An MPEG-Processor-based Robot Vision System for Real-Time Detection of Moving Objects by a
更新时间:2023-05-26 11:40:01 阅读量: 实用文档 文档下载
- angelababy推荐度:
- 相关推荐
This paper describes a PC-based vision system that can be used to detect moving objects from a mobile robot. An image processing board equipped with an MPEG motion estimation processor calculates a sparse but robust optic flow in real-time. An algorithm to
AnMPEG-Processor-basedRobotVisionSystemforReal-TimeDetectionof
MovingObjectsbyaMovingObserver
NorbertO.St¨of erandZoltanSchnepf
LaboratoryforProcessControlandReal-TimeSystems
TechnischeUniversit¨atM¨unchenD-80333M¨unchen,Germany
stof er@lpr.ei.tum.de,www.lpr.ei.tum.de/stof er/
Abstract
ThispaperdescribesaPC-basedvisionsystemthatcanbeusedtodetectmovingobjectsfromamobilerobot.AnimageprocessingboardequippedwithanMPEGmotiones-timationprocessorcalculatesasparsebutrobustoptic owinreal-time.Analgorithmtoevaluatethiskindofoptic owhasbeenrealizedinsoftware.Itdeterminesrelevantmotionparametersandasimplesceneinterpretationintermsofmovingobjectregions.Theimageprocessingboardandthealgorithmarepresentedinsomedetail;theperformanceofthesystemisdemonstratedbyexperiments.
1.
Introduction
Usingourexperimen-talrobotMARVIN(MobileAutonomousRobotwithVIsion-basedNavigation,seeFig.1),wearecurrentlyworkingontheautono-mousexplorationofof ce-typeenvironments.Primar-ilyvisionisusedtobuild3Dworldmodels[2].Im-portantcuestotheinterpre-tationofanobservedscenecanbeobtainedbytheeval-uationofmotion.Movingobjects(typicallypeopleintheabove-mentionedenvi-ronment)havetobedistin-Figure1.MARVINguishedfromstaticpartsof
thesceneontheonehandandhavetobetakenintoaccountfordynamicmotionplanningontheotherhand.Thisdetec-tionofmovingobjectshastotakeplaceduringthemotion
oftherobotitself.
Three-dimensionalmotionisprojectedontoatwo-dimensionalvelocity eld(ordisplacement eldinthecaseofisochronoussampling)ontheimageplaneofthecamera.Thisvector eldiscommonlytermedoptic ow(ormorepreciselyimage ow).Ifthedisplacementvectorsareregardedtobeequivalenttothevelocityvectors(anac-ceptableassumptionforrealisticframeratesandvelocities[1])andthefocallengthofthecameraisnormalizedto1(amathematicalconveniencethatdoesnotrestrictgenerality),theoptic ow
canbecalculatedaccordingtothefollowing:
This paper describes a PC-based vision system that can be used to detect moving objects from a mobile robot. An image processing board equipped with an MPEG motion estimation processor calculates a sparse but robust optic flow in real-time. An algorithm to
2Real-timeoptic owsensor
TheMPEGcompressionstandardsusethespatio-temporalredundancyinanimagesequenceforband-widthreduction.Ifpossible,onlydisplacementvectorsaretransmittedinsteadofthecompletepixelinformation.Al-thoughtheMPEGstandardsdonotregulatehowthesevec-torshavetobecomputed,thestate-of-the-arttechniqueiscorrelation.Ascorrelationiscomputationallyexpensive,specializedprocessors,socalledMEPs(MotionEstimationProcessors)haveevolvedfromthisarea.Areferenceblock(RB,16x16pel)fromimageiscomparedwithasearchwindow(SW,32x32pel)intheimage.Forallpossi-bleoffsets
,acorrelation-likevaluecalledSAD(SumofAbsoluteDifferences)iscalculated;themini-mumdesignatesthebestmatch,anditspositionde nesthedisplacementvector:
(2)
(3)
Ifconsecutiveimagesarecompared(i.e.
),theresultingvector eldcanberegardedasoptic ow.
TheideatouseoneofthoseextremelyoptimizedMEPsforthegenerationofoptic owisnotnew.InparticularInoueetal.describetheintegrationofaMEPintotheirim-ageprocessingtransputernetwork[5].Resultingfromtheirwork,acommercialversionisavailable,andmeanwhileisusedinvariousresearchprojects[3,4].
