苏大 基础物理(上)题库 试卷及答案
更新时间:2024-04-25 21:54:01 阅读量: 综合文库 文档下载
- 苏大附属第一医院推荐度:
- 相关推荐
苏州大学 普通物理(一)上 课程试卷(01)卷 共6页
一、填空题:(每空2分,共40分。在每题空白处写出必要的算式)
1、一飞轮以角速度ω0绕轴旋转,飞轮对轴的转动惯量为I;另一个转动惯量为2I的静止飞轮突然被啮合到同一轴上,啮合后整个系统的角速度ω= 。
2、一飞轮以600转/分的转速旋转,转动惯量为2.5kg·m2,现加一恒定的制动力矩使飞轮在1s内停止转动,则该恒定制动力矩的大小M= 。
3、质量为m=0.1kg的质点作半径为r=1m的匀速圆周运动,速率为v=1m/s,当它走过
1圆2??
周时,动量增量?P= ,角动量增量?L= 。
4、一水平管子的横截面积在粗处为S1=50cm2,细处S2=20cm2,管中水的流量Q=3000cm3/s,则粗处水的流速为v1= ,细处水的流速为v2= 。水管中心轴线上1处与2处的压强差P1-P2= 。
5、半径为R的均匀带电球面,带有电量Q,球心处的电场强度E= ,电势U= 。
6、图示电路中,开关S开启时,UAB= ,开关S闭合后AB中的电流I= ,开关S闭合后A点对地电位UAO= 。
6ΩA3ΩOS3ΩB6Ω+36V12
7、电路中各已知量已注明,电路中电流I= ,ab间电压Uab= 。
aε,rRb
8、如图所示,磁场B方向与线圈平面垂直向内,如果通过该线圈
?ε,rB
R的磁通量与时间的关系为:Φ=6t2+7t+1,Φ的单位为10-3Wb,t的单位为秒。当t=2秒时,回路的感应电动势ε= 。
?? 9、空气平板电容器内电场强度为E,此电容放在磁感强度为B的均
++v0+B-+ 01-1
---匀磁场内。如图所示,有一电子以速度v0进入电容器内,v0的方向与平板电容器的极板平行。当磁感强度与电场强度的大小满足 关系时,电子才能保持直线运动。 10、图中各导线中电流均为2安培。磁导率μ0已知为4π×10-7
T·m/A,那么闭合平面曲线l上的磁感应强度的线积分为
l?????B?dl? 。
l11、螺绕环中心线周长l=20cm,总匝数N=200,通有电流I=0.2A,环内充满μr=500的磁介质,环内磁场强度H= ,磁感强度B= ,螺绕环储藏的磁场能量密度w= 。 二、计算题:(每小题10分,共60分)
1、半径为R,质量为M的均匀圆盘能绕其水平轴转动,一细绳绕在圆盘的边缘,绳上挂质量为m的重物,使圆盘得以转动。 (1)求圆盘的角加速度;
(2)当物体从静止出发下降距离h时,物体和圆盘的动能各为多少?
2、某质点作简谐振动,周期为2s,振幅为0.06m,计时开始时(t=0),质点恰好在负向最大位移处,求:
(1)该质点的振动方程;
(2)若此振动以速度v=2m/s沿x轴正方向传播,求波动方程; (3)该波的波长。
3、图示电路,开始时C1和C2均未带电,开关S倒向1对C1充电后,再把开关S拉向2,如果C1=5μF,C2=1μF,求: (1)两电容器的电压为多少?
