最新人教版七年级数学上册期末复习《第三章一元一次方程》知识点和易错题(含答案)

更新时间:2023-08-29 15:53:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

七年级数学上册期末复习一元一次方程

知识点+易错题

一元一次方程知识点总结

一、等式与方程

1.等式:

(1)定义:含有等号的式子叫做等式.

(2)性质:

①等式两边同时加上(或减去)同一个整式,等式的值不变.

若错误!未找到引用源。那么错误!未找到引用源。

②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.

若错误!未找到引用源。那么有错误!未找到引用源。或错误!未找到引用源。(错误!未找到引用源。)

③对称性:若错误!未找到引用源。,则错误!未找到引用源。.

④传递性:若错误!未找到引用源。,错误!未找到引用源。则错误!未找到引用源。.

(3)拓展:

①等式两边取相反数,结果仍相等.

如果错误!未找到引用源。,那么错误!未找到引用源。

②等式两边不等于0时,两边取倒数,结果仍相等.

如果错误!未找到引用源。,那么错误!未找到引用源。

③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.

如移项,运用了等式的性质①;去分母,运用了等式的性质②.

④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:

(1)定义:含有未知数的等式叫做方程.

(2)说明:

①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.

②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.

未知数称为元,有几个未知数就叫几元方程.

一道题中设两个方程时,它们的未知数不能一样!

③“次”:方程中次的概念和整式的“次”的概念相似.

指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次

数.

未知数次数最高是几就叫几次方程.

④方程有整式方程和分式方程.

整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.

分式方程:分母中含有未知数的方程叫做分式方程.

二、一元一次方程

1.一元一次方程的概念:

(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.

(2)一般形式:错误!未找到引用源。(a,b为常数,x为未知数,且错误!未找到引用源。).(3)注意:

①该方程为整式方程.

②该方程有且只含有一个未知数.

③该方程中未知数的最高次数是1.

④化简后未知数的系数不为0.如:错误!未找到引用源。,它不是一元一次方程.

⑤未知数在分母中时,它的次数不能看成是1次.如错误!未找到引用源。,它不是一元一次方程.

2.一元一次方程的解法:

(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“错误!未找到引用源。”的形式.

(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.

(3)移项:

①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.

②说明:

Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.

Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.

Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知

数的项合并,右边对常数项合并,方便求解.

(4)解一元一次方程的一般步骤及根据:

①去分母——等式的性质②

②去括号——分配律

③移项——等式的性质①

④合并——合并同类项法则

⑤系数化为1——等式的性质②

⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)

(5)一般方法:

①去分母,程两边同时乘各分母的最小公倍数.

②去括号,一般先去小括号,再去中括号,最后去大括号.

但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.

③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项

时别忘记了要变号.(一般都是把未知数移到一起)

④合并同类项,合并的是系数,将原方程化为错误!未找到引用源。(错误!未找到引

用源。)的形式.

⑤系数化1,两边都乘以未知数的系数的倒数.

⑥检验,用代入法,在草稿纸上算.

(6)注意:

(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)

①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;

②去分母时,方程两边各项都乘各分母的最小公倍数,

Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘

Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);

③去括号时,不要漏乘括号内的项,不要弄错符号;

④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;

⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认

真计算);

⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;

⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.

(7)补充:分数的基本性质:与等式基本性质②不同.

分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.

3.一元一次方程的应用:

(1)解决实际应用题的策略:

①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个

字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关

系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴

随下个步骤.

②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系

表示出其他相关的量.

③找出等量关系,用符号语言表示就是列出方程.

本文来源:https://www.bwwdw.com/article/uc2i.html

Top