2018年高考数学理人教A版一轮复习习题:第八章 立体几何 考点规
更新时间:2024-03-08 02:07:01 阅读量: 综合文库 文档下载
考点规范练44 立体几何中的向量方法
基础巩固
1.直线l的方向向量s=(-1,1,1),平面α的法向量为n=(2,x+x,-x),若直线l∥平面α,则
2
x的值为( )
A.-2
B.-
C.
D.±
2.已知平面α的一个法向量为n=(1,-,0),则y轴与平面α所成的角的大小为( )
A. 3.
B. C. D.
如图,正方形ABCD与矩形ACEF所在平面互相垂直,以CD,CB,CE所在直线分别为x轴,y轴,z轴建立空间直角坐标系,AB=,AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为( )
A.(1,1,1) B.
C. D.
4.已知正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上,且,N为B1B的中点,则
||为( )
A.5.
a B.a C.a D.a
如图,过正方形ABCD的顶点A,作PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是( ) A.30° C.60°
B.45° D.90°
6.在正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成角的正弦值为( )
A. B. C. D.
7.如图,在正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角为 . 8.已知点
P是平行四边形ABCD所在的平面外一点,且
=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:
是平面ABCD的法向量;④①AP⊥AB;②AP⊥AD;③是 .(填序号) 9.
.其中正确的
如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为 .(填序号)
10.
(2016全国乙卷,理18)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°. (1)证明:平面ABEF⊥平面EFDC; (2)求二面角E-BC-A的余弦值.
?导学号37270484?
能力提升
11.
如图所示,在正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则( ) A.EF至多与A1D,AC之一垂直 B.EF⊥A1D,EF⊥AC C.EF与BD1相交 D.EF与BD1异面 12.
如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面
A1BD所成的角为α,则sin α的取值范围是( )
A.
B.
C.
D.13.
?导学号37270486?
如图,等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 . ? 14.
?导学号37270487
如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=. (1)证明:平面ADE⊥平面ACD;
(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.
?导学号37270488?
高考预测
15.
如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点. (1)求证:AO⊥BE;
(2)求二面角F-AE-B的余弦值; (3)若BE⊥平面AOC,求a的值.
?导学号37270489?
参考答案
考点规范练44 立体几何中
的向量方法
1.D 解析 当线面平行时,直线的方向向量垂直于平面的法向量,故
-1×2+1×(x2+x)+1×(-x)=0,解得x=±
2.B 解析 可知y轴的方向向量为m=(0,1,0),设y轴与平面α所成的角为θ,
则sin θ=|cos
∵cos
∴sin θ=,
∴θ=
,0),B(0,
,0),D(
,0,0),E(0,0,1),则
3.C 解析 设M(x,x,1).由已知得A(
=(x-,x-,1),=(,-,0),=(0,-,1).
设平面BDE的一个法向量为n=(a,b,c),
则
解得
令b=1,则n=(1,1,
).
又AM∥平面BDE,所以n=0,
即2(x-)+=0,得x=
所以M
4.A 解析 以D为原点建立如图所示的空间直角坐标系Dxyz,
则A(a,0,0),C1(0,a,a),N设M(x,y,z),
∵点M在AC1上,且,
∴(x-a,y,z)=(-x,a-y,a-z).
∴x=a,y=,z=,
得M∴|
|=
=a.
5.B 解析 (方法一)建立如图①所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为
,故所求的二面角的大小是45°.
图①
图②
(方法二)将其补成正方体.如图②,不难发现平面ABP和平面CDP所成的二面角就是平面
ABQP和平面CDPQ所成的二面角,其大小为45°.
6.C 解析 取B1C1的中点D1,以A1为原点,A1D1,A1A所在直线为x轴,z轴建立如图所示的空间直角坐标系,设AB=2,则C1(为n=(1,0,0).
,1,0),A(0,0,2),
=(,1,-2),平面BB1C1C的一个法向量
所以AC1与平面BB1C1C所成角的正弦值为
7.30° 解析 如图所示,以O为原点建立空间直角坐标系Oxyz.
设OD=SO=OA=OB=OC=a,
则A(a,0,0),B(0,a,0),C(-a,0,0),P
则=(2a,0,0),=(a,a,0).
