,andtheresultsarepresentedbelow.
Opticalcharacteristicsofwood–polypropylenecomposites
TheresultsofthespectrophotometricmeasurementsinthevisiblerangeareshowninFigure3.There ectioncurveinthevisibleregionrepresentsmostaccuratelytheTable2.Maximumtemperaturereachedbywood–polypropylenecomposites(Tmax),andthetemperaturedifferencebetweenthemaximaltemperatureofthesampleandthetemperatureofambientair(ÁTexp)(theresultsaretheaverageoffifteenmeasurements).
No.
1
1a
2
2a
3
4
5Tmax( C)55.055.058.057.056.363.863.3ÁTexp32.932.735.834.634.541.240.7
Butylinaetal.67
Figure3.Reflectanceofwood–plasticcompositesinthevisiblewavelengthrange.
colorofamaterial.Wood–polypropylenecomposites(N1andN1a)showverystrongabsorptioninthe0.40–0.50micrometersband,followedbyhighre positesmadefromheat-treatedwood(N2andN2a)haveverystrongabsorptioninpartofthevisiblespectrum.Bothcompositescon-taininggreypigment(N4andN5)exhibitlowre ectance(about7%)inthewholevisiblerange.Thecompositecontaininggreenpigment(N3)hasasmallre ectancepeakaround0.50micrometers,andthenshowsstrongabsorptionintherestofthevisiblespectrum.Nocorrelationbetweenthemaximumtemperatureandre ectanceinthevisibleregionwasfoundforthestudiedwood–polypropylenecomposites.
Colorcoordinateswerecalculatedusingthevisiblespectrum,andtheresultsarepresentedinTable3,togetherwithglossmeasurementsforthecomposites.AscanbeseeninTable3,thecolorcoordinatesforthecompositesmadefromthesamerawmaterial(e.g.,N1andN1a,andN2andN2a)areslightlydi erent.Torecall,compositesN1andN2contained70%woodmaterial,whilecompositesN1aandN2ahad75%ofwood.Thecompositemadefromrecycledpolypropylene(N5)wascharacterizedbyhigherlightnessandspecularglosscomparedtothecompos-itemadefromneatpolypropylene(N4).Generally,allthestudiedcompositeshadlowspecularglossvalues(3.5–5.7).
There ectanceofthecompositesinthenear-infraredregion(1.0–2.5mm)wasmeasuredwithaninfrared(IR)spectrophotometer.AscanbeseeninFigure4,
68JournalofThermoplasticCompositeMaterials26(1)Table3.Colorcoordinatesandglossmeasurementsofwood–polypropylenecomposites(theresultsaretheaverageoftenmeasurements).
No.
1
1a
2
2a
3
4
5L*67.6866.6116.6416.0544.5330.9937.04a*7.038.1014.8515.19–39.43–0.76–0.86b*30.2936.3226.2925.7512.863.71–0.14Glossatangle60 5.395.564.905.533.643.535.07
Figure4.Reflectanceofwood–polypropylenecompositesinnear-infraredregion:TheyellowlinerepresentsN1,thebrownlineN2,thegreenlineN3,andthegreylinesN4andN5.
re ectanceinthenear-infrared(NIR)regionforcompositesN1andN2madefromuntreatedandheat-treatedwood,respectively,issimilar,eventhoughtheirre ec-tanceinthevisibleregionwasdi erent.Thecompositesmadewithoutpigmentshavehigherre ectancethantheonesmadewithpigments.There ectanceofthecompositecontaininggreenpigment(N3)ishigherthanthere ectanceof
the
Butylinaetal.69
Figure5.Maximumtemperaturesofwood–polypropylenecompositesasafunctionofreflec-tanceinthenear-infraredregion.
compositecontaininggreypigment(N4).Greycoloringisoftenusedfordecking,butascanbeseeninFigure4,thewood–polypropylenecompositescontaininggreypigmenthavethelowestre ectanceinthenear-infraredregion.
There ectanceoftherawwoodsampleswasnotmeasuredinthisstudy.Woodisknowntobeanexcellentmaterialtore ectlight.13Accordingtotheliteraturedata,moderatelydarkbarewoodtypicallyhasavisiblere ectanceof0.20,andtheNIRre ectanceofabout0.70,whichresultsinthesolarre ectanceofabout0.45.9Theouterlayerofthestudiedwood–polypropylenecompositepro leswascon-sistedofpolymer.Thisouterpolypropylenelayera ectsthere ection/absorptionoflight.Inorganicpigments,whichwereaddedinwood–polypropylenecompositesbelongtothetypicalpigmentsusedwidelytocolorplastics.
