2012年文科数学及答案-新课标

更新时间:2023-06-07 23:01:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2012年普通高等学校招生全国统一考试(新课标卷)

文科数学

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x |x 2

-x -2<0},B={x |-1<x <1},则

(A )A ?≠B (B )B ?≠A (C )A=B (D )A ∩B=?

(2)复数z =-3+i 2+i 的共轭复数是

(A )2+i (B )2-i (C )-1+i (D )-1-i

3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点

(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为

(A )-1 (B )0 (C )12 (D )1

(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底角为30°的等腰三角

形,则E 的离心率为( )

(A )12 (B )23 (C )34 (D )45

5、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是

(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)

(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则

(A )A+B 为a 1,a 2,…,a N 的和

(B )A +B 2为a 1,a 2,…,a N 的算术平均数

(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数

(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数

(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6

(B)9

(C)12

(D)18

(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为

(A )6π (B )43π (C )46π (D )63π

(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=

(A )π4 (B )π3 (C )π2 (D )3π4

(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2

=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为

(A ) 2 (B )2 2 (C )4 (D )8

(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是

(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)

(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为

(A )3690 (B )3660 (C )1845 (D )1830

第Ⅱ卷

本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。

二.填空题:本大题共4小题,每小题5分。

(13)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________

(14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______

(15)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=

(16)设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____

三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)

已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =

3a sinC -c cosA (1) 求A

(2) 若a =2,△ABC 的面积为3,求b ,c

18.(本小题满分12分)

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。

(19)(本小题满分12分)

如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1

2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC

(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

(20)(本小题满分12分)

设抛物线C :x 2

=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;

(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。

B 1

C B

A

D

C 1

A 1

(21)(本小题满分12分)

设函数f (x )= e x

-ax -2

(Ⅰ)求f (x )的单调区间

(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值

请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。

(22)(本小题满分10分)选修4-1:几何证明选讲

如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明: F

G

(Ⅰ)CD=BC ;

(Ⅱ)△BCD ∽△GBD

(23)(本小题满分10分)选修4—4;坐标系与参数方程

已知曲线C 1的参数方程是???

x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为

(2,π3)

(Ⅰ)求点A 、B 、C 、D 的直角坐标;

(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2

的取值范围。

(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x) = |x + a| + |x-2|.

(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;

(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围。

参考答案

本文来源:https://www.bwwdw.com/article/uah1.html

Top