(2)开关S从1倒向2,电容器储存的电场能损失多少? 4、求均匀带电圆环轴线上离圆心距离a处的电势,设圆环半径为R,带有电量Q。
5、两根长直导线互相平行地放置在真空中,如图所示,导线中通有同向电流I1=I2=10安培,求P点的磁感应强度。已知
PRPahMR1S+100VC12C2PI1?PI2?0.50米,PI1垂直PI2。
I1I26、直径为0.254cm的长直铜导线载有电流10A,铜的电阻率ρ=1.7×10-8Ω·m,求:
01-2
(1)导线表面处的磁场能量密度ωm; (2)导线表面处的电场能量密度ωe。
苏州大学 普通物理(一)上 课程试卷(02)卷 共6页
一、填空题:(每空2分,共40分。在每题空白处写出必要的算式)
1、半径为R的圆盘绕通过其中心且与盘面垂直的水平轴以角速度ω转动,若一质量为m的小碎块从盘的边缘裂开,恰好沿铅直方向上抛,小碎块所能达到的最大高度h= 。 2、一驻波的表达式为y=2Acos(2πx/λ)cos(2πνt),两个相邻波腹之间的距离是 。
3、一水平水管的横截面积在粗处为A1=40cm2,细处为A2=10cm2。管中水的流量为Q=3000cm3/s,则粗处水的流速为v1= ,细处水的流速为v2= 。水管中心轴线上1处与2处的压强差P1-P2= 。
4、两劲度系数均为k的弹簧串联起来后,下挂一质量为m的重物,系统简谐振动周期为 ;若并联后再下挂重物m,其简谐振动周期为 。 5、固定于y轴上两点y=a和y=-a的两个正点电荷,电量均为q,现将另一个正点电荷q0放在坐标原点,则q0的电势能W= 。如果点电荷q0的质量为m,当把q0点电荷从坐标原点沿x轴方向稍许移动一下,在无穷远处,q0点电荷的速度v= 。
qR2R1126、点电荷q位于原不带电的导体球壳的中心,球壳内外半径分别为R1和R2,球壳内表面感应电荷= ,球壳外表面感应电荷= ,球壳电势U= 。 7、极板面积为S,极板间距为d的空气平板电容器带有电量Q,现平行插入厚度
+Qd的金属板,则金属板内电场Eˊ2-Q= ,插入金属板后电容器储能W= 。 8、导线ABCD如图所示,载有电流I,其中BC段为半径为R的半圆,O为其圆心,AB、CD沿直径方向,载流导线在O点的磁感应强度为 ,其方向为 。
9、将磁铁插入一半径为r的绝缘环,使环中的磁通量的变化为
ABOCDd?,此时环中的感生电动dt 01-3
势?i= ,感生电流i= 。
10、一半径为R=0.1米的半圆形闭合线圈载有电流10安培,放在均匀外磁场中,磁场方向与线圈平面平行,B=0.5特斯拉,线圈所受磁力距M= ,半圆形通电导线所受磁场力的大小为 。 二、计算题:(每小题10分,共60分)
1、一轻绳绕于半径r=0.2m的飞轮边缘,现以恒力F=98N拉绳的一端,使飞轮由静止开始转动,已知飞轮的转动惯量I=0.5Kg?m2,飞轮与轴承之间的摩擦不计。求:
(1)飞轮的角加速度;
(2)绳子下拉5m时,飞轮的角速度和飞轮获得的动能?
F=98NrBI
2、一个水平面上的弹簧振子(劲度系数为k,重物质量为M),当它作振幅为A的无阻尼自由振动时,有一块质量为m的粘土,从高度为h处自由下落,在M通过平衡位
OxC1C1hM置时,粘土正好落在物体M上,求系统振动周期和振幅。 3、图示电路中,每个电容C1=3μF,C2=2μF,ab两点电压U=900V。求:
(1)电容器组合的等效电容; (2)c、d间的电势差Ucd。
bC1UC2C1aecC2C1f4ΩC1dC1
4、图示网络中各已知量已标出。求 (1)通过两个电池中的电流各为多少; (2)连线ab中的电流。
5Ω7Ω6Va3V3.5Ω2.5Ωb
5、如图所示长直导线旁有一矩形线圈且CD与长直导线平行,导线中通有电流I1=20安培,线圈中通有电流I2=10安培。已知a=1.0厘米,b=9.0厘米,l=20厘米。求线圈每边所受的力。
DI1aCbI2ElF 01-4
6、半径R=10cm,截面积S=5cm2的螺绕环均匀地绕有N1=1000匝线圈。另有N2=500匝线圈均匀地绕在第一组线圈的外面,求互感系数。
苏州大学 普通物理(一)上 课程试卷(03)卷 共6页
