2015年中考数学压轴题精选(二次函数)(16题) - 附详细解答和评分标准

更新时间:2023-11-07 23:06:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1、(10广东茂名25题)(本题满分10分)

如图,在平面直角坐标系中,抛物线y=-

22x+bx+c经3y 过A(0,-4)、B(x1,0)、 C(x2,0)三点,且x2-x1=5. (1)求b、c的值;(4分)

(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)

(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)

解:

解:(1)解法一: ∵抛物线y=-

B C O x

A (第25题图)

22, x+bx+c经过点A(0,-4)

322x+bx+c=0的两个根, 3 ∴c=-4 ??1分

又由题意可知,x1、x2是方程-∴x1+x2=

33b, x1x2=-c=6 ·········································································· 2分 222由已知得(x2-x1)=25 又(x2-x∴

1)=(x2+x1)-4x122x2=

92b-24 492b-24=25 414解得b=± ···················································································································· 3分

314当b=时,抛物线的对称轴在y轴的右边,不合题意,舍去.

3∴b=-

14. ··················································································································· 4分 3解法二:∵x1、x2是方程-

即方程2x-3b222x+bx+c=0的两个根, 3x+12=0的两个根.

1

∴x=

3b?9b2?96, ·················································································· 2分

49b2?96∴x2-x1==5,

2 解得 b=±14 ········································································································ 3分 3 (以下与解法一相同.)

(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的

对称轴上, ··········································································································· 5分

22142725···································· 6分 x-x-4=-(x+)2+ ·

33326725 ∴抛物线的顶点(-,)即为所求的点D. ·········································· 7分

26 又∵y=-

(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),

根据菱形的性质,点P必是直线x=-3与

2214································································· 8分 x-x-4的交点, ·

332142 ∴当x=-3时,y=-×(-3)-×(-3)-4=4,

33抛物线y=-

∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. ··················· 9分 四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标

只能是(-3,3),但这一点不在抛物线上. ························································· 10分 2、(08广东肇庆25题)(本小题满分10分)

已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y?5x2?12x上. (1)求抛物线与x轴的交点坐标; (2)当a=1时,求△ABC的面积;

(3)是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.

解:(1)由5x?12x=0, ····················································································· (1分)

212. ························································································· (2分) 512∴抛物线与x轴的交点坐标为(0,0)、(?,0). ·········································· (3分)

5得x1?0,x2??(2)当a=1时,得A(1,17)、B(2,44)、C(3,81), ································· (4分)

2

分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有

······················································· (5分) S?ABC=S梯形ADFC -S梯形ADEB -S梯形BEFC · =

(17?81)?2(17?44)?1(44?81)?1-- ······································· (6分)

222=5(个单位面积) ·············································································· (7分)

(3)如:y3?3(y2?y1). ················································································ (8分)

事实上,y3?5?(3a)2?12?(3a) =45a2+36a. 3(y2?y1)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.·············· (9分) ∴y3?3(y2?y1). ··························································································· (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB?1,OB?3,矩形ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y?ax2?bx?c过点A,E,D.

(1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

解:(1)点E在y轴上 ···································································································· 1分 理由如下:

连接AO,如图所示,在Rt△ABO中,

B A F C D O 第26题图

x

y E AB?1,BO?3,?AO?2

?sin?AOB?1,??AOB?30 2由题意可知:?AOE?60

??BOE??AOB??AOE?30?60?90

点B在x轴上,?点E在y轴上. ··············································································· 3分

3

(2)过点D作DM?x轴于点M

OD?1,?DOM?30

?在Rt△DOM中,DM?点D在第一象限,

13,OM? 22?31? ·································································································· 5分 ?点D的坐标为???2,?2??由(1)知EO?AO?2,点E在y轴的正半轴上

2) ?点E的坐标为(0,··································································································· 6分 ?点A的坐标为(?31), ·抛物线y?ax2?bx?c经过点E,

?c?2

?31?2D,由题意,将A(?31)代入y?ax?bx?2中得 ,,???22???8??3a?3b?2?1a???9?? 解得 ?3?31b?2??a??b??53?422?9?853x?2····························································· 9分 ?所求抛物线表达式为:y??x2?99(3)存在符合条件的点P,点Q. ················································································ 10分 理由如下:

矩形ABOC的面积?ABBO?3 ?以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又

OB?3

?OB边上的高为2 ··········································································································· 11分

2) 依题意设点P的坐标为(m,点P在抛物线y??

