数学发展简史

更新时间:2024-04-07 20:02:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第二章 初等数学时期

(前600年---17世纪中叶)

2.1希腊文明时期

地中海的灿烂阳光——孕育了著称于世的古希腊文明。其中,希腊数学就是希腊文化中的一个主要分支。希腊数学汇集了巴比伦精湛的算术和埃及神奇的几何学。

2.1.1雅典时期的数学

(前600—前323)

这一时期又可以希波战争为界限划分为前后2个历史时期。希波战争前的希腊数学就是以爱奥尼亚学派和毕达哥拉斯学派为主要代表的。希波战争之后,则以巧辩学派,埃利亚学派,原子论学派柏拉图学派的成就为代表。尤其是从BC480年到BC336年,数学史上又称为雅典时期。BC4世纪以后的希腊数学慢慢成为了独立的学科。数学的历史进入了一个新的阶段——初等数学时期。在这一大时期里,希腊各地涌现了许许多多的学派,他们共同作用于希腊数学的发展。 1.爱奥尼亚学派——古希腊历史上的第一个学派

爱奥尼亚学派是由彼赋盛名的“希腊科学之父”泰勒斯创立。泰勒斯是一个精明的商人,他流转于各地经商,并从巴比伦河埃及等地带回了数学知识,故而创立了爱奥尼亚学派。他在数学上的最著名的业绩是测量金字塔的高度,而划时代的贡献是开始引入了命题证明的思想,因而被认为是希腊几何的先驱。关于泰勒斯,希腊史诗并无明确的记载,但据可靠的材料我们可以推断出下列五大命题的发现时归功于泰勒斯:

(1) 圆的直径将圆平分。 (2) 等腰三角形两底角相等。 (3) 两条直线相交,对顶角相等。

(4) 有两角夹一边分别相等的两个三角形全等。

(5) 对半圆的圆周角是直角。

其中,第五个命题还被人们称为“泰勒斯定理”。泰勒斯证明了或视图证明这些命题,使得数学从具体的,实验的阶段开始向抽象的,理论的阶段过渡,这是数学史上的一个重大创举。也就是说,泰勒斯对于数学科学的发展的贡献并比仅是存在于他发现了这些定理,更重要的是泰勒斯为它们提供了某种的逻辑证明。 从泰勒斯开始,人们已经不再只是利用直观和实验解答数学问题,而是将逻辑学中的演绎推理引入了数学,奠定了演绎数学的基础,这使得他荣获了“第一位数学家”和“论证几何学鼻祖”的美誉,还被尊称为“希腊七贤之首”。 2.毕达哥拉斯学派——西方古代美学的开端

毕达哥拉斯与泰勒斯一样也是扑朔迷离的传说人物,二者都没有著作留世,我们甚至不知道他们是否写过著作。毕达哥拉斯于BC570年生于萨摩斯岛,是古希腊哲学家,天文学家和音乐理论学家,他爱好游学。他游历各地,最后定居于意大利半岛南部的克罗多内(古:大希腊),还广收门徒,秘密组织了一个集政治、学术、宗教三位于一体的组织——毕达哥拉斯学派。这个学派主要是研究“哲学”和“数学”。相传,创造了“哲学”和“数学”这2个词。

在几何学方面,毕达哥拉斯学派主要有2大几何学成就,一就是发现和证明了“勾股定理”,后来被欧几里得编入了《几何原本》之中。至今,西方人仍然把“勾股定理”叫做“毕达哥拉斯定理”。这个伟大的定理导致了无理数的发现。毕达哥拉斯学派的另外一项几何成就就是正多面体作图,他们称正多面体为“宇宙形”。尽管人们将许多的集合成就归功于毕达哥拉斯学派,但这个学派适中的及基本信条是“万物皆数”。

毕达哥拉斯学派崇拜的数主要有整数和两个整数形成的比,即有理数。他们对这些数做出过深入的研究,发现了完全和亲和数,即将抽象的数作为万物的本源,通过揭露数的奥秘来探索宇宙的永恒真

理。该学派宣称宇宙的万物主宰者也就是上帝是用数来统御宇宙的,认为万物含数。一个毕达哥拉斯学派的成员曾经说过:“人们所知道的一切事物都包含数,因此,没有数即不可能来表达也不可能来理解任何事物。”而一切数中最神圣的是10,10在他们的眼中是最完美和最和谐的标志。

毕达哥拉斯学派还从数与形的关系出发,研究了二者的结合物——“行数”,且由此得出了一些数列的重要公式,这一系列的数列现在已经成为高阶等差数列的范围。

毕达哥拉斯学派数字神秘主义的外壳,包含着理性的内核。首先,它加强了数的概念中的理论倾向。其次,“万物皆数”的信念,使毕达哥拉斯成为相信自然现象可以通过数字来理解的先驱。他们认为宇宙万物依赖于整数的信条,由于不可公度量的发现而收到了动摇。据柏拉图记载,后来又发现了一些无理数。这些“怪物”深深地困惑着古希腊啦的数学家,希腊数学中出现的这一个逻辑难题被史称为“第一次数学危机”。约1世纪之后,这一危机才由毕达哥拉斯学派成员啊切塔斯的学生欧多克斯提出的新比例理论二暂时得到了消除。毕达哥拉斯在政治中被杀害之后,该学派还存在了2世纪之久。阿尔·西塔斯则是这个学派的晚期的代表人物。他继承和发展了毕达哥拉斯学说。

2.1.2 亚历山大里亚前期

(前336-----前30)

这个时期,亦称为黄金时代,科学文化的中心也从雅典转移到埃及的亚历山大里亚。亚历山大里亚城市东南海路交通的枢纽,又经过托勒密王狄加意的经营,慢慢地成为了新的希腊文化的中心,取代了希腊本土的主要要地位。BC146年,古希腊灭亡,希腊数学以罗马为中心,达到了一个巅峰时期,史称“希腊化的科学时代”。在这一时期,以欧几里得.阿基米德和阿波罗尼奥斯的研究为主要代表。同时,