一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、质量为m,半径为R的细圆环,悬挂于图示的支点P成为一复摆,圆环对
CP质心C的转动惯量IC= ,对支点P的转动惯量IP= ,圆环作简谐振动的周期T= 。
2、波动方程y=0.05cos(10πt-4πx),式中单位采用国际单位制,则波速
v= ,波入λ= ,频率ν= ,波的传播方向为 。
6Ω+36V3、图示电路中,开关S开启时,UAB= ,开关S闭合后,AB中的电流I= ,开关S闭合后A点对地电势UAO= 。
3ΩSB6ΩOA3Ω
4、半径为R0,带电q 的金属球,位于原不带电的金属球壳(内、外半径分别为R1和R2)的中心,球壳内表面感应电荷= ,球壳电势U= , 5、电流密度j的单位 ,电导率σ的单位 。 6、如图所示电子在a点具有速率为v0=107m/s,为了使电子能沿半圆周运动到达b点,必须加一匀强磁场,其大小为 ,其方向为 ;电子自a点运动到b点所需时间为 ,在此过程中磁场对电子所作的功为 。 (已知电子质量为9.11×10-31千克;电子电量为1.6×10-19库仑)。
qR0R2R1v0a10cmb7、在磁感应强度为B的匀强磁场中,平面线圈L1面积为A1通有电流I1,此线圈所受的最大力矩为 ,若另一平面线圈L2也置于该磁场中,电流为I2=
1I1,面积2S2=
1S1,则它们所受的最大磁力矩之比为M1/M2= 。 2二、计算题:(每小题10分,共60分)
01-5
2、一平面简谐波的波动方程为y=0.25cos(125t-0.37x)(SI),其圆频率 ω= ,波速V= ,波长λ= 。
3、一飞轮以角速度ω0绕轴旋转,飞轮对轴的转动惯量为I,另一个转动惯量为5I的静止飞轮突然被啮合到同一个轴上,啮合后整个系统的角速度ω= 。 4、图示水平管子,粗的一段截面积S1=1m2,水的
S1流速为V1=5m/s,细的一段截面积S2=0.5m,压强 P2=2×105Pa,则粗段中水的压强P1= 。
5、电偶极矩p的单位为 。闭合球面中心放置一电偶极矩为p的电偶极子则通过闭合球面的电场E的通量φ= 。
6、点电荷q位于导体球壳(内外半径分别为R1和R2)的中心,导体球壳内表面电势U1= 。球壳外表面U2= ,球壳外离开球心距离r处的电势U= 。
p2
S2q
R2R17、固定于y轴上两点y=a和y=-a的两个正点电荷,电量均为q,现将另一个负点电荷-q0(质量m)放在x轴上相当远处,当把-q0向坐标原点稍微移动一下,当-q0经过坐标原点时速度V= ,-q0在坐标原点的电势能W= 。 8、如图所示带负电的粒子束垂直地射入两磁铁之间
NSv的水平磁场,则:粒子将向 运动。
9、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介质。介质中离中心轴距离为r的某点外的磁场强度的大小H= ,磁感应强度的大小B= 。
10、试求图中所示闭合回路L的∮LB·dl= 。
I1I2LI5I6I3I4
11、单匝平面闭合线圈载有电流I面积为S,它放在磁感应强度为B的均匀磁场中,所受力矩为 。
01-11
12、真空中一根无限长直导线中有电流强度为I的电流,则距导线垂直距离为a的某点的磁能密度wm= 。
二、计算题:(每小题10分,共60分)
1、如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子质量可以忽
MR略,它与定滑轮之间无滑动,假定一滑轮质量为M,半径为R,滑轮轴光滑,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
2、质量m为5.6g的子弹A,以V0=501m/s的速率水平地射入一静止在水平面上的质量M为2Kg的木块B内,A射入B后,B向前移动了50cm后而停止, 求:(1)B与水平面间的摩擦系数; (2)木块对子弹所作的功W1; (3)子弹对木块所作的功W2。
3、金属平板面积S,间距d的空气电容器带有电量±Q,现插入面积介电常数为εr)。
求:(1)空气内的电场强度; (2)介质板内的电场强度; (3)两极板的电势差。
4、图示电路中各已知量已标明,求每个电阻中流过的电流。