8253x?x?2上 994

853??m2?m?2?2

99解得,m1?0,m2??53 8?P2),P2??1(0,?53?2??8,?

??以O,B,P,Q为顶点的四边形是平行四边形,

?PQ∥OB,PQ?OB?3, 2)时, ?当点P1的坐标为(0,点Q的坐标分别为Q1(?3,2),Q2(3,2);

A B F y E C D x ?53?2?当点P2的坐标为???8,?时,

??点Q的坐标分别为Q3??

O M ?133??33?,2Q,2?,. ···················································· 14分 ?4?????8???8?4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y??3x?3与x轴交于点A,与y轴交于点C,抛物线y?ax?223x?c(a?0)3y 经过A,B,C三点.

(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;

(2)在抛物线上是否存在点P,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由; (3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.

解:(1)直线y??3x?3与x轴交于点A,与y轴交于点C.

A C O F B x

图16 ?A(?1,0),C(0,································································································ 1分 ?3) ·

点A,C都在抛物线上,

5

3?0???b

23b?

233?BC的解析式为y??x? ····················································································· 2分

4232?y??x?3?x1??1???4(2)由?,得?9

y1??y??3x?3??4??42?x2?2 ························································· 4分 ??y2?09??0) ?C??1,?,B(2,4??9 ······································································································· 5分 4199?S△ABC??4?? ································································································· 6分

242(3)过点N作NP?MB于点P EO?MB ?NP∥EO

?△BNP∽△BEO ········································································································ 7分 BNNP?? ···················································································································· 8分 BEEO?AB?4,CD?由直线y??33?3?x?可得:E?0,? 42?2?35,则BE? 22?在△BEO中,BO?2,EO??62tNP,?NP?t ······························································································· 9分 ?5352216?S?t(4?t)

25312S??t2?t(0?t?4) ··························································································· 10分

55312S??(t?2)2? ····································································································· 11分

5512此抛物线开口向下,?当t?2时,S最大?

512····························· 12分 ?当点M运动2秒时,△MNB的面积达到最大,最大为. ·5

11

8、(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式. (2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?

解:(1)设抛物线的表达式为y?ax2 ···················· 1分

?5.6)在抛物线的图象上. 点B(6,∴?5.6?36a

7 ··································································· 3分 4572x ·∴抛物线的表达式为y??··················································································· 4分 45a??(2)设窗户上边所在直线交抛物线于C、D两点,D点坐标为(k,t)

已知窗户高1.6m,∴t??5.6?(?1.6)??4 ································································ 5分

?4?

?72k 45·················································································· 6分 k1≈5.07,k2≈?5.07(舍去) ·

∴CD?5.07?2≈10.14(m) ····················································································· 7分

又设最多可安装n扇窗户

12

∴1.5n?0.8(n?1)≤10.14 ····························································································· 9分

n≤4.06.

答:最多可安装4扇窗户. ··························································································· 10分 (本题不要求学生画出4个表示窗户的小矩形)

9、(08广东梅州23题)23.本题满分11分.

如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.

(1)求∠DAB的度数及A、D、C三点的坐标;

(2)求过A、D、C三点的抛物线的解析式及其对称轴L. (3)若P是抛物线的对称轴L上的点,那么使?PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

解: (1) ?DC∥AB,AD=DC=CB,

····················································································· 0.5分 ? ∠CDB=∠CBD=∠DBA, ·

∠DAB=∠CBA, ?∠DAB=2∠DBA, ·············· 1分

∠DAB+∠DBA=90, ?∠DAB=60, ··········· 1.5分 ∠DBA=30,?AB=4, ?DC=AD=2, ·········· 2分 Rt?AOD,OA=1,OD=3, ····························· 2.5分 ,D(0, 3),C(2, 3). · 4分 ?A(-1,0)

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物

线必过点A(-1,0),B(3,0), 故可设所求为 y=a (x+1)( x-3) ··································································· 6分 将点D(0,

???3)的坐标代入上式得, a=?3. 3所求抛物线的解析式为 y=?3(x?1)(x?3). ·············································· 7分 3其对称轴L为直线x=1. ····························································································· 8分 (3) ?PDB为等腰三角形,有以下三种情况:

13

①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B, ?P1DB为等腰三角形; ························································································· 9分 ②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3, ?P2DB, ?P3DB为等腰三角形;

③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. ······················· 10分 由于以上各点互不重合,所以在直线L上,使?PDB为等腰三角形的点P有5个. 10、(08广东中山22题)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边

AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD. (1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).

