高分子材料与工程专业实验专用周指导书 - 图文

更新时间:2023-10-13 18:22:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验一 转矩流变仪实验

一、实验目的

1、了解转矩流变仪的基本结构及应用范围; 2、了解转矩流变仪的工作原理及使用方法; 3、掌握聚氯乙烯热稳定性的测试方法。

二、实验原理

高分子材料的成型过程,如塑料的压制、压延、挤出、注射等工艺,化纤抽丝,橡胶加工等过程,都是利用高分子材料熔体进行的。熔体受力作用,不但表现有流动和变形、而且这种流动和变形行为强烈地依赖于材料结构和外界条件,高分子材料的这种性质称为流变行为(即流变性)。测定高聚物熔体流变性质,根据施力方式不同,有多种类型的仪器,转矩流变仪是其中的一种。

转矩流变仪由微机控制系统、混合装置(挤出机、混炼器)等组成。测量时,物料被加到混炼室中,受到两个转子所施加的作用力,使物料在转子与室壁间进行混炼剪切,物料对转子凸棱施加反作用力,这个力由测力传感器测量,在经过机械分级的杠杆和臂转换成转矩值的单位牛顿?米(N?m)读数。其转矩值的大小反应了物料黏度的大小。通过热电偶对转子温度的控制,可以得到不同温度下物料的黏度。

转矩数据与材料的粘度直接有关,但它不是绝对数据。绝对粘度只有在稳定的剪切速率下才能测得,在加工状态下材料是非牛顿流体,流动是非常复杂的湍流,有径向的流动也有轴向的流动,因此不可能将扭矩数据与绝对粘度对应起来。但这种相对数据能提供聚合物材料的有关加工性能的重要信息,这种信息是绝对法的流变仪得不到的。因此,实际上相对和绝对法的流变仪是互相协同的。从转矩流变仪可以得到在设定温度和转速(平均剪切速率)下扭矩随时间变化的曲线,这种曲线常称为“扭矩谱”,除此之外,还可同时得到温度曲线、压力曲线等信息。在不同温度和不同转速下进行测定,可以了解加工性能与温度、剪切速度的关系。转矩流变仪在共混物性能研究方面应用最为广泛。转矩流变仪可以用来研究热塑性材料的热稳定性、剪切稳定性、流动和固化行为。

三、实验原料和仪器设备

1、原料:硬质PVC干混料

在硬质PVC干混料配方中,除PVC树脂外,为了获得合适的工作及加工性能,需要配合各种成分,这些成分对干混料熔体的流变性有不同的影响,从而显著地影响物料最终的加工性能。在混炼器上测量干混料的流变曲线是了解配方中各组成成份对物料加工性能影响的有效方法。典型的硬质PVC流变曲线(扭矩谱)以及物料状态与实际加工设备之间的关系如图1所示。

图中第一个峰(A)为加料峰,第二个峰(B)为塑化峰,第三个峰(C)为分解峰,分别表示物料的加入、塑化和分解。加料峰到塑化峰之间的时间间隔为塑化时间,塑化峰到分解峰之间的时间间隔为热稳定时间。在实际加工时,物料在螺杆塑化段内的停留时间应不小于塑化时间,保证物料的充分塑化,并且在热分解之前完成加工。

图1硬质 PVC干混料密炼的扭矩谱

2、 仪器设备

RM-200型转矩流变仪(哈尔滨哈普电气技术有限责任公司)与混炼器单元一套构成密炼机式转矩流变仪,如图1 所示 。

图1 转矩流变仪示意图

1-压杆;2-加料口;3-密炼室;4-漏料;5-混炼器;6-紧急制动开关;

7-手动面板;8-驱动及扭矩传感器;9-开关;10-计算机

(1)转矩流变仪的组成:

① 混炼器 内部配备压力传感器、热电偶,测量测试过程中的压力和温度的变化。 ② 驱动及转矩传感器 转矩传感器是关键设备,用它测定测试过程中转矩随时间的变化。转矩的大小反映了材料在加工过程中许多性能的变化。

③ 计算机控制装置 用计算机设定测试的条件如温度、转速时间等。并可记录各种参数(如温度、转矩和压力等)随时间的变化。 (2)性能指标

混炼器转速最大值120r/min;转矩最大值200N?m;熔体温度测量范围为室温至300℃,温度控制精度为±1℃。 (3)扭矩流变仪转子

转矩流变仪转子如图2所示,转子有不同的形状,以适应不同的材料加工。混炼器机配备的转子为西格玛(Σ)型转子。在密炼室内不同部位的剪切速率是不同的,两个转子有一定的速比,一般为3:2(左转子:右转子),两转子相向而行,左转子为顺时针,右转子为逆时针。