24V2Ω16Ω18Ω30VmS的电介质板(相对2+Qεr-Q
5、半径为R的圆环,均匀带电,单位长度所带电量为λ,以每秒n转绕通过环心并与环面垂直的转轴作匀角速度转动。
求:(1)环心P点的磁感应强度;(2)轴线上任一点Q的磁感应强度。
PRQxIda 01-12 l6、长直导线通有交变电流I=5sin100πt安培,在与其距离d=5.0厘米处有一矩形线圈。如图所示,矩形线圈与导线共面,线圈的长边与导线平行。线圈共有1000匝,长l=4.0厘米宽a=2.0厘米,求矩形线圈中的感生电动势的大小。
苏州大学 普通物理(一)上 课程试卷(07)卷 共6页
一、填空题:(每空2分,共40分。在每题空白处写出必要的算式)
1、一长为2L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴转动,开始时杆与水平成60°角静止,释放后此刚体系统绕O轴转动,系统的转动惯量I= 。当杆转到水平位置时,刚体受到的合外力矩M= ;角加速度β= 。
2、一飞轮以角速度ω0绕轴旋转,飞轮对轴的转动惯量为I,另一个转动惯量为3I的静止飞轮突然被啮合到同一个轴上,啮合后整个系统的角速度ω= 。
3、一质点从t=0时刻由静止开始作圆周运动,切向加速度的大小为at,是常数。在t时刻,质点的速率为 ;假如在t时间内质点走过1/5圆周,则运动轨迹的半径为 ,质点在t时刻的法向加速度的大小为 。
4、固定与y轴上两点y=a和y=-a的两个正点电荷,电量均为q,现将另一个质量为m的正点电荷q0放在坐标原点,则q0的电势能W= ,当把q0点电荷从坐标原点沿x轴方向稍许移动一下,在无穷远处,q0点电荷的速度可以达到v= 。
5、半径为R的均匀带电球面,带电量Q,球面内任一点电场E= ,电势U= 。
6、电偶极子的电偶极矩P的单位为 。如图,离开电偶极子距离r处的电势U= ;如有一包围电偶极子的闭合曲面,则该闭合曲面的电场的通量φ= 。
7、如图所示,在平面内将直导线弯成半径为R的半圆与两射线,两射线的延长线均通过圆心O,如果导线中
OprB
01-13
I通有电流I,那末O点的磁感应强度的大小为 。
8、半径为R的半圆形闭合线圈,载有电流I,放在图示的均匀磁场B中,则直线部分受的磁场力F= ,线圈受磁场合力F合= 。
9、螺绕环中心线周长l=10cm,总匝数N=200,通有电流I=0.01A,环内磁场强度H= ,磁感强度B= 。 二、计算题:(每小题10分,共60分)
1、 一轻弹簧在60N的拉力下伸长30cm,现把质量为4kg的物体悬挂在该弹簧的下端使之静止,再把物体向下拉10cm,然后由静止释放并开始计时。求:
(1)物体的振动方程;(2)物体在平衡位置上方5cm时弹簧时对物体的拉力;(3)物体从第一次越过平衡位置时刻起到它运动到上方5cm处所需要的最短时间。
2、一物体与斜面间的磨擦系数μ=0.20,斜面固定,倾角α=45°,现给予物体以初速度v0=10m/s,使它沿斜面向上滑,如图所示。求: (1)物体能够上升的最大高度h;
(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v。 3、金属平板面积S,间距d的空气电容器,现插入面积为
v0αhS的电介质板,相对介电常数为εr。求: 2(1)求插入介质板后电容C;
(2)两极板间加上电压U,求介质板内以及空气中的电场强度。
4、图示电路中各已知量已标明,求: (1)a、c两点的电势差; (2)a、b两点的电势差。
5、长导线POQ中电流为20安培方向如图示,α=120°。A点在PO延长线上,AO?a?2.0厘米,求A点的磁
QεrU12V2Ω2Ωab10V4Ω8V2Ωc3ΩPIAaαoI 01-14
感应强度和方向。
6、有一根长直的载流导线直圆管,内半径为a,外半径为b,电流强度为I,电流沿轴线方向流动,并且均匀分布在管的圆环形横截面上。空间P点到轴线的距离为x。计算: (1)xb等处P点的磁感应强度的大小。
苏州大学 普通物理(一)上 课程试卷(08)卷 共6页
一、填空题:(每空2分,共40分。在每题空白处写出必要的算式)
