总降压变电所设计 工厂供电毕业设计

更新时间:2024-04-30 12:04:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

摘要

为使工厂供电工作很好地为工业生产服务,切实保证工厂生产和生活用电的需要,并做好节能工作,本设计在大量收集资料,并对原始资料进行分析后,做出35kV变电所及变电系统电气部分的选择和设计,使其达到以下基本要求: 1、安全 在电能的供应、分配和使用中,不发生人身事故和设备事故。 2、可靠 满足电能用户对供电可靠性的要求。 3、优质 满足电能用户对电压和频率等质量的要求

4、经济 供电系统的投资少,运行费用低,并尽可能地节约电能和减少有色金属的消耗量。

此外,在供电工作中,又合理地处理局部和全局、当前和长远等关系,既照顾局部的当前的利益,又要有全局观点,顾全大局,适应发展。

按照国家标准GB50052-95 《供配电系统设计规范》、GB50059-92 《35~110kV变电所设计规范》、GB50054-95 《低压配电设计规范》等的规定,工厂供电设计遵循以下原则:

1、遵守规程、执行政策;

遵守国家的有关规定及标准,执行国家的有关方针政策,包括节约能源,节约有色金属等技术经济政策。 2、安全可靠、先进合理;

做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能先进电气产品。 3、近期为主、考虑发展;

根据工作特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远近结合,适当考虑扩建的可能性。 4、全局出发、统筹兼顾。

按负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。工厂供电设计是整个工厂设计中的重要组成部分。工厂供电设计的质量直接影响到工厂的生产及发展。

I

关键词:节能 配电 安全 合理 发展

II

目录

摘要 ·································································································································································· I ABSTRACT ················································································································ 错误!未定义书签。 1绪论 ······························································································································································ 1 1.1设计题目········································································································································ 1 1.2设计依据········································································································································ 1 1.2.1工厂总平面布置图(略) ········································································································· 1 1.2.2全厂各车间负荷情况汇总表。 ································································································· 1 1.2.3供用电协议。 ····························································································································· 2 1.2.4工厂的负荷性质 ························································································································· 3 1.2.5工厂的自然条件 ························································································································· 3 1.3设计任务及设计大纲 ···················································································································· 3 1.3.1高压供电系统设计 ····················································································································· 3 1.3.2总变电所设计 ····························································································································· 3 1.4设计成果········································································································································ 4 1.4.1设计说明书 ································································································································· 4 1.4.2设计图纸····································································································································· 4 2供电电压等级选择 ····································································································································· 5 2.1电源电压等级选择 ························································································································ 5 3全厂负荷计算 ············································································································································· 5 3.1变电所的负荷计算 ························································································································ 5 3.1.1用电设备的负荷计算 ················································································································· 5 3.1.2变压器损耗估算 ························································································································· 6 3.1.3无功功率补偿计算 ····················································································································· 7 3.1.4变压器选择 ································································································································· 8 4系统主接线方案的选择 ···························································································································· 9

III

4.1方案1:单回路高压线路—变压器组、低压单母线分段主接线 ············································· 9 4.2方案2:双回路高压线路—变压器组、低压单母线分段主接线 ············································· 9 4.3方案的比较与选择 ························································································································ 9 5变电所位置及变压器、配电装置选择 ································································································· 11 5.1变电所位置·································································································································· 11 5.2变压器选择·································································································································· 11 5.3所用变压器选择 ·························································································································· 11 5.3配电装置选择 ······························································································································ 11 6短路电流计算 ··········································································································································· 12 6.1确定计算电路及计算电抗 ·········································································································· 12 6.2最大运行方式下的短路点计算 ·································································································· 13 6.3最小运行方式下的短路点计算 ·································································································· 14 7高压电气设备的选择 ······························································································································ 16 7.1 35KV架空线的选择 ················································································································· 16 7.2 10KV母线的选择 ····················································································································· 16 7.3高压断路器的选择 ······················································································································ 18 7.4高压隔离开关的选择 ·················································································································· 19 7.5电流互感器的选择 ······················································································································ 20 7.6电压互感器的选择 ······················································································································ 22 7.7. 10KV高压柜的选择 ··················································································································· 24 8继电保护装置设计 ··································································································································· 25 8.1.继电保护配置 ······························································································································ 25 8.2主变压器保护的继保整定 ·········································································································· 26 9接地及防雷设计 ······································································································································· 28 9.1防雷设计······································································································································ 28 9.2接地设计······································································································································ 28 致谢 ··················································································································································· 30

IV

参考文献目录 ·············································································································································· 31 附录1:设备汇总一览表 ·························································································································· 32 附录2:所区平面布置图 ·························································································································· 33

