第九讲 百分数应用题
更新时间:2024-05-30 04:11:01 阅读量: 综合文库 文档下载
昂立国际教育清华优才数学 不走弯路 快乐进步
百分数问题
百分数:表示一个数是另一个数的百分之几的数,也叫百分率或百分比。百分数通常不写成分数的形式,而采用百分号“%”来表示。 百分数的特点:
①百分数与分数的意义截然不同,所以百分数不能表示具体数量;也不能带单位。 ②百分数通常不写成分数的形式,而采用百分号“%”来表示,分母固定为100,因此百分数不能约分。
百分数应用题典型题目包括商品折扣、利润、利息、税收、浓度等问题。一般百分数问题符合分数应用题的基本特征,也适用分数应用题的解题方法。在解题过程中,我们可以把百分数化简为分数,利用量率对应、转化单位一、倒推法(还原法)、变中求不变、列方程等方法解决问题。 导入:填数
百发百中 百里挑一 十拿九稳 平分秋色 ( ) ( ) ( ) ( ) 基础练习 一、 细心填写: 1、分数、小数、百分数的转换。3÷( )=0.6=??==15=?? ( )% ????402.先找单位“1”,再列出数量关系式。 (1)小明做50道题的正确率是84%,对了多少道?把( )看作单位“1” 列式: ( ) (2)六年级300人,男生有120人,男生占全班人数的百分之几?把( )看作单位“1” 列式:( ) (3)六三班种树成活了190棵,成活率为95%,问一共种树多少棵?把( )看作单位“1” 列式:( )。 百分数应用题符合分数应用题的基本数量关系: 单位1×对应分率=对应量 对应量÷单位1=对应分率 对应量÷对应分率=单位1 1
黄雪梅老师小升初绝密资料
昂立国际教育清华优才数学 不走弯路 快乐进步 3、32人是50人的( )%; 45分占1小时的( )%;( )比45多20%;4甲数是乙数的 ,甲数是乙数的( )%;乙数是甲数的( )%,乙数是它们和的( )% 5六年级有男生250人,女生比男生少50人,男生是女生的( )%,女生是男生的( )%, 4、种子发芽率是求( )是( )的百分之几。 零件合格率是求( )是( )的百分之几。 小麦出粉率是求( )是( )的百分之几。 芝麻出油率是求( )是( )的百分之几。 二、准确计算: 55254-50%= 60%×= 80%-= ÷5%= +30% = 86767125%X-X=28 (1+40%)X=98 1-20%X= 三、解决问题: 1、把8克糖放入92克水中,糖水的浓度是百分之几? 1 1+20%X=1.4 42、某班共50人,体育锻炼达标的有48人。求达标率?未达标的人数占全班的百分之几? 3、学校植树绿化,种了120棵树,成活了102棵。求成活率。 4、某班昨天1人请假、2人生病未上课,到校上课的有57人。求昨天的出席率。 2
黄雪梅老师小升初绝密资料
昂立国际教育清华优才数学 不走弯路 快乐进步 5、有三个人储蓄,甲储蓄的钱比乙储蓄的钱多10%,乙储蓄的钱比丙多20%,甲储蓄的钱比丙多百分之几?
分析:甲储蓄的钱比乙多10%,那么甲的钱就是乙的1+10%=110% 。同理乙的钱就是丙的1+20%=120%,则甲的钱是丙的110%×120%=132%,甲比丙多132%—1=32%。
1+10%=110% 1+20%=120%
110%×120%=132% 132%—1=32%答:
练习:甲数比乙数多25%,乙数比丙数少15%,甲数比丙数多百分之几?
6、某工厂每年的产量都比前一年增长30%。已知2012年比2011年增产351吨。求2010年得产量是多少?
分析:可先求出2011年得产量为351÷30%=1170吨,而2011年比2010年增产30%。所以2010年得产量为1170÷(1+30%)=900吨
351÷30%=1170吨 1170÷(1+30%)=900吨 答: 练习:某工厂每年的产量都比前一年增长20%,已知2000年产量是1200吨。求2002比2001年增产多少吨?
7、一袋面粉,第一次用去总数的25%,第二次用去总数的30%。还剩45千克,这袋面粉原来有多少千克?
