数学二次函数复习课教案

更新时间:2023-03-28 20:40:01 阅读量: 行业资料 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《二次函数》复习课

复习目标:

知识目标:1、了解二次函数解析式的三种表示方法;

2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等; 3、一元二次方程与抛物线的结合与应用。 4、利用二次函数解决实际问题。 复习重、难点:函数综合题型 复习方法:自主探究、合作交流 复习过程:

一、知识梳理(学生独立练习,分小组批改)

1、二次函数解析式的三种表示方法:

(1)顶点式: (2)交点式: (3)一般式: 2、填表:

3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而称轴左侧,y随x的增大而 ;当a<0时,在对称轴右侧,y随x的增大而 ,

在对称轴左侧,y随x的增大而

4、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最 点,此时函数有最 值

自评 分(每空4分,共100分)

二、探究、讨论、练习(先独立思考,再分小组讨论,最后反馈信息)

1、 已知二次函数y=ax2+bx+c的图象如图所示,试判断下面各式的符号:

(1)abc (2)b2-4ac (3)2a+b (4)a+b+c (上题主要考查学生对二次函数的图象、性质的掌握情况:b2-4ac的符号看抛物线与x轴的交点情况;2a+b看对称轴的位置;而a+b+c的符号要看x= 1时y的值) 2、已知抛物线y=x2+(2k+1)x-k2+k

(1) 求证:此抛物线与x轴总有两个不同的交点;

(2)设A(x1,0)和B(x2,0)是此抛物线与x轴的两个交点,且满足x12+x22= -2k2+2k+1,

①求抛物线的解析式

②此抛物线上是否存在一点P,使△PAB的面积等于3,若存在,请求出点P的坐标;若不存在,请说明理由。

(此题主要考查抛物线与一元方程的根的判别式、根与系数的关系的联系,以及函数与几何知识的综合) 三归纳小结:

提问:通过本节课的练习,你学到了什么知识? 四、用数学(利用二次函数解决实际问题)

一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5

米,

然后准确落入篮圈,已知篮球中心到地面的距离为3.05米, (1)根据题意建立直角坐标系,并求出抛物线的解析式。

(2)该运动员的身高是1.8米,在这次跳投中,球在头顶上方0.25米,问:球出手时,他跳离地面的高度是多少?

(此题把学生熟悉的运动员投篮问题与二次函数结合在一起,溶入了一定的生活背景,使学生产生数学学习兴趣;同时培养了学生把实际问题抽象成数学模型的能力。) 五、思维训练(供学有余力的学生做):

已知抛物线y=x2+(1-2a)x+a2 (a≠0)与x轴交于两点A(x1,0),B(x2,0) , (x1≠x2) (1)求a的取值范围,并证明A、B两点都在原点的左侧; (2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值。

本文来源:https://www.bwwdw.com/article/u83n.html

Top