V

1绪论

1.1设计题目

某电机制造厂总降压变电所及高压配电系统设计

1.2设计依据

1.2.1工厂总平面布置图(略) 1.2.2全厂各车间负荷情况汇总表。

车间名称 Pe/kW Kd cosφ 电机修理车间 2300 0.6 0.7 机械加工车间 880 0.65 0.65 新品试制车间 650 0.55 0.6 原料车间 550 0.35 0.65 备件车间 560 0.5 0.7 锻造车间 180 0.6 0.65 锅炉房 260 0.9 0.8 空压房 302 0.8 0.65 汽车库 56 0.5 0.7 线圈车间 328 0.55 0.65 半成品试验车间 750 0.65 0.75 成品试验车间 2564 0.35 0.6 加压站(10KV转供负荷) 274 0.55 0.65 设备处仓库(10KV转供负荷) 654 0.55 0.75 成品试验站内大型集中负荷 3874 0.65 0.75 1

1.2.3供用电协议。

1)当地供电部门可提供两种电源:

①从某220/35KV区域变电站提供电源,该站距离厂南5公里; ②从某35/10KV变电所,提供10KV备用电源,该所距离厂南5公里。 2)配电系统技术数据。

(1)区域变电站35KV母线短路数据为: 运行方式 系统最大运行方式时 系统最小运行方式时 (2)配电系统

电源35千伏母线短容量 S(3)dmax=580兆伏安 S(3)说明 dmin=265兆伏安 kVkVkVtopskV

3)供电部门对工厂提出的技术要求:

①区域变电站35KV馈电线路定时限过流保护装置的整定时间为1.8秒,要求厂总降压变电所的保护动作时间不大于1.3秒。

②工厂在总降压变电所35KV侧计量。 ③功率因素值应在0.9以上。

2

1.2.4工厂的负荷性质

①本工厂大部分车间为一班制,少数车间为两班或三班制,年最大负荷利用小时数为2500小时。

②锅炉房提供高压蒸汽,停电会使锅炉发生危险。由于距离市区较远,消防用水需要厂方自备。因此,锅炉房要求较高的可靠性。 1.2.5工厂的自然条件

(1)年最高气温为40℃,年最低气温5℃,年平均气温为10℃。 (2)站所选地址地质以粘土为主,地下水位3-5米。 (3)风向以东南风为主。

1.3设计任务及设计大纲 1.3.1高压供电系统设计

根据供电部门提供的资料,选择本厂最优供电电压等级。 1.3.2总变电所设计

1)主结线设计:根据设计任务书,分析原始资料与数据,列出技术上可能实现的多个方案,经过概略分析比较,留下2-3个较优方案进行详细计算和分析比较(经济计算分析时,设备价格、使用综合投资指标),确定最优方案。

2)短路电流计算:根据电气设备选择和继电保护的需要,确定短路计算点,计算三相短路电流,计算结果列出汇总表。

3)主要电气设备选择:主要电气设备的选择,包括断路器、隔离开关、互感器、导线截面和型号、绝缘子等设备的选择及效验。选用设备型号、数量、汇总设备一览表。

3

4)主要设备继电保护设计:包括主变压器、线路等元件的保护方式选择和整定计算。

5)配电装置设计:包括配电装置形式的选择、设备布置图。 6)防雷、接地设计:包括直击雷保护、进行波保护和接地网设计。

1.4设计成果 1.4.1设计说明书

包括对各种设计方案分析比较的扼要说明,并附有必要的计算及表格。1.4.2设计图纸

1)降压变电所电气主结线图。 2)变电所平面布置图 3)主变压器保护原理接线图。

4

2供电电压等级选择

2.1电源电压等级选择

根据供电协议可知,当地供电部门可提供电源为两种:主电源为厂南的某220/35KV区域变电站提供,10kV备用电源为厂南的某35/10KV变电所提供,因此可以考虑本厂总降压变电所主电源采用35kV电压等级,经过变压后采用10kV输送至各个车间变电房降压至0.4kV直供负荷。同时采用10kV作为保安电源,为锅炉房等一级负荷提供备用电源。

3全厂负荷计算

3.1变电所的负荷计算 3.1.1用电设备的负荷计算

根据设计任务书的要求,按照需要系数法及以下计算公式 Pj?Pe?Kd

Qj?Pj/1?COS?2

Sj?Pj2?Qj2 Ij?Sj/3Ue

得各项数据列表如下(下表数据均为35kV侧):

计 算 负 荷 用电设备 电机修理车间 机械加工车间

Pe/kW Kd Cosφ Pj/kW Qj/kVA 1407.6 669.24 Sj/kVA 1971.23 880.38 Ij/A 32.52 14.52 5