8、甲乙丙三人去购物,甲用去乙丙钱的40%,乙用去甲丙钱的75%,丙用了200元,问甲乙各用多少元?
9、六年级有男生200人,占六年级人数的40%,后来又转来了若干名男生,这时男生人数恰好占六年级人数的50%,问:转来多少名男生?
百分数的运用
一、折扣问题:衣服打八折出售,就是按原价的( )%出售,现价比原价降低了( )折。 商品折扣问题是百分数中常见的生活问题之一,所谓的折扣即现价与原价的百分比(现价÷原价×100%),打几折即为原价×百分比得到现价。在折扣问题中,我们通常会遇到两次折扣的问题,即先打几折再打几折,因而必须认识到两次的单位1 不同,第一次打折是在原价为单位1的基础上打折,而第二次打折却是在第一次折后得到的价格为单位1打折。通常我们需要把握正确的单位1,找到分率对应量及对应分率解决问题。
1、一件衣服,原价300元,现价240元,问:现价是原价的百分之几?是打几折?
2、一件衣服,售价300元,问:打九折比打七五折贵多少元?
3
黄雪梅老师小升初绝密资料
昂立国际教育清华优才数学 不走弯路 快乐进步
3、一件衣服,打六折比七五折便宜150元,问:原价是多少?
4、一件衣服,先打九折,再打八折,此时的价格比原价少280元,问:原价是多少?
二、利润问题:是百分数问题中常见的考题类问题,其主要关系为售价(卖价)、成本(进价)、利润及利润率之间的关系。公式如下:
利润=售价-成本价 利润率=利润÷成本价×100% 售价=成本价×(1+利润率) 成本价=售价÷(1+利润率) 亏损=成本—售价,亏损率=(成本-售价)÷成本×100%。
1、服装店今天卖了两件衣服,每件都卖了120元,但是一件亏20%,一件赚20% 。问服装店今天是亏了还是赚了?
分析:两者都是将成本价看做单位1,赚20%的衣服卖价就是成本的120%,亏20%的衣服卖价就是成本的80%,利用量率对应可求出各自的成本价。 解:设第一件衣服成本为X1,第二件衣服成本为X2, X1×(1+20&%)=120 X2×(1-20&%)=120
X1=100 X2=150
赚:120-100=20元 亏:150-120=30元答:今天亏了。
练习:红星服装店在同一时间以每件60元的价格卖出两件服装,其中一件盈利25%,另一件亏损25%.服装店卖这两件衣服总的是盈利、亏损还是不盈不亏?
2、一种电视第一次降价20%,第二次又降价20%,第二次降价后这种电视机得价格比原来降低了几?
分析:第一次降价20%是将原价看做单位1,第二次又降价20%,是将第一次降价后的价格看做单位1,因此将原价看做单位1。
1×(1—20%)×(1—20%)=64% 答: 练习:一台电视机得价格增加20%以后又减少20%以后,现价比原价相比是降低了还是增加了?
3、商店以每双6.5元购进一批凉鞋。售价为7.4元,卖到还剩5双时,扣除成本获利44元,这批凉鞋共有多少双?
分析:根据总利润=总售价-总成本。。 解:设一共购进X双凉鞋。 7.4×(X-5)-6.5×X=44
X=90 答: 练习:商店有一批羊毛衫,以每件104元购进,又以每件130元出售。当卖到只剩70件时,
4
黄雪梅老师小升初绝密资料
昂立国际教育清华优才数学 不走弯路 快乐进步 已获利5200元。问这批羊毛衫有多少件?
4、一件夹克衫先按成本提高50%为标价,再以8折(标价的80%)出售,结果获利280元,问成本价是多少? 分析:标价是成本价为单位“1”即1+50%=150%,售价是标价为单位“1”即150%×80%=120%,则利润=售价-成本
解:设夹克衫的成本为X元。
X×(1+50%)×80%-X=280 X=1400 答:
练习;一个商人,把一件连衣裙标价为680元,经打假人员鉴别,降至100元一件出售,仍可赚25%,如按原价出售,则每件可赚多少元?
三、商品成数问题:
商品成数问题,是生活中较少遇到的问题,其主要特征在于产量其增长率(减少率)不在直接告知百分率而是成数,而成数的实质则为百分率(几成即为百分之几十)。题中经常会涉及到一些难以理解商业术语:同比是指同一个时段相比(例如今年第一季度同比,则是与去年第一季度相比)。
(1)一亩地去年收货小麦200千克,今年增收两成,问:今年收了多少千克?