1、一长为l的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴转动。开始时杆与水平成60°角静止,释放后,此刚体系统绕O轴转动。系统的转动惯量I= 。当杆转到水平位置时,刚体受到的合外力矩M= ;角加速度β= 。
2mo60°m2、质量为m,长为1米的细棒,悬挂于离端点1/4米处的支点P,成为复摆,细棒对支点的转动惯量IP= ,细棒作简谐振动的周期T= ,相应于单摆的等值摆长是 。
3、图示水平管子,粗的一段截面积S1=0.1m2,水的流速v1=5m/s,细的一段截面积S2=0.05m,压强P2=2×10Pa,则粗段中水的压强P1= 。
4、半径为R的均匀带细圆环,带有电量Q,圆环中心的电势U= ,圆环中心的电场强度E= 。
5、电偶极矩P的单位为 ,如图离开电偶极子距离r处的电势U= 。
6、点电荷q位于带有电量Q的金属球壳的中心,球壳的内外半径分别为R1和R2,球壳内(R1 7、螺线环横截面是半径为a的圆,中心线的平均半径为R且R>>a,其上均匀密绕两组线圈,匝数分别为N1和N2,这两个线圈的自感分别为L1= ,L2= ,两线圈的互感M= 。 8、一根长度为L的铜棒,在均匀磁场B中以匀角速度ω旋转着,B的方向垂直铜棒转动的平面,如图。设t=0时,铜棒与Ob成θ角,则在任一时刻t这根铜 O2 5 S1S2pr??LbωBθ 01-15 棒两端之间的感应电势是: ,且 点电势比 点高。 二、计算题:(每小题10分,共60分) 1、飞轮的质量为60kg,直径为0.50m,转速为1000转/分,现要求 在5秒内使其制动,求制动力F。假定闸瓦与飞轮之间的磨擦系数μ=0.40,飞轮的质量全部分布在圆周上。尺寸如图所示。 2、一物体作简谐振动,其速度最大值vm=3×10-2m/s,其振幅A=2×10-2m,若t=0时,物体位于平衡位置且向x轴的负方向运动,求: (1)振动周期T;(2)加速度的最大值am;(3)振动方程。 3、对于图示的电路,其中C1=10μF,C2=5μF,C3=4μF,电压U=100V,求: (1)各电容器两极板间电压; (2)各电容器带电量;(3)电容器组总的带电量;(4)电容器组合的等效电容。 O0.5m0.75mF闸瓦dOωC1UC3C24、平行板电容器,极板间充以电介质,设其相对介电常数为εr,电导率为σ,当电容器带有电量Q时,证明电介质中的“漏泄”电流为i?5 ?Q。 ?r?0B5 、一束单价铜离子以1.0×10米/秒的速率进入质谱仪的均匀磁场,转过180°后各离子打在照相底片上,如磁感应强度为0.5特斯拉。计算质量为63u和65u的二同位素分开的距离(已知1u=1.66×10千克) -27 6、两根长直导线沿半径方向引到铁环上A、B两点,如图所示,并且与很远的电源相连。求环中心的磁感强度。 I1l1OABI2l2-+ 苏州大学 普通物理(一)上 课程试卷(09)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、一弹簧两端分别固定质量为m的物体A和B,然后用细绳把它们悬挂起来,如图所示。弹簧的质量忽略不计。当把细绳烧断的时刻,A物的加速度等于 ,B物体的加速度等于 。 2、作简谐运动的质点,在t=0时刻位移x= -0.05m,速度v0=0,振动频率 AB 01-16 ?=0.25赫兹,则该振动的振幅A= ,初相位?= 弧度;用余弦函 数表示的振动方程为 。 3、均匀地将水注入一容器中,注入的流量为Q=150cm3/s,容器底有面积为S=0.5cm2的小孔,使水不断流出,稳定状态下,容器中水的深度h= 。 4、质量为m的质点以速度v沿一直线运动,则它对直线上任一点的角动量为 。 5、点电荷q位于原不带电的导体球壳的中心,球壳的内、外半径分别为R1和R2,球壳内表面感应电荷= ,球壳外表面的感应电荷= ,球壳的电势= 。 6、半径为R的均匀带电圆环,带电量为Q。圆环中心的电场E= ,该点的电势U= 。 7、电路中已知量已标明, ABAB?ε,rRε,rR(a)图中UAB= , (b)图中UAB= 。 ε,r(a)Rε,rR(b)?8、面积为S的平面线圈置于磁感应强度为B的均匀磁场中,若线圈以匀角速度ω绕位于线 ??