Aproblemthatseveralresearchersreportisthattheoptic owgeneratedbysuchacorrelationprocessorcanbecomeverynoisy.ThishappenswhentheimagestructureoftheRBsorSWsisambiguousorcompletelymissing.Thenthedetectionofasigni cantminimumaccordingtoEqn.3fails.
Fig.2aillustratestheproblem.The owwasgeneratedbyalinearforwardmovementofthecamera,soallvectorsshouldintersectinasinglepoint,theFOE(FocusOfEx-pansion).Duetolocallackofstructure,mostvectorspointtocompletelydifferentdirections.Unfortunately,thiseffectdominatesinmostof ce-typeenvironments.Furtherevalu-ationofsucha ow eldisvirtuallyimpossible.
Tosolvethisproblem,weaugmentedaMEPwithexter-nalcircuitrythatcalculatesanadditionalcon dencevalueforeachvector[7].Inthesimplestcase,thiscon dencevaluecanbetestedagainsta xedthresholdtosiftoutthenoisy owvectors.Adrawbackisthesparsenessofthere-maining eld(seeFig.2b).
OurprototypesystemconsistsofanISAimageprocess-ingboardcontainingtheMEP,andaLINUXhostPC(seeFig.
3).
Figure2.Optic ow,generatedbyaMEP.a)complete,b)sifted.
Figure3.Optic owsensor:Systemstruc-ture.
Threeframememoriesallowthecomparisonoftwoim-agesandsimultaneousacquisitionofthenextimageintothethirdmemory.DependingontheutilizationoftheMEPinternalpipeline,upto525vectorscanbecalculatedperframe(PAL,25Hz).Forapplicationsliketrackingmulti-
This paper describes a PC-based vision system that can be used to detect moving objects from a mobile robot. An image processing board equipped with an MPEG motion estimation processor calculates a sparse but robust optic flow in real-time. An algorithm to
pleobjectsorbigdisplacements(astypicallyinducedbycamerarotation)a xedblock-rasterisnotadequate.Toachievethehighestpossible exibility,thecoordinatesofRBsandSWscanberandomlysetbythesoftwarerunningonthePCforeachsinglematchingoperation.Alistof
positions
isreadviaDMA,thelistofresultsiswrittenbackbyDMAagain.ThissavesmostoftheCPU’sprocessingpowerfortheapplicationsoftwarethatevaluatesthegenerated ow eldsasdescribedinthenextsection.Foramoredetaileddescriptionofthehardwaresee[7].
3Detectionofmovingobjectsbyoptic owsegmentation
Manypapersintheliteratureofoptic owaddresstheproblemofobjectsegmentationandmotionparameterre-construction.Algorithmstocalculateall veparameters(theabsolutevalueofthetranslationvectorgetslostdur-ingthe3Dto2Dprojection)wereproposedforexamplebyPrazdny[6]orWengetal.[8].Adivpresentsanelegantap-proachtosolvethesegmentationproblemforall veparam-eters:Objectsareconsideredtoconsistofplanarsurfaces,sovectorscanbeclusteredinan8D(5Dforthemotionand3Dforthesurfaceparameters)Houghspace[1].
Applyingthesetechniquestooptic owscalculatedbyoursensorsystemproducesnosatisfyingresults,though.ResponsibleforthefailureoftheseverygeneralapproachesisthenumericalinstabilityoftheclosedformsolutiontoEqn.1alongwiththestrongquantizationerrorsofthecal-culatedvectors.
Thereasonforthisfailurecanalsobegraphicallyde-ducedbythesimilarityof eldsgeneratedbymerelateralandmererotationalmotion.Thoughallvectorsarepar-allelinthetranslationalcase,andalignedwithhyperbolas(accordingtoEqn.1)intherotationalcase,thedifferencehasthesameorderofmagnitudeasthequantizationeffects.Fig.4demonstratestheproblemforrealisticcameraparam-etersandconstant
depth.
Figure4.Optic ow:a)horizontaltranslation
b)verticalrotation.
Therefore,ageneralsolutiontothecompletemotionre-covery(i.e.segmentationofmovingobjectsanddetermina-tionofall5parametersforeachobject)seemsimpossible
inourcontext.