图2 密炼室转子示意图

四、实验步骤

(1)称量 按照上面所列配方准确称量,加入试样的质量(M)应按照下式计算:

?ρ)?0.69 M=(V-rV (2-9)

而且: V-Vr?70 式中 V——密炼室的容积,ml;

Vr——转子的体积,ml; ρ——物料密度,g/mL。

为便于对试样的测试结果进行比较,每次应称取相同质量的试样。 (2)合上总电源开关,打开扭矩流变仪上的开关,开启计算机;

(3)10min后按下手动面板上的START,这时START上的指示灯变亮;

(4)双击计算机桌面的转矩流变仪应用软件图标,然后按照一系列的操作步骤(由实验教师对照计算机向学生讲解完成),通过这些操作,完成实验所需温度、转子转速及时间的设定;

(5)当达到实验所设定的温度并稳定10min后,开始进行实验。先对转矩进行校正,并观察转子是否旋转,转子不旋转不能进行下面的实验,当转子旋转正常时,才可进行下一步实验;

(6)点击开始实验快捷键,将原料加入混炼器中,并将压杆放下用双手将压杆锁紧; (7)实验时仔细观察转矩和熔体温度随时间的变化;

(8)到达实验时间,混炼器会自动停止,或点击结束实验快捷键可随时结束实验; (9)提升压杆,依次打开混炼器二块动板,卸下两个转子,并分别进行清理,准备下一次实验用;

(10)待仪器清理干净后,将已卸下的动板和转子安装好。

五、思考题

1. 那些主要因素将影响高聚物的流变性质?

2. 测试物料及实验过程如何保证实验结果的可靠性。 3. 试比较毛细管流变仪和转矩流变仪各自的特点?

4. 转矩流变仪在聚合物成型加工中有哪些方面的应用? 5. 加料量、转速、测试温度对实验结果有哪些影响?

实验二 塑料拉伸强度及应力-应变曲线测定实验

一、实验目的

1、了解高分子材料拉伸性能测试标准条件和测试原理;

2、掌握测定聚合物拉伸强度、断裂伸长率和应力—应变曲线的测定方法; 3、考察拉伸速度等因素对聚合物拉伸性能的影响。

二、实验原理

拉伸实验是最基本、用途最广泛的一种材料力学实验。其基本过程是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止,由此来测量试样所能承受的最大载荷及相应的形变。通过拉伸实验可得到材料的拉伸强度、断裂伸长率以及拉伸弹性模量。

拉伸强度:在实验过程中,试样的有效部分原始横截面单位面积所承受最大负荷。 断裂伸长率:由拉伸负荷使试样有效部分标线间距离的增量与原始标距之比的百分率。 应力-应变曲线:以拉伸应力为纵坐标所得到的拉伸特性曲线称为应力-应变曲线。它往往是通过拉力机在一定的拉伸速度下自动记录拉伸负荷-形变曲线,经变换而得。

拉伸试验基本公式如下:

??L?L0L0FA0 (1)

?? (2)

E????FL0A0(L?L0) (3)

式中,?伸长率即应变;?为应力;L为样品某时刻的伸长;L0为初始长度;A0为初始横截面积;F为拉伸力;E为拉伸模量。

聚合物的拉伸性能可通过其应力-应变曲线来分析,典型的聚合物拉伸应力-应变曲线如图1所示。在应力-应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。

图1 典型的聚合物拉伸应力-应变曲线

图2 五种典型聚合物拉伸应力-应变曲线

1-软而弱;2-硬而脆;3-硬而强;4-软而强;5-硬而韧

本实验在不同应变速度下测定聚乙烯的应力-应变曲线。

将已知长度和横截面积的样品,夹在两个夹具之间,以恒速拉伸至断裂,测定应力随伸长的变化。分析在不同应变速度时测定的数据,可以了解材料的强度、韧性及极限性能。 有合适的样品架或可设法固定住的聚合物都可进行本实验。

均匀的样品重复性可优于±5%。但由于制各样品和实验操作中存在的一些不可避免的可变因素,使重复性比此数值要差些。

三、实验仪器和试样

1、实验仪器

微机控制电子万能试验机(美国MTC CMT4304),30kN楔型拉伸夹具一套(夹具型号:XSD304A);哑铃型制样机(美国MTC QYJ1251), ⅠA型夹具及靠模一套,游标卡尺、直尺。测试条件为,温度:25±2℃,湿度:65±5%,测试标准参考:GB 1040-2006。

电子万能试验机测试主体结构示意图,如图3所示。

本文来源:https://www.bwwdw.com/article/uc1f.html

Top