Intheirresearchonheatbuildupofpaintedsteelpanels,MoerkandReck14foundthatre ectanceat2.4mmhadagoodcorrelationwiththeactualexteriorheatbuildupofpaintedsteelpanelswithasimilarglosslevel.Inthepresentstudy,thecorrelationbetweenthemaximumtemperaturesobtainedatheatbuilduptest-ingandnear-infraredre ectancemeasuredatthemiddlepointofthespectrum(1.0–2.5mm)wasexamined.Figure5showsthatthecorrelationbetweenthemax-imumtemperatureandinfraredre ectancewasrelativelygood(R2=0.87).Applicationofintegralsofre ectancespectrabetween1.0and2.5mminstead
of
70JournalofThermoplasticCompositeMaterials26(1)singlepointre ectanceat1.75mmresultedinasimilarcorrelationbetweenthere ectanceparameterandthemaximumtemperatureofthecompositemeasuredinheatbuildupexperiment.Anexclusionofcompositemadefromheat-treatedwoodresultedinabettercorrelationbetweenthenear-infraredre ectanceparam-eterandmaximumtemperature(R2=0.97).Bettercorrelationbetweenthenear-infraredre ectanceandmaximumtemperatureofcompositematerialintheabsenceofheat-treatedwood–polypropylenecompositewasconsideredasaproofthatopticalpropertiesofouterpolymerlayeraredeterminingparameterinthiscase.
Ithastobekeptinmindthatsurfacere ectancedataforthewood–polypro-pylenecompositesobtainedbyaspectrophotometercangivearoughideaofthethermalbuildupofcompositesexposedtosolarradiation.Convectionheatloss,forcedconvectivewindcooling,andthevarietyoflocationsontheEarth’ssurfaceshouldbetakenintoaccountforpredictingtheheatbuildupofcompositesduetoasolarradiationundernaturalconditions.
Heatreversion(linearshrinkage)
Theproblemsofresidualthermalstressesin berreinforcedcompositeshavebeenextensivelystudied.15–17Residualstressesinthermoplasticsarepresentinthecom-positestructureimmediatelyaftertheprocessingandsubsequentcoolingtotheservicetemperature.Thesestressesin uencethepropertiesofthecompositestruc-turessigni cantly.15Themagnitudeofresidualstressesinthecompositestructuresdependsonfourparametersinthecasewhenthelong-termandenvironmentalparametersareignored:thetemperaturedi erence,thecoe cientsofthermalexpansion/shrinkageuponthecoolingofthecompositeconstituents,theelasticcoe cientsoftheseconstituents,andthe bervolumefraction.16
Inthiswork,thelinearshrinkageofahollowpro lewasdeterminedaccordingtotheEN479standard.Hollowcompositesaremoresusceptibletoresidualpostmanufactureshrinkagecomparedtosolidboards.Inhollowboards,asmuchas15%oftheoverallshrinkageisstill‘stored,’waitingforthetemperaturetogoup,suchasonadeckunderdirectsunlight.18Table4showsthevolumefractionofwood berandheatreversion(shrinkage)forthehollowpro lesofthestudiedwood–positesN1andN5,madefrompelletizedwoodmaterial,andcompositeN2a,madefromheat-treatedwoodmaterial,showlowerheatreversionscomparedtootherstudiedcomposites.
Themicromechanicalmodelsdeveloped19toestimatethethermalexpansion/shrinkageofacompositerequiresknowledgeofthepropertiesoftheconstituents(e.g.,coe cientofthermalexpansion,Young’smodulus,andvolumefraction)andmicrostructures(e.g., berorientation).Ingeneral,thecoe cientofthermalexpansionforthereinforcing bersismuchlowerthanforthethermoplasticmatri-ces;15thelinearcoe cientofthermalexpansion/shrinkage(LCTE)forpolypro-pylenehomopolymerisequalto8–10Â10–51/ C,andforwoodspecies(hardwoodsandsoftwoods)equal(alongthegrain)to0.31–0.45Â10–51/ C.18
Butylinaetal.71Table4.Fibervolumefraction(Vf)andheatreversion(linearshrinkage)ofwood–polypropyl-enecomposites.
No.
1
1a
2
2a
3
4
5Vf0.610.670.620.680.620.620.61Heatreversion,R(%)0.050.110.130.080.140.160.08
Theincreaseofthevolumefractionofreinforcing bers,havingLCTEvalueslowerthanthematrix,decreasesthelinearexpansion/shrinkageofthecomposite.Inourstudy,nocleartrendwasfoundbetweenthewoodvolume berfractionandheatreversion(linearshrinkage).