他们也成为了希腊数学史上最有影响力的数学家。正是他们让数学开始了相对独立的发展。 1.欧几里得及其《原本》

欧几里得是希腊论证几何学的集大成者。关于他的生平,我们知之甚少。欧几里得写过不少的数学,天文,光学和音乐方面的著作,现存的有《原本》,《论剖分》,《现象》,《光学》和《镜面反射》。其中,最出名的莫过于《原本》。这本书是世界上最著名、最完整而且流传最广的数学著作。《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果和精神于一书。既是数学巨著,也是哲学巨著,还是第一次完成了人类对空间的认识。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相提并论。

《几何原本》,共13卷,含有23条定义,5条公理,5条公设,在此基础上,演绎了467个命题。《几何原本》的特点和历史地位: (1)抽象化的内容:它以逻辑为链条的形式化符号系统,数字的形式化方法决定了数学能对纯粹的量进行独立地,理想化地,系统性地进行研究。从抽象程度上看,《几何原本》每一次抽象都是理性思维的结晶,体现了当时人类思维的最高级形态。

(2)公理化的方法:《几何原本》是实质公理学的典范。公理学研究的对象,性质和关系是由初始的概念来表示的。该书把亚里斯多德初步总结出来的公理化思想应用于数学,整理,总和发展了希腊古典时期的大量数学知识,它在数学史上是一座不朽的里程碑。 (3)封闭式的演绎:它以一些原始概念和不证明的公设和公理为基础,运用逻辑原则,演绎出几何学中的所有定理。 2.阿基米德——数学之神

阿基米德是历史上的伟大数学家和伟大力学学者,享有“力学之父”的美称。他有这么一句名言众所周知“给我一个支点,我将翘起

整个地球”。 作为数学家,他写出了《论球和圆柱》、《圆的度量》、《抛物线求积》、《论螺线》、《论锥体和球体》、《沙的计算》数学著作。作为力学家,他着有《论图形的平衡》、《论浮体》、《论杠杆》、《原理》等力学著作。阿基米德因创造性的成果受到了后人的高度赞扬,与牛顿,高斯并列为有史以来三个贡献最大的数学家,他们和欧拉一起并称为四个最伟大的数学家。除了伟大的牛顿和爱因斯坦,再没有一个人可以像阿基米德那样为人类的进步做出过这样大的贡献。即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感。他是“理论天才与实验天才合于一人的理想化身”。

阿基米德还制作过天文仪器,发明了螺旋水浆。他的独创与论证相结合,计算技巧与逻辑分析相结合,注意理论联系实际的学风独步千年,留芳百世。

在数学方面,他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,使得后世的数学家可以依据这样的“逼近法”加以发展成近代的“微积分”。 在推演这些公式的过程中,他进一步发展了欧多克斯发明的“穷竭法”,就是用内接和外切的直边图形不断地逼近曲边形以用来解决曲面面积问题,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。他甚至还研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是为纪念他而命名。另外他在《恒河沙数》一书中,他创造了一套记大数的方法,简化了记数的方式,避免了冗长的希腊数字。 3.阿波罗尼奥斯与《圆锥曲线轮》

阿波罗尼奥斯约BC262年生于佩尔格,在BC190年卒,是一位数学家。它的主要贡献是在前人工作的基础上发展了圆锥曲线理论。他注意图形的几何性质,把前辈们的所得到的圆锥曲线知识,予以严格

的系统化,可以收是代表了希腊几何的最高水平,直到17世纪,希腊几何学并无实质性的进步。下面我就来说所《圆锥曲线论》的意义。《圆锥曲线轮》是一部经典巨著,此书集前人之大成,且提出很多新的性质。书中首先证明三种圆锥曲线都可以由同一个圆锥体截取而得,并给出抛物线、椭圆、双曲线、正焦弦等名称,取代了过去的一些叫法。此书可以是把圆锥曲线的性质网罗殆尽,其他人毫无插足之地。

2.1.3 亚历山大里亚后期

(前30-----641)

这个时期,亚历山大里亚被阿拉伯人占领。从此,希腊数学开始走向了灭亡之路了,史称亚历山大里亚后期。虽然这一时期,希腊数学慢慢隐没,但是也涌现了一批的杰出数学家。这一时期以海伦,帕波斯,丢番图,海帕西娅等人为主要代表。 1.海伦——测量大师

海伦海伦生于埃及,是古希腊数学家、力学家、机械学家和测量家。海伦以解决几何测量问题而闻名。著名的“海伦公式”就是由他证明得出的。他多才多艺,善于博采众长。在论证中大胆使用某些经验性的近似公式,注重数学的实际应用。他的主要著作右《量度论》一书。他的成就还有:正3到正12边形面积计算法;长方台体积公式;求立方根的近似公式等。 2.丢番图及其丢番图问题

丢番图是代数学的创始人之一。他认为代数方法比几何的演绎陈述更适宜于解决问题,对算术理论有深入研究,他完全脱离了几何形式摆脱了几何的羁绊,在希腊数学中独树一帜,被后世人叫做“代数学之父”。以下就是著名的丢番图问题,它就是丢番图的墓志铭:

“过路人!这里安葬着丢番图,下面的题目可以告诉你他的寿命多长。他生命的一生的六分之一是幸福的童年,十二分之一是无忧无虑的少年,再过去七分之一的年程,他建立了幸福的家庭。五年后儿子出生,不料儿子竟先其父四年而终,只活到父亲岁数的一半。晚年丧子老人真可怜,悲痛之中度过了风烛残年,也走完了人生的旅程。请问,丢番图活了多大的年纪?”这段碑文散发着文学的芳香,是历史留给我们唯一的有关他的讯息。它相当于方程:

设:丢番图X岁。

x=1/6x+1/12x+1/7x+5+1/2x+4

x=25/28x+9 3/28x=9 x=84

现在人们所说的丢番图方程是指对于整系数的不定方程,求其整数解。

3.海帕西娅——最早的女数学家

海帕西亚大约于AD 3 7 0 年生于埃及的亚历山大里亚。她10岁就知道利用相似三角形对应边成比例的原理去测量金字塔的高度了。海帕西娅是一位科学家,精通数学、医学、哲学.教会感到她的雄辩才能和崇高的声望足以威胁到他们的存在,于是把她视为眼中钉.AD415年3月的一天,在教长西里耳的主谋下,一群暴徒突然把她从马车上拉到教堂里残酷地杀死.这是历史上一桩骇人听闻的宗教迫害科学家的滔天罪行.人称海帕西娅是世界上第一位女数学家。而她的惨死实为一千古悲剧,也是她的死标志着希腊数学的消亡。