设平面PAC的法向量为n,可求得n=(0,1,1),
则cos<∴<,n>=,n>=60°,
∴直线BC与平面PAC所成的角为90°-60°=30°. 8.①②③ 解析 因为
又所以因为所以
=0,=0,所以AB⊥AP,AD⊥AP,则①②正确.
不平行,
是平面ABCD的法向量,则③正确.
=(2,3,4),
不平行,故④错误.
=(-1,2,-1),
9.① 解析 以D为原点,DA,DC所在直线分别为x轴,y轴建立空间直角坐标系如图.
设M(x,y,0),设正方形边长为a,
则P则MC=
,C(0,a,0),
,
MP=
由MP=MC,得x=2y,所以点M在正方形ABCD内的轨迹为直线y=10.(1)证明 由已知可得AF⊥DF,AF⊥FE,
所以AF⊥平面EFDC. 又AF?平面ABEF, 故平面ABEF⊥平面EFDC. (2)解 过D作DG⊥EF,垂足为G,
由(1)知DG⊥平面ABEF.
x的一部分.
以G为坐标原点,间直角坐标系Gxyz.
由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,由已知,AB∥EF, 所以AB∥平面EFDC. 又平面ABCD∩平面EFDC=CD, 故AB∥CD,CD∥EF.
由BE∥AF,可得BE⊥平面EFDC,
所以∠CEF为二面角C-BE-F的平面角,∠CEF=60°. 从而可得C(-2,0,所
).
以
).
,
的方向为x轴正方向,||为单位长,建立如图所示的空
=(1,0,
0),
),=(0,4,0),=(-3,-4,),=(-4,0,
设n=(x,y,z)是平面BCE的法向量,则所以可取n=(3,0,-).
设m是平面ABCD的法向量,
则
同理可取m=(0,
,4),
则cos
故二面角E-BC-A的余弦值为-
11.B 解析 以D点为坐标原点,以DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示.设正方体棱长为1,
则
A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E,F,B(1,1,0),D1(0,
0,1),=(-1,0,-1),=(-1,1,0),=(-1,-1,1),
=-=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.故选B.
12.B 解析 以D为坐标原点,DA,DC,DD1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示.
不妨设DC=DA=DD1=1,
则D(0,0,0),B(1,1,0),A1(1,0,1),O,并设点P(0,1,t)且0≤t≤1.
则=(-1,0,-1),=(0,1,-1).
设平面A1BD的法向量为n=(x0,y0,z0),则有
即
取x0=1,y0=-1,z0=-1, ∴n=(1,-1,-1). ∴sin α=|cos<,n>|
=(0≤t≤1),
∴sinα=2
,0≤t≤1.
令f(t)=,0≤t≤1,
则f'(t)=
=-,
可知当t时,f'(t)>0;
当t时,f'(t)≤0.
又f(0)=,f=1,f(1)=,
∴f(t)max=f=1,
f(t)min=f(0)=
∴sin α的最大值为1,最小值为
∴sin α的取值范围为
13 解析 过C点作CO⊥平面ABDE,垂足为O,取AB中点F,连接CF,OF,则∠CFO为二面角
C-AB-D的平面角,
设AB=1,则CF=,OF=CF·cos ∠CFO=,OC=,
则O为正方形ABDE的中心,
建立如图所示的空间直角坐标系Oxyz,
则E,M,
A,N,
,
,
cos<>=
14.(1)证明 因为AB是直径,所以BC⊥AC.
因为CD⊥平面ABC, 所以CD⊥BC. 因为CD∩AC=C, 所以BC⊥平面ACD. 因为CD∥BE,CD=BE,
所以四边形BCDE是平行四边形, 所以BC∥DE, 所以DE⊥平面ACD. 因为DE?平面ADE, 所以平面ADE⊥平面ACD.
(2)解 依题意,EB=AB×tan∠EAB=4
=1,
由
(1)
VC-ADE=VE-ACD=S△ACD×DE=AC×CD×DE=AC×BCC2)=AB2=,当且仅当AC=BC=2时等号成立. 如
图
所
示
,
建
立
空
间
直
角
坐
标
D(0,0,1),E(0,2,1),A(2,0,0),B(0,2,0),
则
知
(AC2
+B系
,
则
=(-2=(2
,2,0,-1),
,0),=(0,0,1),=(0,2,0),
设平面DAE的法向量为n1=(x1,y1,z1),
即
∴n1=(1,0,2
).