Morepragmaticapproachesthatcluster owvectorsalongtheir2DpropertiesasforexampleproposedbyYa-mamotoetal.[9],producedbetterresults,butaredif culttoadaptforamovingobserverandcannotbeusedforob-jectsmovingalongtheopticalaxis.
3.1Determinationofego-motion
Becauseoftheaboveproblems,weintroducesomesim-pli cationstothegeneralapproachesthatareinspiredbytherequirementsofourapplication.Becausethecameraismountedonamobilerobotwithnon-holonomickinemat-ics,onlyonetranslationalandonerotationalparameterre-main.Withoutfurtherrestrictinggenerality,buttosimplifytheequations,itisassumedthatthecameraismountedhori-zontally.Incameracoordinates,thereis
andthegeneralequationoftheoptic ow(Eqn.1)canbereducedtothefollowing:
and)remain,
Eqn.4canbesolvedforeachvectorasfollows:
(5)
isameasurementofthedistanceof
thecorresponding3Dpointandthushasanindividualvalueforeachvector(itisthereciprocalvalueoftheTimeToCollision,TTC).
Thesecondresult
shouldcorrespondtotherotationalvelocityofthecameraandthereforebeidenticalforeachvector.Thus,therotationofthecameracanbeestimatedbyasimplemeanvaluecalculation:
(7)
ExperimentsonMARVINinarealof ce-typeenviron-menthavedemonstratedthefeasibilityoftheproposedes-timationapproachfor.Whenemployingthemedianin-steadofthesimplemeanvalue,therobustnessofthecal-culatedvalueagainstremainingfaultyvectorscanbein-creasedfurther.Fig.5showsacomparisonoftheestimatedandtheonecalculatedbytheodometryoftherobot.Sincetheresultingvectorlengthsigni cantlyexceedsthemaximalvectorlengthoftheMEP,evenformoderateturningratesoftherobot(
This paper describes a PC-based vision system that can be used to detect moving objects from a mobile robot. An image processing board equipped with an MPEG motion estimation processor calculates a sparse but robust optic flow in real-time. An algorithm to
0.4
0.4
0.350.35
0.30.3
0.250.25
0.20.2
0.150.15
0.10.1
0.050.05
050100150200250
050100150200
parisonofa)theestimatedandb)thecorrespondingodometricvalue
Takingintoaccountonlythevectorsof,theestimate
forthecamerarotationcanagainbecalculatedaccordingtoEqn.7.Fig.6demonstratestheperformanceoftheback-grounddetectionstatisticallyusingtypicalimagesequencescontainingonetoseveralmovingobjects.Inthisexperi-ment,thecameraisnotmoving,i.e.theestimatedshouldbe.Eachdotcorrespondstoone ow eld.Theab-scissadepictsthepercentageof owvectorsbelongingtothebackground,theordinatetheestimated(herein
Simplyusingthelast
tocalculateabiasvector
transformsthelimitationoftherotationalvelocitytoa
limitationoftherotationalacceleration.Thus,agoodesti-mateisessentialfortheoveralloperationofthevisionsystem.
3.2Segmentationofmovingobjects
Inthecaseofoneormoremovingobjectsintheobservedscenethedeterminationoftherotationhastobemodi ed.
ofvectorsbelongingtoamovingobjectnolongerThe
ofthecamera.Segmentationcanbecoincidewiththe
performedbyclusteringvectorsaccordingtotheir.Asimpleclusteralgorithmhasproventobesuf cientinthe
,experiments.Vectorsaresortedbyincreasingvaluesof
so
Thentheyarecombinedtoformasetofclusters
aslongastheysatisfythecriterion.Therefore
.
clustersbuildthe rsthypothesesfortheseg-These
mentationoftheoptic ow.Unfortunately,noteachclustercorrespondstoonemovingobject,becausetheassumptionsthatledtoEqn.4areonlytrueforarestrictedcameramo-tion,i.e.forthevectorsbelongingtothebackground.Sointhisstep,onlyaclassi cationbackgroundversusnotback-groundcanbemadeforeachcluster.Goodresultscanbeachievedbydeclaringtheclusterasbackgroundthatcontainsthesetofvectorswiththelargestspatialvariance.Thisapproachisinspiredbytheobservationthattheback-groundistheonly”object”notcorrespondingtoacompactimageregion.