2300 880 0.6 0.65 0.7 0.65 1380 572

新品试制车间 650 0.55 0.6 357.5 475.48 594.88 9.83 原料车间 550 0.35 0.65 192.5 225.23 296.28 4.89 备件车间 560 0.5 0.7 280 285.6 399.96 6.6 锻造车间 180 0.6 0.65 108 126.36 166.23 2.74 锅炉房 260 0.9 0.8 234 175.5 292.5 4.83 空压房 302 0.8 0.65 241.6 282.67 371.85 6.13 汽车库 56 0.5 0.7 28 28.56 40 0.66 线圈车间 328 0.55 0.65 180.4 211.07 277.66 4.58 半成品试验车750 0.65 0.75 487.5 429 649.38 10.72 间 成品试验车间 2564 0.35 0.6 897.4 1193.54 1493.27 24.67 加压站(10KV转供负274 0.55 0.65 150.7 176.32 231.95 3.82 荷) 设备处仓库(10KV654 0.55 0.75 359.7 316.54 479.15 7.91 转供负荷) 成品试验站内大型集3874 0.65 0.75 0.88 2518.1 2215.93 3357.20 55.39 中负荷 合 计 7987.4 8218.64 11501.92 189.81 有功负荷同时系数取k?P?0.95 7588.03 7927.08 10527.37 173.66 无功负荷同时系数取k?q?0.97 3.1.2变压器损耗估算

ΔPb=1%Sj=0.01×10527.37=105.27kw ΔQb=5%Sj=0.05×10527.37=526.37kvar

6

3.1.3无功功率补偿计算

从设计任务书的要求可知,工厂35kV高压侧进线在最大负荷时,其功率因素不应小于0.9,考虑到变压器的无功功率损耗ΔQb,远远大于有功功率损耗ΔPb,因此,在变压器的10kV侧进行无功功率补偿时,其补偿后的功率因素应稍大于0.9,现设cosφ=0.95,则

10kV侧在补偿前的功率因素为:

cos?1?Pj/Sj

?7588.03/10527.37

?0.72

因此,所需要的补偿容量为:

Qc?Pj(tg?1?tg?2)

?7588.03?(tgarccos0.72?tgarccos0.95) ?481k8var

选取Qc?5000kvar

35kV侧在补偿后的负荷及功率因素计算:

Pjg?Pj??Pb?7588.03?105.27?7693.30kW

Qjg?Qj??Qb?Qc?7927.08?526.37?5000?3453.45kvar Sjg?Pjg2?Qjg2?7693.32?3453.452?8425Kva

cos?2?Pjg/Sjg

?7693.30/8425

7

?0.913

cos??0.913满足了设计任务书的要求,其计算数据如下:

计算机负荷 项 目 cosφ Pj/kW 10kV侧补偿前 0.657 需要补偿容量 变压器损耗 7588.03 105.27 7693.30 Qj/kvar 7927.08 -5000 526.37 3453.45 Sj/kVA 10527.37 8425 Ij/A (10kV侧) 607.81 138.98 35kV侧补偿后 0.922 根据设计任务书的要求以及以上计算结果,选取: 并联补偿电容为 BWF10.5-100-1型电容器50只。 补偿总容量为 100kvar×50=5000kvar。 3.1.4变压器选择

根据补偿后的总计算负荷(8425kVA),同时考虑工厂5-10年的负荷增长,变压器容量考虑一定的预留,本期工厂负荷能保证变压器运行在60-70%经济负荷区内即可,因此选择型号为:

SFZ7-10000-35±3*2.5%/10.5kV YN,d11的变压器。

8

4系统主接线方案的选择

4.1方案1:单回路高压线路—变压器组、低压单母线分段主接线

4.2方案2:双回路高压线路—变压器组、低压单母线分段主接线

4.3方案的比较与选择

根据设计任务书的要求,本厂基本负荷为一班制,少数负荷为两班或三班制,属于二级负荷;同时锅炉房供电可靠性要求高,属于一级负荷。主接线的设计必须满足工厂电气设备的上述要求,因此:

方案1:该方案35kV侧为单回路线路-变压器组接线、10kV单母线,与10kV备用电源通过母联连接,正常运行时母联合闸,由主电源供给锅炉房;当主电源故障或主变等设备停电检修退出运行时,母联分闸,由10kV备用电源直供锅炉房及其他重要负荷。

由于本厂基本负荷为二级负荷,对供电可靠性要求不高,采用单回路进线和1台主变基本可满足对二级负荷供电的要求,对于锅炉房等重要负荷采用10kV备用电源作为备用,以保证工厂的重要用电设备不会出现长时间断电,即在任何时候都能满足对二级负荷的供电要求。

方案2:该方案35kV侧采用从220/35kV变电站出双回路电源、高压线路—变压器组接线、10kV侧为单母线分段接线。方案2的特点就是采用双电源、可靠性高。其缺点就是设备投资大、运行维护费用高,同时本厂最大负荷利用小时仅为2600小时,相对来说,变压器的利用率低,2台主变的空载损耗将大大超过1台主变的选择。