2.2 东方数学

2.1.1中国古代数学的高度发展

中国传统数学的形成与兴盛:公元前1世纪至公元14世纪。分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰。 1.中算发展的第一次高峰:数学体系的形成

秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。1983-1984年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170年前后)的竹简,共千余支。经初步整理,其中有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。经研究,它和《九章算术》(公元1世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。

《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100年,它虽是一部天文学著作,涉及的数学知识有的可以追溯到公元前11世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7世纪人,相似形方法)。

中国传统数学最重要的著作是《九章算术》(东汉,公元100年)。中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。《九章算术》是由“九数”发展而来。全书246个问题,分成九章:(1)方田(土地测量),包括正方形、矩形、三角形、梯形、圆形、环形、弓形、截球体的表面积计算,另有约分、通分、四则运算,求最大公约数等运算法则;(2)粟米(粮食交易的比例方法);(3)衰分(比例分配的算法),介绍依等级分配物资或按等级摊派税收的比例分配算法;(4)少广(开平方和开立方法);(5)商功 (立体形求体

积法);(6)均输(征税),处理行程和合理解决征税问题,包括复比例和连比例等比较复杂的比例分配问题;(7)盈不足(盈亏类问题解法及其应用);(8)方程(一次方程组解法和正负数);(9)勾股(直角三角形),介绍利用构股定理测量计算高、深、广、远的问题。所包含的数学成就是丰富和多方面的,主要内容包括分数四则和比例算法、面积和体积的计算、关于勾股测量的计算等,既有算术方面的,也有代数与几何方面的内容。它完整地叙述了当时已有的数学成就,对中国传统数学发展的影响,如同《原本》对西方数学发展的影响一样深远,在长达一千多年间,一直作为中国的数学教科书,并被公认为世界数学古典名著之一。《九章算术》标志以筹算为基础的中国古代数学体系正式形成。

2.中算发展的第二次高峰:数学稳步发展

从公元220年东汉分裂,到公元581年隋朝建立,史称魏晋南北朝。这是中国历史上的动荡时期,也是思想相对活跃的时期。在长期独尊儒学之后,学术界思辨之风再起,在数学上也兴起了论证的趋势。许多研究以注释《周髀算经》、《九章算术》的形式出现,实质是寻求这两部著作中一些重要结论的数学证明。这是中国数学史上一个独特而丰产的时期,是中国传统数学稳步发展的时期。《九章算术》注释中最杰出的代表是刘徽和祖冲之父子。

刘徽(魏晋,公元3世纪)(中国,2002),淄乡(今山东邹平县)人,布衣数学家,于263年撰《九章算术注》,不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造,奠定了这位数学家在中国数学史上的不朽地位,成为中国传统数学最具代表性的人物。成就中最突出的是“割圆术”(圆内接正多边形面积无限逼近圆面积)。在刘徽之前,通常认为“周三径一”,即圆周率取为3。刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之又

割,以至于不可割,则与圆周合体而无所失矣”,通过计算圆内接正3072边形的面积,求出圆周率为3927/1250(=3.1416)(阿基米德计算了圆内接和外切正96边形的周长)。为方便计算,刘徽主张利用圆内接正192边形的面积求出157/50(=3.14)作为圆周率,后人常把这个值称为“徽率”。这使刘徽成为中算史上第一位用可靠的理论来推算圆周率的数学家,并享有国际声誉。

祖冲之(429-500年),范阳遒县(今河北涞源)人,活跃于南朝的宋、齐两代,曾做过一些小官,但他却成为历代为数很少能名列正史的数学家之一。

祖冲之的著作《缀术》,取得了圆周率的计算和球体体积的推导两大数学成就。祖冲之关于圆周率的贡献记载在《隋书》(唐,魏征主编)的《律历志》中:“古之九数,圆周率三,圆径率一,其术疏舛。自刘歆、张衡、刘徽、王蕃、皮延宗之徒,各设新率,未臻折衷。宋末,南徐州(今江苏镇江)从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。” 即,祖冲之算出圆周率在3.1415926与3.1415927之间,并以355/113(=3.1415929?)为密率,22/7(=3.1428?)为约率。

《缀术》的另一贡献是祖氏原理 :幂势既同则积不容异,在西方文献中称为卡瓦列里原理,或不可分量原理,因为1635年意大利数学家卡瓦列里(1598-1647年)独立提出,对微积分的建立有重要影响。

3.中算发展的第三次高峰:数学全盛时期

公元960年,北宋王朝的建立结束了五代十国(907-960年)割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得

到了广泛应用。雕版印书的发达,特别是北宋中期,在宋仁宗庆历年间(约1041—1048年),毕升活字印刷术的发明(平民发明家毕升总结了历代雕版印刷的丰富的实践经验,经过反复试验,制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命,关于毕升的生平事迹,人们却一无所知,幸亏毕升创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里),给数学著作的保存与流传带来了福音。事实上,整个宋元时期(960—1368年),重新统一了的中国封建社会发生了一系列有利于数学发展的变化,以筹算为主要内容的中国传统数学达到了鼎盛时期。中国传统数学以宋元数学为最高境界。这一时期涌现许多杰出的数学家和先进的数学计算技术,其印刷出版、记载着中国传统数学最高成就的宋元算书,是世界文化的重要遗产。 (1)贾宪三角

贾宪(约公元11世纪)是北宋人,在朝中任左班殿值,约1050年完成一部叫《黄帝九章算术细草》的著作,原书丢失,但其主要内容被杨辉的《详解九章算法》摘录,因能传世。贾宪发明了“增乘开方法”,是中算史上第一个完整、可推广到任意次方的开方程序,一种非常有效和高度机械化的算法。在此基础上,贾宪创造了“开方作法本源图”(即“古法七乘方图”或贾宪三角),西方人叫“帕斯卡三角”或“算术三角形”,因为法国数学家帕斯卡(1623-1662年)于1654年发表论文《论算术三角形,以及另外一些类似的小问题》。