设平面ABE的法向量为n2=(x2,y2,z2),∴n2=(1,1,0),
∴cos
=
可以判断
又因为平面AEF⊥平面EFCB,AO?平面AEF, 所以AO⊥平面EFCB, 所以AO⊥BE.
(2)解 取BC中点G,连接OG.
由题设知EFCB是等腰梯形, 所以OG⊥EF.
由(1)知AO⊥平面EFCB, 又OG?平面EFCB,所以OA⊥OG. 如图建立空间直角坐标系Oxyz,
则E(a,0,0),A(0,0,
a), =(-a,0,
a),
=(a-2,
(a-2),0).
B(2,(2-a),0),
设平面AEB的法向量为n=(x,y,z),
则
即
令z=1,则x=于是n=(
,y=-1. ,-1,1).
平面AEF的一个法向量为p=(0,1,0).
所以cos
由题知二面角F-AE-B为钝角,所以它的余弦值为-(3)解 因为BE⊥平面AOC,
所以BE⊥OC, 即因为所以由
=0. =(a-2,
(a-2),0),
=(-2,(2-a),0),
=-2(a-2)-3(a-2)2. =0及0
解得a=
精品文档 强烈推荐 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有 精品推荐 强力推荐 值得拥有
正在阅读:
2018年高考数学理人教A版一轮复习习题:第八章 立体几何 考点规03-08
2012年九江市第二届青年英语教师基本功大赛 - 图文04-15
价值驱动因素08-18
中山市公安局防病毒软件升级维护项目10-29
ADAMS路面10-27
与你们一同,真好10-29
健康教育讲稿04-08
优秀班干部申请书 Microsoft Word 文档05-27
- 12017年高考数学一轮总复习第八章立体几何第2讲空间几何体的表面积和体积课件文
- 219届高考数学大一轮复习第八章立体几何与空间向量第7讲立体几何中的向量方法(一)证明平行与垂直练习理
- 32019届高考数学大一轮复习第八章立体几何与空间向量8.4平行关系学案理北师大版
- 4高考物理一轮复习第八章磁场冲刺训练
- 5江苏专用2018版高考数学大一轮复习第八章立体几何8.1空间几何体的结构及其表面积体积教师用书文苏教版
- 62012年高三数学一轮复习资料第八章 平面向量第八章 综合能力检测
- 72012年高三数学一轮复习资料第八章 平面向量第八章 综合能力检测
- 8江苏专用2018高考数学一轮复习第八章立体几何第42课空间几何体的结构及其表面积与体积课时分层训练
- 92013高考数学第一轮复习讲座9 - -立体几何
- 102013版高考数学一轮复习精品学案:第八章 平面解析几何(单元总结与测试)
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 立体几何
- 一轮
- 学理
- 考点
- 人教
- 习题
- 复习
- 高考
- 2018
- 电力工程高压输电线路设计要点分析
- Android(安卓)手机使用指南
- (小学教育)2019春一年级音乐下册 第1课《春晓》教案 人音版
- 2014年安徽宣城宣州区事业单位考试报考条件
- 《父爱的盔甲》阅读练习及答案
- 顺丁橡胶设立评价正文 - 图文
- 高压电动机操作规程最终版
- LED控制器之DMX512控制器系列-无线DMX介绍及价格(2013年第1版)
- 关于渠道扁平化(终端制胜策略)的辩论
- 2016年全国中考满分作文高频词汇精选篇
- 2016-2021年中国竹叶青茶行业发展趋势及竞争策略研究报告(目录
- 最全广西公需科目《创新与创业能力建设》的考试答案经典版 doc
- 创建网络数据集(5)
- 英美概况习题及答案
- 威克英语商建解读:雅思听力选择题该怎么解答
- 工业设计心理学 - 图文
- 人教版九年级上册语文期末试题卷
- 哈尔滨工程大学机械原理题库
- 普巴笔记
- 第二节 走向统一的秦汉