(2)某超市第二季度的销售额与第一季度相比,多卖300万元,增长了两成,按照这样的增长率,预计第三季度的销售额是多少?
练习:甲商店今年一月份的收入为4000元,与去年同比增长两成,去年与前年同比增长2.5成,问:前年的一月份的收入是多少?
利息税收问题
利息问题:利息问题也是生活中常见的问题,其中:存入银行的叫本金,到期后银行多付的钱叫利息,利息占本金的百分率叫利率,有些问题涉及到特别注意到的是,有些题中涉及到利息税,有些问题中,利率为年利率而时间是以月计算。 利息=本金×利率×时间×[(1—利息税)]
(1)爸爸将10000元存进银行,存期一年,取出后共拿到12000元,问:多得多少钱?多得的钱是存进的钱的百分之几十?
(2)爸爸将10000元存进银行,存期5年,利率为4.55%,问:到期后共得多少钱?
5
黄雪梅老师小升初绝密资料
昂立国际教育清华优才数学 不走弯路 快乐进步
(3)爸爸将10000元存进银行,存期2年,利率为3.75%,利息税为2%,问:到期后共得到多少钱?
练习:小明把过年得到的1500元钱存入银行,年利率为2.25%,存期为36个月,利息税为2%,问:到期共得到多少钱?
五、税收问题:
我国税法规定:个人所得税征税起点为3500元,超过3500元的部分征税为:低于1500元(包括3500元)的部分征税标准为5%,超过3500元但低于4500元(包括4500元)部分征税标准为10%,超过4500元但低于8000元(包括8000元)的部分征税标准为15%,超过8000元的部分征税标准为15%。
小明家月收入为:爸爸10500元,妈妈7800元,姐姐4500元,哥哥8300元,问:小明的家人每个月应纳税多钱?
税收问题是一类较复杂的问题,首先必须找到纳税部分的金额是多少,其次是分段计算, 总金额分段 §<1500 3500≤§<4500 4500≤§<8000 §≥8000 纳税比例 0% 5% 10% 15% 本段金额 0 1000 3500 工资-8000 税款 0 50 350
练习:小明家一月收入为38000元,爸爸占40%,妈妈占25%,姐姐占15%,剩下的是哥哥,按上题的税率,四人应共纳税多少?
家庭作业见(思维训练营51—56页)
6
黄雪梅老师小升初绝密资料
昂立国际教育清华优才数学 不走弯路 快乐进步
7
黄雪梅老师小升初绝密资料
正在阅读:
第九讲 百分数应用题05-30
变更执行主体申请书4篇02-24
送花02-17
第二节_人类对细菌和真菌的利用05-22
市政工程初验、竣工验收流程 - 图文03-08
工件表面强化技术04-28
员工质量知识竞赛试题05-13
人猫鸡米过河问题05-19
用Photoshop与HDR技术合成完美风景照片 - 图文10-07
支局长岗位职责03-22
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 百分数
- 应用题
- 东常文件材料编制管理实施细则(暂定稿) - 图文
- 高三数学专题复习:第二部分第一讲考前优化训练
- 关于基层公安机关警力配置现状分析与改进的调研报告
- 关于高阶对称矩阵特征值的计算 的本科毕业论文
- 模拟法庭民事案卷宗参考 - 图文
- 微机原理及接口第三章作业答案
- 2013年土建造价员考试(造价基础和案例)模拟题解析(含计
- 分析如何提高工业与民用建筑的工程管理
- 32层外墙外保温施工方案09-10-14
- C级洁净厂房清洁、消毒的标准操作规程
- 微博招聘
- 2018部编人教版小学二年级语文下册 课文14 小马过河 公开课
- 13年安全隐患专项排查整治方案
- 建筑光学选择题
- 数据库课程设计(酒店客房管理系统)论文
- 非参数统计(R软件)参考答案
- 建功立业标兵事迹材料
- 突发公共卫生事件应急处理模拟演练方案
- 有关历史和文化古迹保护的调查报告
- C语言课程设计数据的加密与解密杭世龙