算术三角形(利比里亚,1999)。 (2)隙积术

沈括(1030-1094年),北宋钱塘(今浙江杭州)人,北宋著名的科学家,1080年任延州(今陕西延安市)知州,因1082年的“永乐城(今宁夏银川附近)之战”败于西夏(1032-1227年)而结束政治生涯,经过6年的软禁之苦后,开始赋闲幽居生活。沈括一生论

著极多,其中以《梦溪笔谈》(1093年)影响最大,内容包括数学、天文、历法、地理、物理、化学等领域,被英国著名科学史家李约瑟誉为“中国科学史的里程碑”。他对数学的主要成就有两项,会圆术(解决由弦求孤的问题)和隙积术(开创研究高阶等差级数之先河)。 (3)天元术

李冶(金、元,1192-1279年),金代真定栾城(今河北栾城)人,出生的时候,金朝(1115-1234年)正由盛而衰,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居于封龙山治学,潜心学问。1248年撰成代数名著《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,“天元术”与现代代数中的列方程法相类似,称未知数为天元,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试,在数学史上具有里程碑意义。刘徽注释《九章算术》“正负术”中云:“正算赤,负算黑”,李冶感到用笔记录时换色的不便,便在《测圆海镜》中用斜画一杠表示负数。李冶的天元术列方程:x^3+336x^2+4184x+2488320=0。 (4)大衍术

秦九韶(约1202-1261年),南宋普州安岳(今四川安岳)人,曾任和州(今安徽和县)守,1244年,因母丧离任,回湖州(今浙江吴兴)守孝三年。此间,秦九韶专心致志于研究数学,于1247年完成数学名著《数书九章》, 内容分为九类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类,其中有两项贡献使得宋代算书在中世纪世界数学史上占有突出的地位。

《数书九章》是我国古算中最早用圆圈Ο表示0号的著作。发展了一次同余组解法,创立了“大衍求一术”(一种解一次同余式的一般性算法程序,现称中国剩余定理,所谓“求一”,通俗他说,就是求“一个数的多少倍除以另一个数,所得的余数为一”)的一般解法。中算家对于一次同余式问题解法最早见于《孙子算经》(约公元400

年)中的“物不知数问题”(亦称“孙子问题”):今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?。《孙子算经》给出的答案是23,但其算法很简略,未说明其理论根据。秦九韶在《数书九章》中明确给出了一次同余组的一般性解法。在西方,最早接触一次同余式的是意大利数学家斐波那契(1170-1250年)于1202年在《算盘书》中给出了两个一次同余问题,但没有一般算法,1743年瑞士数学家欧拉(1707-1783年)和1801年德国数学家高斯(1777-1855年)才对一次同余组进行了深入研究,重新获得与中国剩余定理相同的结果。

《数书九章》总结了高次方程数值解法,将贾宪的“增乘开方法”推广到了高次方程的一般情形,提出了相当完备的“正负开方术”(现称秦九韶法)。在西方,直到1804年意大利数学家鲁菲尼(1765-1822年)才创立了一种逐次近似法解决数字高次方程无理根的近似值问题,而1819年英国数学家霍纳(1786-1837年)才提出与“增乘开方法”演算步骤相同的算法,西方称霍纳法。 (5)垛积术

杨辉(公元13世纪),南宋钱塘(今浙江杭州)人,曾做过地方官,足迹遍及钱塘、台州、苏州等地,是东南一带有名的数学家和数学教育家。杨辉的主要数学著作之一《详解九章算法》(1261年)是为了普及《九章算术》中的数学知识而作,它从《九章算术》的246道题中选择了80道有代表性的题目,进行详解,其中主要的数学贡献是“垛积术”,这是在沈括“隙积术”的基础上发展起来的,由多面体体积公式导出相应的垛积术公式。另一贡献是所谓的“杨辉三角”,其实是记载了贾宪的工作。 (6)四元术

朱世杰(约1260-1320年),寓居燕山(今北京附近),当时的北方,正处于天元术逐渐发展成为二元术、三元术的重要时期,朱

世杰在经过长期游学、讲学之后,终于在1299年和1303年在扬州刊刻了他的两部代表作《算学启蒙》和《四元玉鉴》。《算学启蒙》是一部通俗数学名著,出版后不久即流传至日本和朝鲜。就学术成就而论,《四元玉鉴》远超《算学启蒙》,它是中国宋元数学高峰的又一个标志,主要贡献有四元术和招差术(高次内插公式)。

四元术是多元高次方程列方程和解方程的方法,未知数最多可达四个,即天元、地元、人元和物元。如《四元玉鉴》卷首“假令四草”之“四象会元”,其中四元布列意为即元气(常数项)居中,天元(未知数x)于下,地元(未知数y)于左,人元(未知数z)于右,物元(未知数u)于上,所以上述方程指“?x2?2x?xy2?xz?4y?4z?0”。 4.中算的衰落

14世纪中、后叶,明王朝建立以后,统治者奉行以八股文为特征的科举制度,1370年明太祖朱元璋(1328-1398年)规定八股文为科举考试的主要文体,在国家科举考试中大幅度消减数学内容,明初起300余年内中国传统数学研究呈现全面衰退,致使明代大数学家看不懂宋元重要数学成就。明清两朝(1368-1911年)共543年,不仅未能产生出与《数书九章》、《四元玉鉴》相媲美的数学杰作,而且在18世纪中叶“乾嘉学派”重新发掘研究以前,像“四元术”这样一些宋元数学的精粹长期失传、无人通晓。

2.2.2印度数学

(公元5-12世纪)

印度古文明的历史可追溯到公元前3000年左右。雅利安人大约在公元前2000年纪中叶出现在印度西北部,逐渐向南扩张。雅利安(梵(fàn)文,原意是“高贵的”或“土地所有者”)人入侵印度,征服了土著居民达罗毗荼人,影响逐渐扩散到整个印度,在到达以后的第一个千年里,创造了书写和口语的梵文,在印度创立了更为持久的文明,印度土著文化从此衰微不振。

印度数学分为河谷文化时期(约公元前3000-前1400年)、吠陀时期(约公元前10-前3世纪)、悉檀多时期(公元5-12世纪)。 1. 吠陀时期(公元前10-前3世纪)