(3)如图10,若以AB所在直线为x轴,过点A垂直于AB的直线为y轴建立如图10的

平面直角坐标系,保持ΔABD不动,将ΔABC向x轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

解:(1)43,43,??????????1分

等腰;??????????2分

(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)

①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)

②△ABD∽△EAD,△ABD∽△EBC;(有2对) ③△BAC∽△EAD,△BAC∽△EBC;(有2对)

所以,一共有9对相似三角形.????????????????5分

y

(3)由题意知,FP∥AE, ∴ ∠1=∠PFB,

又∵ ∠1=∠2=30°,

DCH ∴ ∠PFB=∠2=30°,

∴ FP=BP.??????????6分 过点P作PK⊥FB于点K,则FK?BK?∵ AF=t,AB=8,

Ay D E A 图9

B A F 图10

C

D C E P B G x H 1FB. 21FEP2K 图10BGx 14

∴ FB=8-t,BK?1(8?t). 2在Rt△BPK中,PK?BK?tan?2?13(8?t)tan30??(8?t). ????????7分 26∴ △FBP的面积S?113?FB?PK??(8?t)?(8?t), 226∴ S与t之间的函数关系式为: S?332416(t?8)2,或S?t?t?3. ?????????????8分 121233t的取值范围为:0?t?8. ??????????????????????9分 11、(08湖北十堰25题)已知抛物线y??ax2?2ax?b与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C.

⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标; ⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;

⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

解:⑴对称轴是直线:x?1,点B的坐标是(3,0). ??2分

说明:每写对1个给1分,“直线”两字没写不扣分.

⑵如图,连接PC,∵点A、B的坐标分别是A(-1,0)、B (3,0),

11∴AB=4.∴PC?AB??4?2.

22在Rt△POC中,∵OP=PA-OA=2-1=1, ∴OC?PC2?PO2?22?12?3.

∴b=3. ????????????3分 当x??1,y?0时,?a?2a?3?0,

15

∴a?3. ????????????4分 33223 ??????5分 x?x?3.33∴y??⑶存在.???????????6分

理由:如图,连接AC、BC.设点M的坐标为M(x,y).

①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB. 由⑵知,AB=4,∴|x|=4,y?OC?3.

∴x=±4.∴点M的坐标为M(4,3)或(?4,3).?9分

说明:少求一个点的坐标扣1分.

②当以AB为对角线时,点M在x轴下方. 过M作MN⊥AB于N,则∠MNB=∠AOC=90°.

∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.

∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=3. ∵OB=3,∴0N=3-1=2.

∴点M的坐标为M(2,?3). ???????????12分

说明:求点M的坐标时,用解直角三角形的方法或用先求直线解析式,

然后求交点M的坐标的方法均可,请参照给分.

综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,3),M2(?4,3),M3(2,?3).

说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,

不扣分。

16

12、(08四川达州23题)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),?ABO?60.

(1)若△AOB的外接圆与y轴交于点D,求D点坐标.

(2)若点C的坐标为(?1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明.

(3)二次函数的图象经过点O和A且顶点在圆上, 求此函数的解析式.

C

0

解:(1)连结AD,则∠ADO=∠B=60

0

在Rt△ADO中,∠ADO=60 所以OD=OA÷3=3÷3=3 所以D点的坐标是(0,3)

(2)猜想是CD与圆相切

∵ ∠AOD是直角,所以AD是圆的直径

又∵ Tan∠CDO=CO/OD=1/3=3, ∠CDO=30

0

y B D O F E A x F D y B ∴∠CDA=∠CDO+∠ADO=Rt∠ 即CD⊥AD ∴ CD切外接圆于点D

(3)依题意可设二次函数的解析式为 :

y=α(x-0)(x-3)

由此得顶点坐标的横坐标为:x=?E C O A x 3a3=; 2a210

∠B=30 2即顶点在OA的垂直平分线上,作OA的垂直平分线EF,则得∠EFA=

3333 可得一个顶点坐标为(,3)

222313) 同理可得另一个顶点坐标为(,?22得到EF=3EA=

分别将两顶点代入y=α(x-0)(x-3)可解得α的值分别为?

2323, 3917

则得到二次函数的解析式是y=?2323x(x-3)或y= x(x-3) 3913、(08湖北仙桃等4市25题)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,23),∠BCO= 60°,

OH?BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿

线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.

(1) 求OH的长;

(2) 若?OPQ的面积为S(平方单位). 求S与t之间的函数关系式.并求t为何

值时,?OPQ的面积最大,最大值是多少?