Inconnectionwiththequestionofthecompositemicrostructure( berorienta-tionanddistributioninthecompositestructure),itshouldbenotedthatourpre-viousstudyonmechanicalpropertiesofsimilarwood–polypropylenecompositesshowedthatthe bershadrandomorientationandsizedistribution.20Also,duetothehighwood berloadinginthestudiedcomposites,thepresenceofdefectssuchaswood beraggregatesandvoidswasdetected.Thepresenceof beraggregateswerefoundtobemorepronouncedforcompositesmadefrompelletizedwoodmaterial.Togetherwithalackofknowledgeonpropertiesofindividualconstitu-ents(e.g.,Young’smodulusforthe ber,whichisnormallyobtainedinasingle bertensiletesting),theabovementioneddefectsofstructurewerethemainrea-sonswhymodelingisabsentinourwork.Morethoroughresearchworkshouldtobedonetoidentifythepropertiesoftheconstituentsinordertousethemicro-mechanicalapproachtoexplainthebehaviorofthestudiedcomposites.
Asalastnote,aweightlosswasobservedafterthecompositeshadbeenkeptintheovenat100 Cfor1hinthecourseofthetestingprocedure(EN479standard).Themoisturecontentsoftheoriginalcompositeswereintherange1.5–2.6%.Thecompositeswithahighervolumefractionofwood berwerecharacterizedbyhighermoisturecontent,exceptforthecompositesmadefromheat-treatedwood,forwhichthedi erenceinthemoisturecontentwasverysmall.Thus,itisconsideredthatthelinearshrinkageofcompositesshowninTable4canincludetheshrinkageduetothedryingofwood.
Conclusions
Thethermalheatbuildup,opticalpropertiesandlinearshrinkageofwood–polypropylenecompositeswerestudied.Thefollowingconclusionsweredrawnonthebasisoftheexperimentalresults:
72JournalofThermoplasticCompositeMaterials26(1)
1.Thethermalheatbuildupwasfoundtobewellcorrelatedwiththenear-infraredre ectanceofthecomposites.Thecompositescontaininggreypigmenthad6–9degreeshigherheatbuildupvaluesthantheothercomposites,andtheywerecharacterizedbythelowestinfraredre ection.Becausegrey-coloredcompositesareoftenappliedfordecking,itwouldbedesirabletousere ectivepigmentsinordertodecreaseheatbuildup.
2.Generally,theheatbuildupforbothuntreatedandheat-treatedwoodensampleswaslowercomparedtothewood–polypropylenecomposites.Theincreaseinwoodcontent(from70to75%),ortheuseofrecycledpolypropyleneinsteadofneatonewerefoundtohavenosigni cante ectontheheatbuildupofthecomposites.
3.Thelinearshrinkageofthestudiedwood–polypropylenecompositeswasfoundtobeintherange0.05–0.16%.Therewasnocleartrendbetweenthe bervolumefractionandthelinearshrinkageofthecomposite.Thepresenceofmoistureinthecompositeshadane ectonthemeasuredvaluesoflinearshrinkage.
References
MantiaFPandMorrealeM.Acceleratedweatheringofpolypropylene-woodflourcomposites.PolymerDegradationandStability2008;93:1252–1258.
2.NdiayeD,FantonE,Morlat-TheriasS,VidalL,TidjaniAandGardetteJ-L.Durabilityofwood-polymercomposites:positesScienceandTechnology2008;68:2779–2784.
3.StarkNMandMatuanaLM.Surfacechemistryandmechanicalpropertychangesofwood-flour/high-density-polyethylenecompositesafteracceleratedweathering.JournalofAppliedPolymerScience2004;94:2263–2273.
4.CarusM,GahleCandKorteH.Marketandfuturetrendsforwood-polymercompos-itesinEurope:TheexampleofGermany.In:OksmanNiskaK,SainM(eds)Wood-polymercomposites.Cambridge:WoodheadPublishing,2008,pp.300–330.
5.WangW,SainMandCooperPA.Hydrothermalweatheringofricehull/HDPEcom-positesunderextremeclimaticconditions.PolymerDegradationandStability2005;90:540–545.
6.KiguchiM,KataokaY,MatsunagaH,YamamotoKandEvansPD.Surfacedeterio-rationofwood-flourpolypropylenecompositesbyweatheringtrials.JournalofWoodScience2007;53:234–238.
7.WielochM,KlemmAJandKlemmP.Solarenergyabsorptionbyacryliccoatings-I:Absorptioncharacteristics.BuildingandEnvironment2004;39:1313–1319.
8.SayighAAMandBahadoriMH.Solarenergyapplicationinbuildings.NewYork,NY:AcademicPress,1979.