《吠陀》手稿(毛里求斯,1980),《吠陀》(梵文,意为知识、光明)是印度雅利安人的作品,成书于公元前15-前5世纪,历时1000年左右,婆罗门教的经典,其中的《绳法经》(前8-前2世纪)是《吠陀》中关于庙宇、祭坛的设计与测量的部分,包含几何、代数知识,如毕达哥拉斯定理、圆周率的近似值等。

阿育王(在位年代约为公元前268-前232年)是印度第一个信奉佛教的君主,阿育王石柱(尼泊尔,1996)记录了现在阿拉伯数字的最早形态。

公元前2世纪至公元后3世纪的印度数学,可参考的资料主要是1881年发现的书写在桦树皮上的“巴克沙利手稿”(巴克沙利当时和古代大部分时间属于印度,今天位于巴基斯坦西北部距离白沙瓦约80公里处的一座村庄),其数学内容十分丰富,涉及到分数、平方根、数列、收支与利润计算、比例算法、级数求和、代数方程等,出现了完整的十进制数码,其中有“?”(点)表示0,后来逐渐演变为现在通用的“0”,这一过程至迟于公元9世纪已完成,有公元876年的“瓜廖尔石碑”为证,这是印度数学的一大发明。 2. “悉檀多”时期(公元5世纪-12世纪)

悉檀多是梵文,佛教术语,为“宗”或“体系”之意,意译为“历数书”。这是印度数学的繁荣鼎盛时期,是以计算为中心的实用数学的时代,数学贡献主要是算术与代数,出现了一些著名的数学家。

阿耶波多(公元476-约550年),最早的印度数学家,499年天文学著作《阿耶波多历数书》(圣使天文书)传世(相当于祖冲之《缀术》的年代),最突出之处在于对希腊三角学的改进,制作正弦表(sine一词由阿耶波多称为半弦的jiva演化而来),和一次不定

方程的解法。阿耶波多获得了π的近似值3.1416(与刘徽所得的近似值相当),建立了丢番图方程求解的“库塔卡”(原意为“粉碎”)法。

婆罗摩笈多(598-约665年),在这段时间(中国的隋唐时期),整个世界(无论东方还是西方)都没有产生一个大数学家。婆多摩笈多成年以后,一直在故乡乌贾因天文台工作,628年发表天文学著作《婆罗摩修正体系》(宇宙的开端),这是一部有21章的天文学著作,其中第12、18章讲的是数学,分数成就十分可贵,比较完整地叙述了零的运算法则,丢番图方程求解的“瓦格布拉蒂”法,即现在所谓的佩尔(英,1611-1685年)方程的一种解法。

婆什迦罗Ⅱ(1114-1188年),古印度数学最高成就《天文系统之冠》(1150年,中国的南宋时期),其中有两部婆什迦罗的重要数学著作《算法本源》、《莉拉沃蒂》。

《算法本源》主要探讨代数问题。《莉拉沃蒂》(原意“美丽”)从一个印度教信徒的祈祷开始展开,讲的是算术问题,流传着一个浪漫的故事。

《莉拉沃蒂》中的一个算术问题:带着微笑眼睛的美丽少女,请你告诉我,按照你的理解的正确反演法,什么数乘以3,加上这个乘积的3/4,然后除以7,减去此商的1/3,自乘,减去52,取平方根,加上8,除以10,得2?根据反演法,从2这个数开始回推,于是(2?10-8)^2=144,144+52=196,196=14,14?(3/2)?7?(4/7)/3=28,答案是28。

2.2.3阿拉伯数学

(公元8-15世纪)

1. 早期阿拉伯数学(8世纪中叶-9世纪)

阿尔·花拉子米(783-850年)(苏联,1983),生于波斯北部花拉子模地区(今乌兹别克境内),813年来到巴格达,后成为智

慧宫的领头学者。820年出版《还原与对消概要》,以其逻辑严密、系统性强、通俗易懂和联系实际等特点被奉为“代数教科书的鼻祖”,1140年被罗伯特(英)译成拉丁文传入欧洲,成为欧洲延用几个世纪标准的代数学教科书,这也使得花拉子米成为中世纪对欧洲数学影响最大的阿拉伯数学家,这对东方数学家来说十分罕见。阿拉伯语的“al-jabr”意为还原,即移项,传入欧洲后,到14世纪演变为拉丁语“algebra”,就成了今天英文的“algebra”(代数),因此花拉子米的上述著作通常称为《代数学》。可以说,正如埃及人发明了几何学,阿拉伯人命名了代数学。

《代数学》所讨论的数学问题本身并不比丢番图或婆罗摩笈多的问题简单,但它探讨了一般性解法,因而远比希腊人和印度人的著作更接近于近代初等代数。《代数学》中关于三项二次方程的求解。

花拉子米的另一本书《印度计算法》,系统介绍了印度数码和十进制记数法,12世纪,这本书便传入欧洲并广为传播(其拉丁文手稿现存于剑桥大学图书馆),所以欧洲一直称这种数码为阿拉伯数码。印度-阿拉伯数码用较少的符号,最方便地表示一切数和运算,给数学的发展带来很大的方便,是一一项卓越的伟大贡献。它传入欧洲以后,加快了欧洲数学的发展,许多数学家、天文学家对这套集体智慧的发现赞美不绝。法国数学家拉普拉斯(1749-1827年)写道:“用十个记号来表示一切的数,每个记号不但有绝对的值,而且有位置的值,这种巧妙的方法出自印度。这是一个深远而又重要的思想,它今天看来如此简单,以至我们忽视了它的真正伟绩,简直无法估计它的奇妙程度。而当我们想到它竟逃过古代希腊最伟大的阿基米德和阿波罗尼奥斯两位天才思想的关注时,我们更感到这成就的伟大了。”

直到1902-1905年,中国数学教科书或数学用表才普遍使用印度-阿拉伯数字,并且一律与西洋算书一样横排。 2. 中期阿拉伯数学(10-12世纪)