(3) 设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论. y

B A

H Q M

P

O C 解:(1)∵AB∥OC

x ∴ ?OAB??AOC?90 在Rt?OAB中,AB?2 ,AO?23

0 ∴OB?4, ?ABO?60

0y A B H P ∴?BOC?60 而?BCO?60

∴?BOC为等边三角形 ∴OH?OBcos30?4?00Q M 3?23?(3分) 2(2)∵OP?OH?PH?23?t

0O C x t3t yp?OPsin300?3?

22113t) ∴S??OQ?xp??t?(3?222323t?t (0?t?23)??????????(6分) =?42∴xp?OPcos30?3?0 18

333 (t?3)2?4433∴当t?3时,S最大????????????????(7分) 4y (3)①若?OPM为等腰三角形,则:

B A (i)若OM?PM,?MPO??MOP??POC ∴PQ∥OC

tH ∴OQ?yp 即t?3? MQ 2P 23解得:t? O C3 323232323此时S??????????????(8分) ?()???43233y 0(ii)若OP?OM,?OPM??OMP?75

B A ∴?OQP?450

过P点作PE?OA,垂足为E,则有: EQ?EP H Q 即S??即t?(3?x 13t)?3?t 22M解得:t?2 此时S??E O P Cx 33?22??2?3?3??????????????(9分) 42(iii)若OP?PM,?POM??PMO??AOB

∴PQ∥OA

此时Q在AB上,不满足题意.?????????????????(10分)

3 ②线段OM长的最大值为????????????????????(12分)

214、(08甘肃兰州28题)(本题满分12分)如图19-1,OABC是一张放在平面直角坐标系

中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA?5,

OC?4.

(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;

(2)如图19-2,若AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0?t?5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?最大值是多少?

(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.

y y E E C C B B N D D P M x x O O A A 19 图19-1 图19-2

(本题满分12分) 解:(1)依题意可知,折痕AD是四边形OAED的对称轴, ?在Rt△ABE中,AE?AO?5,AB?4.

?BE?AE2?AB2?52?42?3.?CE?2.

?E点坐标为(2,4). ········································································································· 2分

在Rt△DCE中,DC?CE?DE, 又

222DE?OD.

?(4?OD)2?22?OD2 . 解得:CD?5. 2?5??D点坐标为?0,? ············································································································· 3分

?2?PM∥ED,?△APM∽△AED.

PMAP5??,又知AP?t,ED?,AE?5 EDAE2t5t?PM???, 又PE?5?t.

522而显然四边形PMNE为矩形.

t15?S矩形PMNE?PMPE??(5?t)??t2?t ······························································· 5分

222(2)如图①

?S四边形PMNE51?5?25???t???,又0??5

22?2?82525时,S矩形PMNE有最大值. ··············································································· 6分 28(3)(i)若以AE为等腰三角形的底,则ME?MA(如图①) 在Rt△AED中,ME?MA,PM?AE,?P为AE的中点,

15?t?AP?AE?.

22y 又PM∥ED,?M为AD的中点. E C B 过点M作MF?OA,垂足为F,则MF是△OAD的中位线, N P D 1515?MF?OD?,OF?OA?,

M 2422?当t??当t?55??时,?0??5?,△AME为等腰三角形. 22??O F 图① A x 此时M点坐标为?,?. ··································································································· 8分

?55??24? 20

(ii)若以AE为等腰三角形的腰,则AM?AE?5(如图②)

5?5?2225. 在Rt△AOD中,AD?OD?AO????5?22??过点M作MF?OA,垂足为F.

PM∥ED,?△APM∽△AED.

2y C N D M O F 图② A x E P B APAM?. AEAD1AMAE5?5?t?AP???25,?PM?t?5.

52AD52??MF?MP?5,OF?OA?AF?OA?AP?5?25,

(0?25?5),此时M点坐标为(5?25,5). ···························· 11分 ?当t?25时,综合(i)(ii)可知,t?5或t?25时,以A,M,E为顶点的三角形为等腰三角形,相2应M点的坐标为?,?或(5?25,5). ······································································ 12分 15、(08天津市卷26题)(本小题10分) 已知抛物线y?3ax2?2bx?c,

(Ⅰ)若a?b?1,c??1,求该抛物线与x轴公共点的坐标;

(Ⅱ)若a?b?1,且当?1?x?1时,抛物线与x轴有且只有一个公共点,求c的取值范围; x2?1时,(Ⅲ)若a?b?c?0,且x1?0时,对应的y1?0;对应的y2?0,试判断当0?x?1?55??24?时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

解(Ⅰ)当a?b?1,c??1时,抛物线为y?3x2?2x?1, 方程3x2?2x?1?0的两个根为x1??1,x2?1. 3∴该抛物线与x轴公共点的坐标是??1··················································· 2分 0?. ·,0?和?,(Ⅱ)当a?b?1时,抛物线为y?3x2?2x?c,且与x轴有公共点.