选择结果:从上述分析可知,方案1能满足供电要求,同时设备投资、运行维

9

护费用和占地面积、建筑费用等方面均由于方案2,技术和经济的综合指标最优,因此,在本设计中,选用方案1作为本设计的主接线方案。方案详细的图纸见《35/10kV降压变电所电气主接线图》。

10

5变电所位置及变压器、配电装置选择

5.1变电所位置

根据变电所选址原则:a.变电所尽量选择在负荷中心,可减少低压损耗;b.便于维修;c.便于进出线;d.节约费用;e.便于运行安全的原则,将35/10kV总降压变电所设置在木工车间后侧。具体位置见附件3《工厂总平面布置图》。 5.2变压器选择

根据设计方案的选择结果,本期只设计1台主变压器即可满足需要,因此变压器选择结果不变,即为: 型号 联接组标号 空载电流% 额定电压(KV) 高压 35±3×2.5% 阻抗电压% 高-中 7.5 型号中个符号表示意义:S:三相 F:风冷却 Z:有载调压 7:性能水平号 10000:额定容量 35:电压等级 5.3所用变压器选择

为保证变电所正常运行,需要设置所用变压器。根据常规,本所所用变压器可以选择为:SC9-30/10 10±5%/0.4kV Y,y11 阻抗电压4%,布置在10kV柜内。 5.3配电装置选择

根据供电电压等级选择的结果:进线电源采用35kV,经过变压器降为10kV供给各车间配电所,从经济性和运行维护等方面考虑,35kV配电装置采用户外常规布置,10kV采用户内配电装置。

11

SFZ7-10000/35 YN, d11 1.1 低压 10.5 6短路电流计算

6.1确定计算电路及计算电抗 6.1.1计算电路图

Sdmax?580MVA Sdmin?265MVA L?5km XO?0.4?/km

SN?10MVA

Vs%?7.5 设基准容量SB?100MVA

基准电压 VB1?Vav1?37kV VB2?Vav2?10.5kV 6.1.2归算前的等值电路图

6.1.3计算电抗

将所有电抗归算到35kV侧:

系统电抗X1*=Xsmax*=SB/Sdmax=100/580=0.172(最大运行方式下)

12

X1*=Xsmin*=SB/Sdmin=100/265=0.377(最小运行方式下)

架空线路电抗 X2*=XL*=XOL(SB/VB12)=0.4×5×100/372=0.146 变压器电抗 X3*=XT1*=(SS%/100)×(SB/ST1) =(7.5/100) ×(100/10)=0.75 6.1.4归算后的等值电路图

6.2最大运行方式下的短路点计算 6.2.1 d1点的短路电流计算

10kV母线侧没有电源,无法向35kV侧提供短路电流,即可略去不计,则d1点短路电流标幺值为:

11I d1*〞===3.145

X1*?X2*0.172?0.146换算到35kV侧0秒钟短路电流有名值

I″ = I d1*〞×SB =3.145×100 = 4.908kA

3UB3?37根据《电力工程电气设计手册》的相关规定,

远离发电厂的地点(变电所)取电流冲击系数Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值

Ich = 1?2(Kch?1)2×I″ =1?2(1.8?1)2×4.908=7.41kA 当不计周期分量衰减时,短路电流冲击电流

ich =2 Kch× I″ =2 ×1.87×I″ = 2.55× I″ = 2.55×4.908= 12.515 kA 短路容量 S = 3 UB × I″ = 3 ×37×4.908 =314.52MVA 6.2.2 d2点的短路电流计算

10kV母线侧没有电源,无法向35kV侧提供短路电流,即可略去不计,则d2点

短路电流标幺值为:

11I d1*〞===0.936

X1*?X2*?X3*0.172?0.146?0.75换算到10kV侧0秒钟短路电流有名值

I″ = I d1*〞×SB =0.936×100 =5.15kA

3UB3?10.5

13

根据《电力工程电气设计手册》的相关规定,

远离发电厂的地点(变电所)取电流冲击系数Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值

Ich = 1?2(Kch?1)2×I″ =1?2(1.8?1)2×5.15=7.78kA 当不计周期分量衰减时,短路电流冲击电流

ich =2 Kch× I″ =2 ×1.87×I″ = 2.55× I″ = 2.55×5.15= 13.133kA 短路容量 S = 3 UB × I″ = 3 ×10.5×5.15 =93.66MVA

6.3最小运行方式下的短路点计算 6.3.1 d1点的短路电流计算

同上所得,则d1点短路电流标幺值为:

11I d1*〞===1.912

X1*?X2*0.377?0.146换算到35kV侧0秒钟短路电流有名值

I″ = I d1*〞×SB =1.912×100 =2.983KA

3UB3?37根据《电力工程电气设计手册》的相关规定,

远离发电厂的地点(变电所)取电流冲击系数Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值

Ich = 1?2(Kch?1)2×I″ =1?2(1.8?1)2×2.983=4.505kA 当不计周期分量衰减时,短路电流冲击电流

ich =2 Kch× I″ =2 ×1.87×I″ = 2.55× I″ = 2.55×2.983= 7.61kA 短路容量 S = 3 UB × I″ = 3 ×37×2.983=191.16MVA 6.2.2 d2点的短路电流计算

10kV母线侧没有电源,无法向35kV侧提供短路电流,即可略去不计,则d2点

短路电流标幺值为:

11I d1*〞===0.785

X1*?X2*?X3*0.377?0.146?0.75换算到10kV侧0秒钟短路电流有名值

I″ = I d1*〞×SB =0.785×100 =4.317KA

3UB3?10.5根据《电力工程电气设计手册》的相关规定,

远离发电厂的地点(变电所)取电流冲击系数Kch = 1.8,当不计周期分量的衰减时, 短路电流全电流最大有效值

Ich = 1?2(Kch?1)2×I″ =1?2(1.8?1)2×4.317=6.519kA

14

当不计周期分量衰减时,短路电流冲击电流

ich =2 Kch× I″ =2 ×1.87×I″ = 2.55× I″ = 2.55×4.317= 11.008kA 短路容量 S = 3 UB × I″ = 3 ×10.5×4.317=78.51MVA 以上计算结果列表如下:

运行方式 短路点 Id/kA ich/kA Ich/kA Sd/MVA 最大 D1 4.908 12.515 7.41 314.52 运行方式 D2 5.15 13.133 7.78 93.66 最小 D1 2.983 7.61 4.505 191.16 运行方式 D2 4.317 11.008 6.519 78.51

15

7高压电气设备的选择

7.1 35kV架空线的选择

考虑到变压器在电压降低5%时其出力保持不变,所以35kV架空线相应的Igmax=1.05Ie

即:Igmax =1.05 ×SN=1.05 ×10=0.173kA

3?353?UN根据设计条件 Tmax=2500h 取J=1.3

则导体经济截面面积 S=Igmax/J=173/1.3=133.08mm2。 7.1.1.选择导线(按照经济电流密度):

选择LGJ-150/20钢芯铝绞线,其室外载流量为Ij1=306A,面积为

S=145.68mm2,导线最高允许温度为70℃,根据工作环境温度为30℃,查综合修正系数K=0.94,

Ij1 xz=K Ij1=0.94×306=287.64A>Igmax,满足电流的要求。 7.1.2.热稳定校验(按最大运行方式d2点短路):

根据设计任务书的条件,变电所的继保动作时限不能大于1.3秒,即top=1.3s,断路器开短时间tos=0.2s,非周期分量等效时间tos=0.05s,则:

短路假想时间tima=top+tos+ts=1.3+0.2+0.05=1.55s。 架空线最小截面积

2QD5.15?1.552

=?103=73.69<133.08 mm C87Smin=

S>Smin,满足热定的要求。

7.2 10kV母线的选择

考虑到变压器在电压降低5%时其出力保持不变,所以35kV架空线相应的Igmax=1.05Ie

16

即:Igmax =1.05 ×SN=1.05 ×10=0.527kA

3?11.53?UN7.2.1选择母线(按照最大工作电流):

选择80×8单条矩形铝导体平放作母线,面积为S=6400mm2,平放时,长期允许载流量为Ia1=1249A,导体最高允许温度为70℃,根据工作环境温度为30℃的条件,查综合修正系数K=0.94:

Ie=k×Ia1=0.94×1249=1174.06A>Igmax,满足载流量的要求。 7.2.2.热稳定的校验(按最大运行方式d2点短路):

根据设计任务书的条件,配电所的继保动作时限不能大于1.3秒,即top=1.3s,断路器开短时间toc=0.2s,非周期分量等效时间ts=0.05s,则:

短路假想时间tima=top+toc+ts=1.3+0.2+0.05=1.55s。 母线最小截面积

2QD5.15?1.552

=?103=73.69<640mm C87Smin=

S>Smin,满足热定的要求。

7.2.3.动稳定校验:

取跨距L?1.5m,相间距离a?0.5m, 硬铝最大允许应力?a1?70?106pa,

抗弯矩W?bh2/6?(5?10?3)(25?10?3)2/6?5.2?10?7m3 相间电动力fph?1.73?10?7ich/a

?1.73?10?7(13.133?103)2/0.5?59.68N 最大相应力?ph?fph L2/10W

?59.68?1.5/(10?5.2?10?7)?17.22?106pa

17

2 ?al >?ph,满足动稳定的要求。

7.3高压断路器的选择

根据设计任务书的条件,变电所的继保动作时限不能大于1.3秒,即top?1.3s,断路器开短时间toc?0.2s,非周期分量等效时间ts?0.05s,则:

短路假想时间tima?top?toc?ts?1.3?0.2?0.05?1.55s。 7.3.1.安装在变压器35kV高压侧的断路器 7.3.1.1.35kV断路器参数选择 额定电压选择: Un≥Uns =35kV

最高工作电压选择:Ualm≥Usm =Un×1.15 =35 ×1.15 =38.5kV 额定电流选择:Ie≥Igmax

考虑到变压器在电压降低5%时其出力保持不变,所以相应回路的Igmax=1.05Ie 即:Igmax =1.05 ×SN=1.05 ×10=0.173kA

3?353?UN额定开断电流选择(按最大运行方式d2点短路):Ik =I″ 即:Ik =5.15kA

额定短路关合电流选择:iNcl≥ish 即:iNcl ≥13.133kA

根据以上数据可以初步选择SW2-35型少油式断路器其参数如下: 额定电压:UN=35kV 最高工作电压Ualm =38.5kV 额定电流Ie =600A

7.3.1.2.35kV断路器校验 校验热稳定:I2 t t ≥Qk 计算时间tima=1.55s

Qk = Ik2×dz = 5.152×1.55 = 41.11kA2·S I2r t = 6.62×4 = 174.24kA2·S 即I2 t t > Qk ,满足要求。 11.2.2.1.1.8.检验动稳定:ish≤ ies

即:ish= ich=13.133≤ ies= idw =17kA, 满足要求

18

额定开断电流为IK =6.6kA 4S热稳定电流6.6kA

额定合闸时间0.12S

动稳定电流峰值idw =17kA 固有分闸时间0.06s

故35kV进线侧断路器选择户外SW2-35型少油式断路器能满足要求。 7.3.2.安装在变压器10kV低压侧的断路器 7.3.2.1.10kV断路器参数选择 额定电压选择:Un≥Uns =10kV

最高工作电压选择:Ualm≥Usm =Un×1.15 =10 ×1.15 =11.5kV 额定电流选择:Ie≥Igmax

考虑到变压器在电压降低5%时其出力保持不变,所以相应回路的Igmax=1.05Ie 即:Igmax =1.05 ×3?SN=1.05 ×10=0.527kA

3?11.53?UN额定开断电流选择(按最大运行方式d2点短路):Ik =I″ 即:Ik =5.15kA

额定短路关合电流选择:iNcl≥ish 即:iNcl ≥13.133kA

根据以上数据可以初步选择ZN18-10型真空式断路器其参数如下: 额定电压:UN=10kV 最高工作电压Ualm =11.5kV 额定电流Ie =630A 7.3.2.2.10kV断路器校验 校验热稳定:I2 t t ≥Qk 计算时间tima=1.55s

Qk = Ik2×dz = 5.152×1.55 = 41.11kA2·S I2r t = 252×4 = 2500 kA2·S 即I2 t t > Qk ,满足要求。 11.2.2.1.1.8.检验动稳定:ish≤ ies

即:ish= ich=13.133≤ ies= idw =63kA, 满足要求

故10kV主变进线侧断路器选择户内ZN18-10型真空式断路器能满足要求。 7.4高压隔离开关的选择 7.4.1. 35kV侧隔离开关

额定电压选择:Un≥Vns = 35kV 额定电流选择:Ie≥Igmax

考虑到隔离开关是与相应的断路器配套使用,所以相应回路的Ie应与断路器相同,即:Ie =600A

19

额定开断电流为IK =25kA 动稳定电流峰值idw =63kA 3S热稳定电流25kA

额定合闸时间0.045S 固有分闸时间0.03s

根据以上数据可以初步选择GW4-35II(D)W型隔离开关,其参数分别如下: 额定电压:UN=35kV 额定电流Ie =630A 最高运行电压:Ula=38.5kV 动稳定电流峰值idw =50kA 4S热稳定电流20kA

7.4.2. 校验热稳定(下列时间均取自对应断路器,后备保护取2S):

即I2 t t ≥Qk

计算时间tjs= td + tb = 0.05 + 2=2.05S Qk = Ik2×dz = 5.152×2.05 = 54.37kA2·S I2r t = 400×4 =1600 kA2·S 即I2 t t ≥Qk ,满足要求。 7.4.3.检验动稳定:ish≤ ies

即:ish= ich=13.133≤ ies= idw =50kA, 满足要求

7.4.4. 由于后面在选择了KYN28A-12(VE)的手车式高压开关柜,10kV高压断路器等高压设备就安装手车上,需要检修时断路器等高压设备时,可随时拉出手车,已经起到隔离开关的作用,所以本设计没有必要再另外选择10kV高压隔离开关。 7.5电流互感器的选择