奥马·海雅姆(1048-1131年)(阿尔巴尼亚,1997),受命在伊斯法罕(今伊朗西部)天文台负责历法改革工作,编制了中世纪最精密的历法“哲拉里历”(在平年365天的基础上,每33年增加8个闰日。这样一来,与实际的回归年仅相差19.37秒,即每4460年才误差一天,比现在全世界实行的公历,每400年置97个闰日,还要准确),在代数学方面的成就集中反映于他的《还原与对消问题的论证》(1070),最杰出的贡献是研究三次方程根的几何作图法,提出的用圆锥曲线图求根的理论。这一创造,使代数与几何的联系更加密切,可惜在1851年以前欧洲人并不了解他的这种解析几何方法。此外,他在证明欧几里得平行公设方面也做了有益的尝试。

阿尔·比鲁尼(973-1048年)(巴基斯坦,1973),三角学理论的贡献是利用二次插值法制定了正弦、正切函数表,证明了一些三角公式,如正弦公式、和差化积公式、倍角公式和半角公式,提出地球绕太阳运转,太阳是宇宙中心的思想等。 3. 后期阿拉伯数学(13-15世纪)

纳西尔丁·图西(1201-1274年)(伊朗,1956),最重要的数学著作《论完全四边形》是数学史上流传至今最早的三角学专著。在此以前,三角学知识只出现于天文学的论著中,是附属于天文学的一种计算方法,纳西尔丁的工作使得三角学成为纯粹数学的一个独立分支,对15世纪欧洲三角学的发展起重要的作用。正是在这部书里,首次陈述了著名的正弦定理。

阿尔·卡西(1380-1429年)(伊朗,1979),百科全书《算术之鈅》(1427),在数学上取得了两项世界领先的成就,一是圆周率的计算,1424年一直算到了正3·2^28边形的周长以给出π的17位精确值,二是给出sin1°的精确值。人们常以他的卒年(1429)作为阿拉伯数学的终结。

2.3中世纪和文艺复兴的欧洲数学

2.3.1 中世纪的欧洲数学

(5-14世纪)

1.黑暗时期

从公元476年西罗马帝国灭亡到14世纪文艺复兴长达1000多年的欧洲历史称为欧洲中世纪。公元5-11世纪,是欧洲历史上的黑暗时期,教会成为欧洲社会的绝对势力,宣扬天启真理,追求来世,淡漠世俗生活,对自然不感兴趣。因宗教教育的需要,也出现一些水平低下的初级算术与几何教材。

罗马人博埃齐(约480-524年)主要以哲学家留名青史,他的哲学是古希腊罗马哲学到中世纪经院哲学的过渡,在数学方面,根据希腊材料用拉丁文选编了《几何学》(《原本》第1、3、4卷部分内容)、《算术入门》等教科书,成为中世纪早期欧洲人了解希腊科学的唯一来源,他的众多著作为传播希腊罗马文化,为普及百科知识,在长达千年的历史上起了重要作用。

法国人热尔拜尔(938-1003年)(法国,1964)999年当选为罗马教皇,提倡学习数学,翻译了一些阿拉伯科学著作,把印度-阿拉伯数码带入欧洲。 2. 科学复苏

贸易与旅游的发展,欧洲出现新兴的城市,欧洲人开始与阿拉伯人、拜占庭人发生接触,了解阿拉伯、希腊的文化,创立了大学(1088年博洛尼亚大学,1160年巴黎大学,1167年牛津大学,1209年剑桥大学,1222年帕多瓦大学,1224年那不勒斯大学)。从此,欧洲人了解到了希腊及东方古典学术,对这些学术著作的搜求、翻译和研究,科学开始复苏,加速了西欧手工业、商业的发展。

12世纪是欧洲数学的大翻译时期,希腊人的著作被阿拉伯文译成拉丁文后,“在惊讶的西方面前展示了一个新的世界”。

阿德拉特(英,1090-1150年)——《原本》和花拉子米的天文表。

杰拉德(意,1114-1187年)——《天文学大成》、《原本》、《圆锥曲线》、《圆的度量》。

欧洲黑暗时期过后第一位有影响的数学家是斐波那契(意,约1170-1250年),他随父亲到印度、埃及、阿拉伯和希腊等地旅行,通过广泛地学习和认真研究,掌握了许多计算技术,回到意大利后,编著了代表作《算盘书》(1202,1228),主要是一些源自古代中国、印度和希腊的科学问题的汇集,书中系统介绍了印度-阿拉伯数码,对改变欧洲数学的面貌产生了很大的影响,是欧洲数学在经历了漫长黑夜之后走向复苏的号角。

1228年《算盘书》修订后还载有如下“兔子问题”:某人在一处有围墙的地方养了一对小兔,假定每对兔子每月生一对小兔,而小兔出生后两个月就能生育。问从这对兔子开始,一年内能繁殖成多少对兔子?对这个问题的回答,导致了著名的“斐波那契数列”。

2.3.2文艺复兴时期的数学

(15-17世纪初)

14世纪可以看做是文艺复兴的开始。文艺复兴是指14世纪意大利各城市兴起(一般认为第一个代表人物是但丁(意,1265-1321年),代表作为《神曲》(写于1307-1321年),他的作品首先以含蓄的手法批评和揭露中世纪宗教统治的腐败和愚蠢),15世纪后期起扩展到西欧各国,16世纪在欧洲盛行的一场思想文化运动。“人文主义”思想是文艺复兴的灵魂和中心,主张以世俗的“人”为中心,歌颂人性、反对神性,提倡人权、反对神权,提倡个性自由、反对宗教禁锢,赞颂世俗生活、反对来世观念和禁欲主义。

在这历时约200年的历史中,带来一段科学与艺术革命时期,揭开了现代欧洲历史的序幕,使得知识界的面貌大大改观,也使数学活动以空前的规模和深度蓬勃兴起,被认为是中古时代和近代的分界。

近代始于对古典时代的复兴,但人们很快看到,它远不是一场复兴,而是一个崭新的时代。在数学的许多领域发生了变化,在此介绍代数学、三角学、射影几何、对数等的进步。 1.代数学

欧洲人在数学上的推进是从代数学开始的,它是文艺复兴时期成果最突出、影响最深远的领域,拉开了近代数学的序幕,其中包括三、四次方程的求解与符号代数的引入。

1515年博洛尼亚大学数学教授费罗(意,1465-1526年)发现了形如x^3+mx=n的三次方程的代数解法,密传给学生费奥。

塔塔利亚(意,1499-1557年)(原姓丰坦那,塔塔利亚是绰号,意为口吃者)发表了《论数字与度量》(1556-1560),被称为数学百科全书和16世纪最好的数学著作之一,其中有关于二项展开式系数排成的“塔塔利亚三角形”,比帕斯卡发表它的时间(1665年)要早100多年。

