数学公式(三角形全角与半角的转换及正余弦)
更新时间:2023-09-04 11:38:01 阅读量: 教育文库 文档下载
- 数学公式三角形面积推荐度:
- 相关推荐
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/(1-tanA^2)
三倍角公式
sin3α=4sinα·sin(60+α)sin(60-α)
cos3α=4cosα·cos(60+α)cos(60-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
半角公式
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sssc(+) sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] sscs(-)
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cccc(+) cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] -ccss(-)
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a) sin(π-a) = sin(a)
cos(π-a) = -cos(a) sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
万能公式 其它公式 (sinx)^2+(cosx)^2=1
其他非重点三角函数
csc(a) = 1/sin(a) sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二: 设α为任意角,π+α的三角函数值与α的三
角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四: 利用公式二和公式三可以得到π-α与α的
三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五: 利用公式-和公式三可以得到2π-α与α的
三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六: π/2±α及3π/2±α与α的三角函数值之
间的关系: sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大
家有用
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-
φ)} }
√表示根号,包括{……}中的内容
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 全角
- 余弦
- 半角
- 三角形
- 公式
- 转换
- 数学
- 食品召回管理制度
- (2018电大)政治学原理完整版考试知识点复习考点归纳总结
- 小栋坝小学入学预防接种证查验工作制度
- 兰大英语4作业
- 《父亲的手提箱》教案
- 社会工作行政形成性考核作业(新)
- 化工原理(下册)期末试题样卷及答案
- 现在完成时和过去完成时专项练习
- 门店销售与服务技巧
- 无人匹敌的销售技巧,大客户的软肋
- Chanel No.5的市场细分和目标市场浅析
- DB11 T 536-2008 农村民居建筑抗震设计施工规程
- 项目2音频功率放大器的制作(功率放大new)14、15、16
- “十三五”重点项目-轻烧镁粉用菱镁矿成品矿项目商业计划书
- 面试场景模拟 剧本
- 十八项医疗核心制度(2018版)
- 台湾2017安全工程师安全生产_火灾后钢筋混凝土柱的修复和加固要点考试题
- 建筑摄影
- 金沙江向家坝水电站可行性研究阶段建设征地和移民安置规划设计报告审查会议召开
- 学校食堂食品卫生安全突发事件应急预案