Since,asintheliveexperimentsonlythe rst eldofeachframeisused,thevarianceindirectionismuchmoremeaningfulthanindirectionandcanbeusedexclu-sively:
This paper describes a PC-based vision system that can be used to detect moving objects from a mobile robot. An image processing board equipped with an MPEG motion estimation processor calculates a sparse but robust optic flow in real-time. An algorithm to
Figure7.Segmentationresults(PAL, rst eldonly)
ofthoseboundingboxesinalist,hypothesesofobjectre-gionscanalsobemaintainedwhenthedetectionfailsforashorttime,i.e.whenamovingobjecttemporarilystops.Fig.7showssamplesfromatypicalimagesequenceusedintheexperiments.Thecamera(i.e.therobot)ismov-ingalongaslightleftturnwhileapersoncrossesthescene.Vectorsnotbelongingtothebackgroundarerobustlyde-tectedandclustered.Theboundingboxescan,ofcourse,onlyencompassthosepartsofthemovingobjectswhereoptic owvectorshavebeencalculatedandhavepassedthesiftingprocess.
4Conclusionandfurtherwork
Wehavepresentedalowcostbutef cientimagepro-cessingsystemthatisabletocalculateasparseoptic owinreal-time(upto525vectorsperframe).Further,aprac-ticalalgorithmtodetectmovingobjectsbysegmentationofthe ow eldwasproposedandsomeexperimentalresultswerepresented.Thesystemiscurrentlyusedinclosedloopexperimentsonanautonomous,vision-guidedrobot.
Furtherworkwillbeconcernedwithimprovementstotherobustnessofthesystem.ApplyingKalman lteringtotheestimationofthecamerarotationcanfurtherreducethesensitivitytonoiseandallowapredictionofevenwhenthebackgrounddetectiontemporarilyfails.Forthevectorsbelongingtothebackground,theadditionalparameter
正在阅读:
An MPEG-Processor-based Robot Vision System for Real-Time Detection of Moving Objects by a05-26
城市总体布局的基本内容01-21
偏微分方程期末考试试题(07)05-27
电影珍珠港的观后感12-11
初中生小组合作评改课题结题报告01-04
学生会招新策划书10-07
全员营销工作总结10-12
113道C语言10-07
乡镇法治建设责任落实工作总结报告08-04
2022年护理年终工作总结7篇07-31
- 1A COLOR-BASED PARTICLE FILTER FOR JOINT DETECTION AND TRACKING OF MULTIPLE OBJECTS
- 2A Component Model for Embedded Real-Time Software product-Lines
- 3Abnormal Crowd Behavior Detection Based on the Energy Model
- 4Abnormal Crowd Behavior Detection Based on the Energy Model
- 5Depth based Occlusion Detection and Localization from 3D Fac
- 6A Novel Image Retrieval System Based on BP Neural Network
- 7Speech Interface for controlling an Hi-fi Audio System Based
- 8A HMM-based adaptive fuzzy inference system for stock market forecasting
- 9Implementation of Blast Furnace Gas Water Spray Cooling Control System Based on PLC and OPC
- 10HIPERLAN-like Turbo Coded Multi-user Detection Assisted OFDM Based Interactive Video Teleph
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Detection
- Processor
- Objects
- Vision
- System
- Moving
- based
- Robot
- MPEG
- Real
- Time
- 加工贸易详细流程 五分钟让你懂加工贸易
- 商业公司周年庆活动策划方案
- 5卫星气象学_云图识别
- 高考经典英语短文背诵
- 疼痛患者的心理护理
- 遵义海龙屯旅游景点介绍
- 幼儿园卫生保健工作情况调查表
- 厦门中信电脑培训学校1
- 大众传媒对女大学生消费行为的影响——对武汉地区高校女大学生的调查
- 2021年教师职业的个人鉴定700字
- 计算机技术基础作业2
- 财务报表分析形成性测评01--题目:偿债能力分析
- 瑞吉欧软件体系合作项目书
- 高职校内生产性实训基地模式的建设探究
- 大学英语精读一前六单元课后翻译整理版
- 广东省揭阳市一中2015-2016学年高一上学期第二次段考语文试卷
- 高二语文第二次月考试题
- 第11讲 活学活用-如何平息顾客的不满
- XX文化宣传方案范文
- 2018年部编人教版一年级下册语文期末测试卷