圈平面内且垂直于B方向的固定轴旋转,在时刻t=0时B与线圈平面垂直。则在任意时刻t 时通过线圈的磁通量为 ,线圈中的感应电动势为 。 9、扇形闭合回路ABCD载有电流I,AD、BC沿半径方向,AB及CD弧的半径分别为R和r,圆心为O,θ=90°,那么O点的磁感应强度大小为 ,方向指向 。 10、在图示虚线圆内有均匀磁场B,它正以 ADθOCIB?dB?0.1T/s在减小,dt设某时刻B=0.5T,则在半径r=10cm的导体圆环上任一点的涡旋电 aOrBb?场E的大小为 。若导体圆环电阻为2Ω,则环内电流 I= 。 二、计算题:(每小题10分,共60分) 1 、一轻绳跨过两个质量均为m,半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的重物,如图所示。绳与滑轮间无 m,rmm,r2m 01-17 相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为 12mr,将由两个定滑轮以及质量为m2和2m的重物组成的系统从静止释放,求两滑轮之间绳内的张力。 2、A、B为两平面简谐波的波源,振动表达式分别为 APx1?0.2?10?2cos2?t,x2?0.2?10?2cos(2?t?) 2它们传到P处时相遇,产生叠加。已知波速 ?Bv?0.2m/s,PA?0.4m,PB?0.5m,求: (1)波传到P处的相位差; (2)P处合振动的振幅? 3、对于图示的电路,其中C1=10μF,C2=5μF,C3=4μF,电压U=100V,求: (1)电容器组合的等效电容; (2)各电容器两极板间电压; (3)电容器组储能。 4、有两个同心的导体球面,半径分别为ra和rb,共间充以电阻率为ρ的导电材料。试证:两球面间的电阻为R?UC3C1C2?11(?)。 4?rarb5、把一个2.0Kev的正电子射入磁感应强度为B的0.10特斯拉的均匀磁场内,其速度方向 ??与B成89°角,路径是一个螺旋线,其轴为B的方向。试求此螺旋线的周期T和半径r。 6、一个塑料圆盘半径为R,带电量q均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为ω,试证明: (1)圆盘中心处的磁感应强度B?ωOR?0?q; 2?R(2)圆盘的磁偶极矩为Pm?1q?R2。 4苏州大学 普通物理(一)上 课程试卷(10)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、半径为r=1.5m的飞轮,初始角速度ω0=10rad/s,角加速度β=-5rad/s,则在t= 时角位移为零,而此时边缘上点的线速度v= . 01-18 2、两个质量相同半径相同的静止飞轮,甲轮密度均匀,乙轮密度与对轮中心的距离成正比,经外力矩做相同的功后,两者的角速度ω满足ω甲 ω乙(填<、=或>)。 3、波动方程y=0.05cos(10πt+4πx),式中单位为米、秒,则其波速v= ,波长λ= ,波的传播方向为 。 P4、质量为m,半径为R的均匀圆盘,转轴P在边缘成为一复摆,若测得圆盘作简谐振动的周期为T,则该地的重力加速度g= 。 5、极板面积为S,极板间距为d的空气平板电容器带有电量Q,平行插入厚度为 +Qd/2-QCd的金属板,金属板内电场E= ,极板2间的电势差ΔU= 。 6、电路中各已知量已注明,(电池的ε,r均相同,电阻均是R) 电路中电流I= , AC间电压UAC= , AB间电压UAB= 。 7、电流密度j的单位是 ,电导率σ的单位是 。 RRAε,rCε,rRε,rε,rRB?8、圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上,当铜盘通过盘 中心垂直于盘面的轴沿图示方向转动时,铜盘上有 产生,铜盘中心处O点与铜盘边缘处比较, 电势更高。 9、 9 、图中线框内的磁通量按ΦB=6t2+7t+1的规律变化,其中t以秒计,ΦB的单位为毫韦伯,当t=2秒时回路中感生电动势的大小ε= ,电流的方向为 。 