塔塔利亚最重要的数学成就是发现了三次方程的代数解法,进行了两次历史性的辨论。塔塔利亚宣称可解形如x^3+mx^2=n的三次方程,1535年2月22日费奥与塔塔利亚在威尼斯公开竞赛,各出30个问题,塔塔利亚在2小时内全部解出而获胜,扬名整个意大利。1539年塔塔利亚把他关于三次方程的解法写成一首25行诗告诉卡尔丹。1548年8月10日塔塔利亚与卡尔丹的学生费拉里在米兰大教堂附近举行了公开辩论,争论从上午10点持续到晚饭时间,听众一哄而散,结果不了了之。双方各自宣布获胜。直至8年后,塔塔利亚才在他的名著《论数字与度量》中的一篇插文里叙述了整个论战过程。

卡尔丹(意,1501-1576年),医学博士,16世纪文艺复兴时期人文主义的代表人物,最重要的数学著作是1545年在纽伦堡出版的《大术》(全名为《大术,或论代数法则》),该书系统给出代数学中的许多新概念和新方法,内有三次、四次方程的解法(由卡尔丹的学生费拉里(意,1522-1565年)发现)。在《大术》中方程的负根被采用,专门讨论了解方程中遇到的虚根问题,首次把它当作一般的数进行运算,认识到如果一个方程有一个虚根,则应该有与之共轭的另一个虚根。

邦贝利(意,1526-1573),意大利文艺复兴时期最后一位代数学家,他的前辈们曾经将这门学科推向一个发展高潮。邦贝利认为除了卡尔丹之外还没有人能够很深入代数学这一学科,但他对卡尔丹的表述并不满意,因此准备写一本书,以其清楚明了的表述使任何人都可以不必借助别的书而掌握代数学这门学问,这是1572年邦贝利出版《代数》的背景。在书中邦贝利引进了虚数,正式给出了负数的明确定义。

认识到了数学符号的意义,符号系统的建立使代数成为一门科学,从常量数学到变量数学的标志,反映了数学高度抽象与简炼。

修道士帕西奥里(意,1445-1517年)(意,1994),1494年用铅字印刷出版的《算术集成》(全称《算术、几何、比与比例集成》)是继斐波那契之后第一部内容全面的数学书,其中采用了优越的记号及大量的数学符号(多为词语的缩写形式或词首字母),这是本书的最突出之处,推进了代数学的发展。《算术集成》中有“青蛙入井问题”的变形“猫捉老鼠问题”:一只老鼠在60英尺高的白杨树顶上,一只猫在树脚下的地上。老鼠每天下降1/2英尺,晚上又上升1/6英尺;猫每天往上爬1英尺,晚上又滑下1/4英尺;这棵树在猫和老鼠之间每天长1/4英尺,晚上又缩1/8英尺。试问猫要多久能捉住老鼠?

施蒂费尔(德,1487-1567年),16世纪德国最大的数学家,研究过代数和数论,首先使用加号+、减号-和根号

的人之一,

1544年《综合数学》(又译《算术大全》)中指出:符号使用是代数学的一大进步。最早在印刷图书中用“+”作加、用“-”作减的是维德曼(德,1460-约1499年),1489年出版的《各种贸易的最优速算法》(又译《简算与速算》)创用“+”、“-”号用于表示剩余和不足,并未引起人们的注意。1544年施蒂费尔及其他一些数学家相继采用了这两个抽象数学语言符号才真正地、正式地登上了加减运算的舞台,渐渐地名扬四海,才得到了大家公认和使用。

等号叫一对双生子。关于等号,《算术集成》中用ae(来自aequalis)表示相等。牛津大学数学教授雷科德(英,1510-1558)于1557年在代数论文《智慧的磨刀石》中首次用符号=表示相等,文章中写道:“为了避免枯燥的重复is aequalleto这个词,也就是等于,如像我经常在自己的工作实际用到那样,我就放二条平行线――同样长=的一对双生子,因为任何两件东西,不可能比它们更相等。”

发明现代小数点的人是克拉维斯(德,1537-1612年),他在繁荣数学这门学科上超过了16世纪的任何其他德国学者,1593年在罗马出版的《星盘》中首次使用了现代意义上的小数点,即把小数点作为整数部分与小数部分分界的记号,1608年出版的《代数学》中更明确地使用这种小数点。这是用点表示小数记法之开始。

1629年吉拉德(荷,1593-1632年)出版的《代数的新发现》中用有限线段解释方程的负根,并且第一个提出用减号“-”表示负数。从此,负数符号逐渐得到人们的认识,沿用至今。

韦达(法,1540-1603年),律师与政治家,业余研究数学,16世纪法国最大、最有影响的数学家(1593年解出比利时大使提出的45次方程问题,但他不承认负数,叫它为“不合理的数”),也

被认为是16世纪最大的数学家,从先辈的著作特别是丢番图的著作中获得了使用字母的想法,用字母等符号表示未知量的值进行运算,规定了代数与算术的分界,被西方称为“代数学之父”,1591年《分析引论》(或《分析方法入门》)是韦达最重要的代数著作,也是最早的符号代数专著。在《分析引论》的结尾写下一句座右铭“没有不能解决的问题”(Nullum non problema solvere)。1615年《论方程的整理与修正》用代数方式推出了一般的二次方程的求根公式,记载了著名的韦达定理,即方程的根与系数的关系式。他的著作内容深奥,言辞艰涩,其理论在当时并没有产生很大影响,直到1646年韦达的文集出版才使他的理论渐渐流传开来,得到后人的承认和赞赏。 2.三角学

欧洲文艺复兴始于意大利,之后是德国。德国在数学研究上独占魁首,遥遥领先除意大利以外的欧洲各国。

1450年以前,三角学主要是球面三角。15、16世纪德国人从意大利人获得了阿拉伯天文学著作中的三角学知识,如阿尔·巴塔尼(858-929年)的《历数书》、纳西尔丁·图西(1201-1274年)的《论完全四边形》。在16世纪,三角学已从天文学中分离出来,成为一个独立的数学分支。