根据设计任务书的条件,配电所的继保动作时限不能大于1秒,即top?1.3s,断路器开短时间toc?0.2s,非周期分量等效时间ts?0.05s,则:

短路假想时间tima?top?toc?ts?1?0.2?0.05?1.55s。 7.5.1.安装在35kV高压进线侧的电流互感器 7.5.1.1. 35kV主变侧电流互感器的配置原则:

1)对直接接地系统,一般按三相配制;

2)本站35kV配电装置为户外式,因此电压互感器也为户外油浸式;

3)根据设计任务书要求,本所计量在35kV侧,因此为满足保护和测量、计费的需要,电流互感器二次绕组应分别配置计量、测量、保护三种绕组,其中保护分为主保护、后备保护、备用,共计需要5个绕组。 7.5.1.2. 35kV主变侧电流互感器的一次回路额定电压选择

电流互感器的一次额定电压选择必须满足:Ug≤Un=35kV

20

闸或断开部分负荷。 8.1.2. 10kV线路保护配置

10kV出线一般配置限时电流速断保护、定时限过电流保护、过负荷保护。 8.1.3. 10kV电容器保护配置

10kV电容其一般配置限时电流速断保护、定时限过电流保护、过电压保护、欠电压保护。

8.2主变压器保护的继保整定 8.2.1.过负荷保护

1)电流整定:

取可靠系数Krel?1.05,继电器返回系数Kf?0.85

变压器的一次额定电流Ie?Sn/3Un?10000/(3?35)?164.96,换算成二次额定电流为Ie'?164.96?5/200?4.12A

Idz?Kk?Ie'/Kf=1.05×4.12/0.85=5.09A 2)动作时限:top?10?15s 8.2.2.过电流保护 1)电流整定:

取可靠系数Krel?1.3,接线系数Kw?1,电流互感器变比Ki?200/5?40,继电器返回系数Kre?0.8

变压器最大负荷电流Il.max?1.5?I1n?1.5?Sn/(3?Un)=1.5×1000/(35×1.732)=247.44A

Iop?Krel?Kw1.3?1?Il.max??247.44=10.05A

Ki?Kre40?0.8 26

2)保护动作时间整定

根据设计任务书要求,本所保护动作时间t?1.5s 3)灵敏度效验:

Sp?Id(22)minI/o.p1?1.6>1.5 满足要求。 8.2.3.电流速断保护 1)电流整定:

取可靠系数Krel?1.3,接线系数Kw?1,电流互感器变比Ki?200/5?40,电压互感器变比Kt?35/10.5?3.33

Iqb?Krel?Kw1.3Ki?Kt?Ik.max??140?3.33?5.15=50.26A

2)灵敏度效验:

K1m?Id(22)min/Iqb1?116/50.26?2.3>2 满足要求。 27

9接地及防雷设计

9.1防雷设计

9.1.1.防雷措施的选择

由于供电部门到工厂之间的35kV架空线路的距离比较短(5kM),因此没有必要安装避雷线,只需要在高压侧进行对雷入侵波的防护,就可以满足防雷的要求。

本降压变电所35kV配电装置为户外布置,为避免直接雷击,考虑装设独立避雷针,独立避雷针应距变压器金属外壳接地点地中距离达到大于15M。独立避雷针的接地电阻不大于10欧姆。 9.1.2.避雷器的选择

1)为了保护35kV进线设备和变压器,在35kV线路进线和母线PT处各安装一套避雷器。

2)为了保护10kVPT,在10kV I、II段母线PT处各安装一套避雷器。 3)避雷器的安装点与35kV进线设备和变压器的之间的距离不大于15m。 4)35kV所选择的避雷器为Y10W1-51/125型氧化锌无间隙避雷器,10kV所选择的避雷器为HY5WZ-17/45型氧化锌无间隙避雷器其技术数据如下: 额定电压 35kV 10 9.2接地设计

根据设计任务书的条件,工厂区域地点的土壤为砂质粘土、可耕地,所以:电阻率ρ=100Ω/m,可选用直径为50mm、长2.5m的钢管作为人工接地体。

由于在厂区的地下水位为3-5m,为了得到良好的接地效果,接地体的顶面埋设深度为0.8m,采用环行敷设方式(η=0.65),用长L=2.5m,直径d=50mm的钢管作为

28

灭弧电压 51kV 17 冲击放电电压幅值 125kV 45 50kV雷电冲击电流下的残压 不大于50kV 不大于17kV 人工接地体。

单根接地体电阻为RE(1)?(?/2?L)ln(4L/d)

?(100/(2?3.14?2.5)) 1n(4?2.5/0.05) ?33.7?