?1

?3??

1对于方程3x2?2x?c?0,判别式??4?12c≥0,有c≤. ··········································· 3分

3①当c?111时,由方程3x2?2x??0,解得x1?x2??. 333此时抛物线为y?3x2?2x?

?1?1与x轴只有一个公共点??,··································· 4分 0?. ·3?3?21

②当c?1时, 3x1??1时,y1?3?2?c?1?c, x2?1时,y2?3?2?c?5?c.

1由已知?1?x?1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x??,

3应有??y1≤0,?1?c≤0, 即?

y?0.?2?5?c?0.1或?5?c≤?1. ······················································································· 6分 3解得?5?c≤?1. 综上,c?(Ⅲ)对于二次函数y?3ax2?2bx?c,

由已知x1?0时,y1?c?0;x2?1时,y2?3a?2b?c?0, 又a?b?c?0,∴3a?2b?c?(a?b?c)?2a?b?2a?b. 于是2a?b?0.而b??a?c,∴2a?a?c?0,即a?c?0.

∴a?c?0. ····················································································································· 7分 ∵关于x的一元二次方程3ax2?2bx?c?0的判别式

??4b2?12ac?4(a?c)2?12ac?4[(a?c)2?ac]?0,

∴抛物线y?3ax2?2bx?c与x轴有两个公共点,顶点在x轴下方. ································ 8分 又该抛物线的对称轴x??b, 3a由a?b?c?0,c?0,2a?b?0, 得?2a?b??a, ∴

y 1b2???. 33a3O 1 x 又由已知x1?0时,y1?0;x2?1时,y2?0,观察图象,

可知在0?x?1范围内,该抛物线与x轴有两个公共点. ················································ 10分 16、(08江苏镇江28题)(本小题满分8分)探索研究 如图,在直角坐标系xOy中,点P为函数y?12x在第一象限内的图象上的任一点,点A41),直线l过B(0,?1)且与x轴平行,过P作y轴的平行线分别交x轴,l于的坐标为(0,y P A O C x

22

C,Q,连结AQ交x轴于H,直线PH交y轴于R.

(1)求证:H点为线段AQ的中点; (2)求证:①四边形APQR为平行四边形;

②平行四边形APQR为菱形;

(3)除P点外,直线PH与抛物线y?

(1)法一:由题可知AO?CQ?1.

12x有无其它公共点?并说明理由. 4?AOH??QCH?90,?AHO??QHC,

?△AOH≌△QCH. ································································································ (1分) ?OH?CH,即H为AQ的中点. ··········································································· (2分)

法二:

A(0,1),B(0,?1),?OA?OB. ······························································· (1分)

又BQ∥x轴,?HA?HQ. ····················································································· (2分) (2)①由(1)可知AH?QH,?AHR??QHP,

AR∥PQ,??RAH??PQH,

?△RAH≌△PQH. ································································································· (3分) ?AR?PQ,

又AR∥PQ,?四边形APQR为平行四边形. ························································ (4分)

②设P?m,m?,

??142??1PQ∥y轴,则Q(m,?1),则PQ?1?m2.

4过P作PG?y轴,垂足为G,在Rt△APG中,

1?1??1?AP?AG?PG??m2?1??m2??m2?1??m2?1?PQ.

4?4??4?2222····················································································· (6分) ?平行四边形APQR为菱形. ·

23

(3)设直线PR为y?kx?b,由OH?CH,得H??m??1?,2?,P?m,m2?代入得: ?2??4?m?m?k?b?0,k?,??m12?2?2PRy?x?m. ·? 直线为························· (7分) ???1241?km?b?m2.?b??m2.???4?4设直线PR与抛物线的公共点为?x,x2?,代入直线PR关系式得:

??14??12m11?1?x?x?m2?0,(x?m)2?0,解得x?m.得公共点为?m,m2?. 4244?4?所以直线PH与抛物线y?

12x只有一个公共点P. ················································ (8分) 4 24

本文来源:https://www.bwwdw.com/article/u662.html

Top