9.LevinsonR,BerdahlP,AkbariH,MillerW,JoedickeI,ReillyJ,SuzukiYandVondranM.Methodsofcreatingsolar-reflectivenonwhitesurfacesandtheirapplicationtoresidentialroofingmaterials.SolarEnergyMaterialsandSolarCells2007;91:304–314.
10.SynnefaA,SantamourisMandLivadaI.Astudyofthethermalperformanceofreflec-
tivecoatingsfortheurbanenvironment.SolarEnergy2006;80:968–981.
Butylinaetal.73
11.SynnefaA,SantamourisMandApostolakisK.Onthedevelopment,opticalproperties
andthermalperformanceofcoolcoloredcoatingsfortheurbanenvironment.SolarEnergy2007;81:488–497.
12.SainS,SuharaP,LawSandBouillouxA.Interfacemodificationandmechanicalprop-
ertiesofnaturalfibre-polyolefincompositeproducts.JournalofReinforcedPlasticsandComposites2005;24:121–130.
13.HonDNSandMinemuraN.Colouranddiscoloration.In:HonDN-S(ed.)Woodand
cellulosechemistry.NewYork,NY:MarcelDekker,1991,pp.395–454.
14.MoerkOandReckE.Heatbuilduptestingofcolouredsteelpanels:Laboratoryreport
forJotunA/S.PigmentandResinTechnology2001;30:310–318.
15.ParlevlietPP,BerseeHENandBeukersA.Residualstressesinthermoplasticcompos-
ites–Astudyoftheliterature–PartI:posites:PartA2006;37:1847–1857.
16.FavreJP.Residualthermalstressesinfibrereinforcedcompositematerials–areview.
JournalofMechanicalBehaviourofMaterials1988;1(1–4):37–53.
17.ChamisCC.Polymercompositemechanicsreview-1965to2006.JournalofReinforced
PlasticsandComposites2007;26:987–1019.
18.KlyosovA.Wood-plasticcomposite.NewYork,NY:JohnWiley,2007.
19.RaghavaRS.Thermalexpansionoforganicandinorganicmatrixcomposites:Areview
oftheoreticalandexperimentalstudies.PolymerComposites1988;9:1–11.
20.ButylinaS,MartikkaOandKarkiT.Propertiesofwoodfibre-polypropylenecompos-
ites:Effectofwoodfibresource.AppliedCompositeMaterials2011;18:101–111.
正在阅读:
Thermal performance and optical properties of wood–polymer composites05-31
2015年普通高等学校招生全国统一考试数学理试题解析(浙江卷)04-17
七年级上unit4说课稿06-01
秋季运动会100米冲刺50字加油稿04-19
齿块裂纹处理施工方案新09-20
乒乓球团体、单项赛记分表08-27
发电厂并网安评需提供的材料要目12-28
风扇模拟器实验设计论文修正版 - 图文12-30
- 1Recent MD Results on Supercooled Thin Polymer Films
- 2Properties of Hadrons in the Nuclear Medium
- 37.1 Conditional Properties(part)
- 4Luminescence properties of defects in GaN
- 5SYNTHESIS AND CHARACTERIZATION OF BLOCK POLYMER OF ALTERNATING COPOLYMERS
- 6Optical Resonators With Whispering-Gallery applications
- 7Polymer-Supported Carbene Complexes of Palladium
- 8Performance Management ( A model and research agenda)
- 9Controlling the Localization of Liquid Droplets in Polymer Matrices by Evaporative Lithography
- 10The penultimate rate of growth for graph properties
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- performance
- properties
- composites
- Thermal
- optical
- polymer
- wood
- 2006年房地产行业深度报告-数据
- 南华大学第十届大学生辩论赛规则与评分标准
- 高硕考研-2014上海海事大学翻译硕士考研真题-高硕新祥旭考研辅导班
- 用DD-WRT搭建私有计费WiFi热点教程
- 第六章控制系统计算机辅助设计
- 高一语文周清试卷.doc
- 网络教育《大学英语三》答案
- 深圳市公路工程现场文明施工管理要求
- 2014年2月知名网站源码更新汇总
- 危险化学品单位应急救援物资配备标准(征求意见稿)
- Unit 1 Could I change my life6
- 赢在路上-评定企业内各个职位之间相对价值的大小
- 2010年证券从业资格考试《证券市场基础知识》全真预测试卷(1)-中大网校
- 浙江省十校联盟2020-2021学年高三10月联考地理试题
- 大一计算机试题6
- 2020年二级建造师考试《市政公用工程管理与实务》知识点汇总
- 浅谈小学拼音教学中学生创新思维的培养_张东
- 国庆婚礼的策划书
- 影响锅炉飞灰含碳量的因素
- 人教版七年级上册数学第三章 《一元一次方程》单元练习题