35kV系统为中性点非直接接地系统,允许接地电阻RE?0.5?,则垂直接地体根数为:

n≥0.9RE(1)/?RE?0.9?33.7/(0.65?0.5)?93.3根,取n?96根。

根据以上分析和计算,接地网的垂直接地体采用96根φ50mm,长2.5m的镀锌钢管,整个接地网采用网格状布局,网格间的间距为5×5m,钢管之间采用40mm×40mm×4mm的镀锌扁钢构成水平均压带,防止跨步电压,同时在人行通道出入口铺设沥青地面。变电所内接地线及引至公共接地网的接地干线均采用25mm×25mm×4mm的镀锌扁钢。接地网示意图见附图。

29

致谢

本论文是在 老师的悉心指导下完成的。 老师严谨的治学风范、渊博的学识、敏锐的洞察力、只争朝夕的工作热情、开拓的创新精神给了我极大的启迪。在整个课题的研究和论文的结稿过程中, 老师倾注了大量的时间和心血。值此论文付梓之际,谨向我的导师致以最深的谢意!感谢一直以来他给予我学习和生活上无微不至的关怀和帮助!

老师在毕业设计的过程给予了许多具体的帮助,就课题的基础理论和研究方法等方面给予全面的指导,为本课题解决疑难问题提供了积极的建议,从而为论文的完成奠定了基础。本论文的研究工作是在 老师悉心指导和启发鼓励下顺利完成的,当完成了这篇论文的初稿后,老师还在百忙之中挤出时间,仔细地阅读了论文初稿,提出了许多珍贵的修改意见。在学习和研究工作期间,我的导师严谨的治学态度、忘我的工作精神和朴实谦和的作风时刻感染着我,成为我学习的典范,使我受益匪浅、终生难忘。在此特向 老师表示深深的谢意和崇高的敬意。另外,学院对本课题的研究工作和生活也给予了极大的支持和关心,在此一并感谢。

同时,在毕业设计期间,作为小组的一员,我深深的体会到团队的合作精神,我衷心的感谢其他组员对我的帮助和鼓励,在此表示诚挚的谢意。在课题的研究过程中还得到了其他同学的帮助和支持。如果没有诸位老师、同学和朋友的帮助,设计的工作是难以顺利完成的,在此再一次表示衷心的感谢。

最后,要深深感谢我的父母,在我生命的每个重要时刻,他们一直默默给予我无微不至的关怀,他们的爱是我前进的力量。在整个求学期间,我的父母一直不遗余力地帮助我,我前进的每一步都饱蘸他们期待和鼓励的关切之情。正是他们的关怀和支持才使我使我能够走进知识的殿堂,在此,谨以此文献给他们,希望能给他们带来一丝欣慰。

在论文即将付印之时,对老师、朋友、同学们及家人给予我真诚的帮助再次表示万分的感谢!

30

参考文献目录

1.《工厂供电设计指导》第2版 刘介才 机械工业出版社 2.《工厂配电设计指导》 高来先 广东省电力工业学校 3.《电力系统分析》 何仰赞 温增银 华中科技大学出版社4.《发电厂电气部分》 姚春球 中国电力出版社 5.《电力系统继电保护原理》第三版 贺家李 宋从矩 中国电力出版社 6.《发电厂电气部分课程设计参考资料》 黄纯华 中国电力出版社 7.《电力工程电气设计手册 电气一次部分》 水利部西北院 中国电力出版社 8.《电力工程电气设计手册 电气二次部分》 水利部西北院 中国电力出版社

31

附录1:设备汇总一览表

序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 设备名称 主变压器 所用变压器 35kV架空线 10kV架空线 10kV母线 35kV断路器 10kV断路器 35kV隔离开关 35kV电流互感器 10kV电流互感器 35kV电压互感器 10kV电压互感器 35kV避雷器 10kV避雷器 10kV高压开关柜 设备型号 SFZ7-10000-35±3×2.5%/10.5 YN,d11 阻抗电压7.5% SC9-30/10 10±5%/0.4kV Y,y11 阻抗电压4% LGJ-150/20 LGJ-120 80×8单条矩形铝导体 SW2-35 600A 6.6kA 17kA ZN18-10 630A 25kA 63kA GW4-35II(D)W 630A 20kA 50kA LB-35 0.2S/0.5/3*10P 200/5 LZZJB6-10 0.5/10P/10P 600/5 JDJJ2-35 34.5/3:0.1/3:0.1/3:0.1 kV JDZJ1-10 10/3:0.1/3:0.1/3:0.1 kV Y10W1-51/125 HY5WZ-17/45 KYN28A-12 数量 1 1 5kM 5kM 60m 1 10 2 3 3 3 6 6 6 18 2 10kV电容器组(成 TBB-10-2500/300M-3AK 套装置)

32

附录2:所区平面布置图

33

本文来源:https://www.bwwdw.com/article/u5ng.html

Top