2019届北师大版七年级上期中考试数学试题(含答案)

更新时间:2023-03-13 10:04:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2019届 北师大版数学精品资料

期中联考七年级数学试题

班级 姓名 满分:120分 时限:120分钟 成绩 一、选择题(每小题3分,共30分) 1、0.2的相反数是( )

A、

1 53

B、?1 52

C、?5

D、5

2、下列计算正确的是( )

A、2?6

B、?4??16

C、?8?8?0

D、?5?2??3

233、在有理数(?1),?(?),??2 ,(?2)中负数有( )个

32A、4 B、3 C、2 D、1

4、下列说法中正确的是( )

A、没有最小的有理数

B、0既是正数也是负数 D、—1是最大的负有理数

C、整数只包括正整数和负整数

5、2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学计数法表示为( )元 A、4.5?10

10B、4.5?10

8

C、4.5?10

9D、0.45?10

96、下列说法错误的是( )

A、2x2?3xy?1是二次三项式 C、?

B、?x?1不是单项式 D、?2xab的次数是6

2222?xy2的系数是?? 337、A、B都是五次多项式,则A﹣B一定是( )

A、四次多项式 B、五次多项式

C、十次多项式 D、不高于五次多项式

8、若?3xA、0

2my3与2x4yn是同类项,则m?n?( )

B、1

C、?1

D、?2

9、有理数a、b、c的大小关系为:c<b<0<a则下面判断正确的是( )

A、abc<0

B、a—b>0

C、

11< cbD、c?a>0

10、已知a、b为有理数,下列式子:①ab>ab;②

其中一定能够表示a、b异号的有( )个 A、1

B、2

aaa<0;③??;④a3?b3?0 bbbC、3 D、4

二、填空题(每题3分,共30分)

11、如果水位升高3m时,水位变化记作为+3m,那么水位下降5m时,水位变化记作_____m 12、比较大小:?11 ?(填“<”或“>”) 2313、计算:?(?3)3= 14、若a与b互为相反数,c与d互为倒数,则(a?b)3?4(cd)5= 15、按四舍五入法则取近似值:2.096≈ (精确到百分位); -0.03445≈ (精确到0.001);599836≈ (精确到万位)

16、一个单项式加上?y2?x2后等于x2?y2,则这个单项式为 17、长方形的长为acm,宽为bcm,若长增加了2cm后,面积比原来增加了 cm 18、已知a?1=0,b?9,则a?b=

19、若“△”是新规定的某种运算符号,设a△b=3a?2b,则(x?y)?(x?y)运算后的

结果为 20、观察一列数:

22145623,?,,?,,?……根据规律,请你写出第10个数2172637510是 三、解答题

21、计算(每小题5分,共30分) (1)?15?(?8)?(?11)?12

(3)(?2)?4?(?3)?(?4)?(?2) (5)?

222

(2)(?)?(?)?72161231?(?) 142(4)?2?[(?4)?(1?3)?3]

3221112ab?a2?a2?(?ab) 3233(6)4x?[x?(x?3)?3x]

23212222、(7分)先化简,再求值 5(3a2b?ab2?1)?(ab2?3a2b?5),其中a??

11,b? 2323、(6分)一只蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记为“+”,向负半轴运动记为“—”,从开始到结束爬行的各段路程(单位:cm)依次为+7,—5, —10,—8,+9,—6,+12,+4。

(1)若A点在数轴上表示的数为—3,则蜗牛停在数轴上何处,请通过计算加以说明。

(2)若蜗牛的爬行速度为每秒

24、(7分)便民超市原有(5x?10x)桶食用油,上午卖出(7x?5)桶食用油,中午休息时又购进同样的食用油(x2?x)桶,下班清仓时发现该食用油只剩下5桶,请问: (1)便民超市中午过后一共卖出多少桶食用油?(用含x的式子表达)

(2)当x?5时,便民超市中午过后一共卖出多少桶食用油?

25、(10分)已知:b是最小的正整数且a、b满足(c?5)?a?b?0,试回答问题。 (1)请直接写出a、b、c的值。

221cm,请问蜗牛一共爬行了多少秒? 2a=

b= c=

(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:x?1?x?1?2x?5(请写出化简过程)

(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB。请问,BC—AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。

参考答案: 1、选择题

BBCAA DDCBB 2、填空题

A

· B · C · (11)-5 (12)< (13)27 (14)-4 (15)2.10,-0.034,60万 (16)2y2 (17)2b (18)2或-4 (19)x+5y (20)?3、解答题

21、 (1)-30 (2)?10 10111212 (3)48 (4)32 (5)?a?ab (6)x?x?3 263 22、解: 5(3a2b?ab2?1)?(ab2?3a2b?5) 1’ =15ab-5ab-5-ab-3ab+5 2’ =12ab-6ab 3’ =6ab(2a-b) 4’ 当a??2

2

2

2

2

2

111114,b?时,原式=6*(?)**[2*(?)-1]= 7’ 2322333 23、(1)解:(+7)+(-5)+(-10)+(-8)+(+9)+(-6)++12)+(+4)+(-3)=0 2’ 答:蜗牛停在原点处 3’

(2)解:(│+7│+│-5│+│-10│+│-8│+│+9│+│-6│+│+12│+│+4│)÷答:蜗牛爬行122秒 6’

24、(1)解:(5x-10x)-(7x-5)+(x-x)-5 2’

=5x-10x-7x+5+x-x-5 3’ =6x-18x-5

答:中午过后共卖出食用(6x-18x-5)桶。

(2)当x=5时,6x-18x-5=6*5-18*5-5=55 6’

答:当时,中午过后便民超市共卖出55桶食用油。 7’

25、(1)a??1,b?1,c?5 3’ (2)当0≤x≤1时,原式=x+1-(1-x)+2(5-x)=10 5’ 当1<x≤2时,原式=x+1-(x-1)+2(5-x)=12-2x 7’ (3)t秒后A点为(-t-1),B点为(2t+1),C点为(5t+5)。 8’ AB=(2t+1)-(-t-1)=3t+2,BC=(5t+5)-(2t+1)=3t+4 9’ BC—AB=(3t+4)-(3t+2)=2.所以BC-AB的值不随t的变化而变化。 10’

2

2

2

22

2

2

2

1=122,5’

2

本文来源:https://www.bwwdw.com/article/u2fx.html

Top