10、一长直螺线管长为l,半径为R,总匝数为N,其自感系数 RBOL= ,如果螺线管通有电流i,那末螺线管内磁场能量Wm= 。 二、计算题:(每小题10分,共60分) 1、一质量为m的物体悬挂于一条轻绳的一端,绳另一端绕在一 y(cm)r 01-19 12345-Amt(s)轮轴的轴上,轴水平且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上。当物体从静止释放后,在时间t内下降了一段距离s,试求整个轮轴的转动惯量(用m,r,t和s表示) 2、一平面简谐波沿OX轴负方向传播,波长为λ,位于x轴上正向d处。质点P的振动规律如图所示。求: (1)P处质点的振动方程; (2)若d= 1λ,求坐标原点O处质点的振动方程; 2(3)求此波的波动方程。 3、图示电路,开始时C1和C2均未带电,开关S倒向1对C1充电后,再把开关S拉向2。如果C1=5μF,C2=1μF,求: (1)两电容器各带电多少? (2)第一个电容器损失的能量为多少? 4、求均匀带电圆环轴线上离圆心距离a处的电场强度,设圆环半径为R,带有电量Q。 5、半圆形闭合线圈半径R=0.1米,通有电流I=10安培,放在均匀磁场中,磁场方向与线圈平行,如图所示。B=0.5特斯拉。求: (1)线圈受力矩的大小和方向; (2)求它的直线部份和弯曲部份受的磁场力。 6、在空间相隔20厘米的两根无限长直导线相互垂直放置,分别载有I1=2.0安培和I2=3.0安培的电流,如图所示。在两导线的垂线上离载有2.0安培电流导线距离为8.0厘米的P点处磁感应强度的大小和方向如何。 苏州大学 普通物理(一)上 课程试卷(11)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、质量为1kg的物体A和质量为2 kg的物体B一起向内挤压使弹簧压缩,弹簧两端与A、B不固定,把挤压后的系统放在一无摩擦的水平桌面上,静止释放。弹簧伸张后不再与A、B接触而降落在桌面上,物体B获得速率0.5m/s,那么物体A获得的速率为 ,压缩弹簧中储存的势能有 。 2、一轻绳绕于半径r=0.2m的飞轮边缘,现以恒力F=98N拉绳的一端,使飞轮由静止开始 8cmP20cmI2I1RPa1S+100VC12C2IRIB 01-20 转动。已知飞轮的转动惯量I=0.5kg?m2,飞轮与轴承间的摩擦不计,绳子拉下5m时,飞轮获得的动能Ek= ,角速度ω= 。 3、均匀地将水注入一容器中,注入的流量为Q=100cm3/s,容积底有面积S=0.5cm2的小孔,使水不断流出,达到稳定状态时,容器中水的深度h= 。(g取10m/s2) 4、已知波源在原点的平面简谐波的方程为y=Acos(Bt-Cx)式中A,B,C为正值恒量,则波的频率?= ,波长λ= 。 5、两根无限长均匀带电直线相互平行,相距a,电荷线密度分别为+λ和-λ,则每根带电直线单位长度受到的吸引力为 。 6、一平行板电容器,极板面积为S,两极板相距d。对该电容器充电,使两极板分别带有±Q的电量,则该电容器储存的电能为W= 。 7、静止电子经100V电压加速所能达到的速度为 。(电子质量 me?9.1?10?31kg,电子电量e?1.6?10?19C)。 8、一半径为R的均匀带电细圆环,带有电量q,则圆环中心的电场强度为 ;电势为 。(设无穷远处电势为零) 9、如图,两个电容器C1和C2串联后加上电压U,则电容器极板带电量的大小q= ;电容器C1两端的电压U1= 。 UC1C2 ?10、图示载流导线在O点的磁感应强度B的大小为 ,方向是 。 ?R2R1O 11、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示。当把线圈的角速度ω增大到原来的两倍时,线圈中感应电流的幅值增加到原来的 倍。(导线的电阻不能忽略) 12、在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所 o'Bo ??在平面的法线方向单位矢量n与B的夹角为α,如图所示,则通过半球 面S的磁通量为 。 01-21 αnsB 13、在均匀磁场B中,刚性平面载流线圈所受合力为 。若此线圈的磁矩为m,则它 ???