雷格蒙塔努斯(德,1436-1476年),又名缪勒,在维也纳大学学习和讲授天文学,逐渐掌握了托勒密的天文学说,并努力钻研与之相关的几何学、算术与三角学,后到罗马,不断学习拉丁文和希腊文的经典学术著作,对数学的主要贡献是在三角学方面,代表作是完成于1464年《论各种三角形》(或称《三角学全书》,1533年出版),是欧洲人对平面和球面三角学所作的第一个完整、独立的阐述,欧洲传播三角学,他的著作手稿在学者中广为传阅,成为15世纪最有能力、最有影响的数学家,对16世纪的数学产生了相当大的影响,哥白尼的工作受到他的影响

韦达(法,1540-1603年),1579年《应用于三角形的数学定律》系统讲述了用所有6种三角函数解平面的球面三角形,这在西欧也许是第一部书,1615年《截角术》系统化了球面三角和平面三角学。

3. 射影几何

欧洲几何学创造性的复兴晚于代数学。文艺复兴时期给人印象最深的几何创造其动力却来自艺术,因为画家们在将三维世界绘制到二维画布上时,面临着一些投影的问题。正是由于绘画、制图中提出的问题的刺激导致了富有文艺复兴特色的学科,透视学的兴起,从而诞生了射影几何学。研究图形的射影性质,即它们经过射影变换不变的性质的几何学,一度也叫做投影几何学。

公元前200年左右,古希腊数学家阿波罗尼奥斯在《圆锥曲线论》中把二次曲线作为正圆锥面的截线来研究。文艺复兴时期,绘画艺术的盛行促进了理论的发展,透视法成为一门几何与绘画结合的热门学科。阿尔贝蒂(意,1404-1472年)于1435年发表《论绘画》一书,阐述了最早的数学透视法思想,他引入投影线和和截景概念,提出在同一投影线下和景物的情况下,任意两个截景间有何种数学关系或何种共同的数学性质等问题,这些问题是射影几何发展的起点。

德沙格(法,1591-1661年),约1630年住在巴黎的德沙格又同那时法国的几个领头的数学家成为朋友,随后,经常出席梅森的“巴黎学会”的活动,与著名的数学家费马也有交往。这批人的活动和所取得的成就,使法国成为17世纪上半叶世界数学史上最辉煌的国度,也为18、19世纪形成世界的数学中心打下良好的基础。身处这一旋涡的德沙格以其新颖的思想和独特的数学方法,开辟了数学的一个新领域,成为射影几何学的先驱。1636年发表了第一篇关于透视法的论文《关于透视绘图的一般方法》,主要著作是1639年《试论锥面截一平面所得结果的初稿》,充满了创造性的新思想、新方法,是射

影几何早期发展的代表作。书中提出并证明了“德沙格定理”:如果两个三角形对应顶点的连线共点,那么它们的对应边的交点共线。其逆定理也成立。图形连续变化,变换的不变性,关心结构不涉及度量。

随着解析几何和后来的微积分的迅猛发展,该书逐渐被遗忘了。直到1845年,法国几何学家、数学史家沙勒才在巴黎的一个旧书店里发现这本书的手抄本,此时射影几何正处于复兴时期,人们才认识到德沙格这本著作的价值。1950年前后,在巴黎国立图书馆又找到它的原版本,历经300余年的沧桑岁月,它终于在诸多数学名著中有了一个适当的位置。

帕斯卡(法,1623-1662年)1640年《圆锥曲线论》(1779年发现),帕斯卡定理:圆锥曲线的内接六边形对边交点共线。不同于物理学上的帕斯卡定律:加在密闭液体任一部分的压强,必然按其原来的大小,由液体向各个方向传递。

射影几何的综合方法,用代数方法处理问题更有效,射影几何产生后很快让位于代数、解析几何和微积分,他们的工作也渐被遗忘,迟至19世纪才又被人们重新发现。 4. 对数

16世纪前半叶,欧洲人把实用的算术计算放在数学的首位。由于天文和航海计算的需要,计算技术最大的改进是对数的发明与应用。

1585年史蒂文(荷,1548-1620年),在数学方面最重要的著作《十进算术》,系统地探讨了十进制记数及其运算理论,并提倡用十进制小数来书写分数,阐述的思想虽然很简单,却在西方产生了深远的影响。在西方史蒂文是第一个系统论述十进分数及其算术的人,其动机是简化计算,把它献给天文学家、测量人员和商人。在文明史上,史蒂文是工程师和技术专家的典范,他用科学的方式去处理实际

问题,极为注重理论与实践的结合,总是像一个数学家那样思维,这是他科学生涯中一个最显著的特点。

纳皮尔(苏格兰,1550-1617年),受三角公式积化和差,几何级数指数等的启示,纳皮尔在对数的理论上至少花了20年的时间,于1590年左右开始写关于对数的著作,1614年发表《奇妙对数规则的说明》。纳皮尔的惊人发明被整个欧洲热心地采用,尤其是天文学界,简直为这个发现沸腾起来了。拉普拉斯就认为,对数的发现“以其节省劳力而延长了天文学家的寿命”。

在谁最先发现对数这个问题上,纳皮尔只遇到一个对手,即瑞士仪器制造者比尔吉。比尔吉独立设想并造出了对数表,于1620年出版了《算术和几何级数表》。虽然两个人都在发表之前很早就有了对数的概念,但纳皮尔的途径是几何的,比尔吉的途径是代数的。

数学史上是先有对数,后有指数概念。而今天的教科书是先讲指数,并用指数来定义对数,这正与它的历史相反。

对数17世纪中叶传入我国,对数一词被译为“假数”。如1653年由波兰数学家穆尼阁(1611-1656)和薛凤祚合编的《比例对数表》一书,是传入我国最早的对数著作。当时lg2=0.3010中2叫“真数”(沿用至今),0.3010叫“假数”,真数与假数列成表叫对数表,后来改“假数”为“对数”。

到16世纪末、17世纪初,整个初等数学的主要内容基本定型,文艺复兴促成的东西方数学的融合,为近代数学的兴起及以后的惊人发展铺平了

本文来源:https://www.bwwdw.com/article/ub8r.html

Top