受的力矩M= 。 二、计算题:(每小题10分,共60分) 1、一飞轮的角速度在5秒内由90rad·s-1均匀地减到80rad·s-1,求: (1)角加速度;(2)在此5s内的角位移;(3)再经几秒,轮将停止转动。 2、一块长为L=0.60m,质量为M=1kg的均匀薄木板,可绕水平轴OO′无摩擦地自由转动,木板对转轴的I= 1?3ML2。当木板静止在平衡位置时,有一质量为m=10?10kg的子弹垂直3击中木板A点,A离转轴OO′的距离l=0.36m,子弹击中木板前的速度为500m·s-1,穿出木板后的速度为200m·s-1,求: (1)子弹受的冲量。 (2)木板获得的角速度。 oo'LA 3、一均匀带电直线,长为L,电荷线密度为λ,求带电直线延长线上P点的电势。P点离带电直线一端的距离为d。(设无穷远处电势为零) 4、如图所示,?1?40V,?2?5V,?3?25V,R1?5?,R2?R3?10?, 求:(1)流过每个电阻中电流的大小和方向。 (2)电位差Uab。 ε1LdP aR2ε3 R1bε2R3 5、一根长直导线上载有电流200A,电流方向沿x轴正方向,把这根导线放在B0=10-3T的均匀外磁场中,方向沿y轴正方向。试确定磁感应强度为零的各点的位置。 6、一长直同轴电缆中部为实心导线,其半径为R1,磁导率近似认为是μ0,外面导体薄圆筒的半径为R2。 01-22 (1) 计算r≤R1处磁感强度。 (2) 试用能量方法计算其单位长度的自感系数。 苏州大学 普通物理(一)上 课程试卷(12)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、速率为v0的子弹打穿木板后,速率恰好变为零,设木板对子弹的阻力恒定不变,那么当子弹射入木板的深度等于木板厚度一半时,子弹的速率为 。 2、一质量为m的质点原来向北运动,速率为v,它突然受到外力打击,变为向西运动,速率仍为v,则外力的冲量大小为 。 3、一均匀细木棒,长为l,质量为M,静止在光滑的水平桌面上,棒能绕通过中点的垂直轴转动,今有一质量为m的子弹,以速度v射入木棒的一端(陷于木棒中)其方向垂直于木棒与转轴,射击后木棒的角速度ω= 。 4、一质点沿x轴作简谐振动,周期为π秒,当t=0时质点在平衡位置且向x轴正方向运动,如果用余弦函数表示该质点的振动方程,那么初相位Ф= ,质点从t=0所处的位置第一次到达x=A/2所用的时间Δt= 。 5、P,Q为两个以同相位、同频率、同振幅的相干波源,它们在同一介质中,设振幅为A,波长为λ,P与Q之间相距 3?,R为PQ连线上,PQ外侧的任意一点,那么P,Q发出的2波在R点的相位差Δф= ,R点的合振动的振幅为 。 6、两个都带正电荷的小球,总电量为6?10?10C,当它们相距1m时,相互间的斥力为 7.2?10?10N,则每个小球所带电量分别为 和 。 7、在半径为R的半球面的球心处,有一电量为q的点电荷,则通过该半球面的电通量为 ?E? 。 8、BCD是以O为圆心,R为半径的半圆弧,A点有一电量为+q的点电荷,O点有一电量为-q的点电荷,AB?R。现将一单位正电荷从B点沿半圆弧轨道BCD移到D,则电场力所作的功为W= 。 +qABεC-qOR1RD 9、图示电路中的电流I= ,电阻R1上的电压U1= 。 R2 10、一边长为l的正方形线框,使其均匀带电,电荷线密度为λ,则与正方形中心处的电场强度的大小E= 。 11、如图所示,用均匀细金属丝构成一半径为R的圆环C, 01-23 CO2BAI1 电流I由导线索流入圆环A点,而后由圆环B点流出,进入导线2。设导线1和导线2与圆环共面,则环心O处的磁感强度大小为 ,方向为 。 12、两个线圈P和Q并联地接到一电动势恒定的电源上。线圈P的自感和电阻分别是线圈Q的2倍。当达到稳定状态后,线圈P的磁场能量与Q的磁场能量的比值是 。 ??13、在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示,B的大小 以速率 dB变化。有一长度为l0的金属棒先后放在磁场的两个不同位置1dtacbd (ab)和2(cd),则金属棒在这两个位置时,棒内的感应电动势的大小关系为?1 ?2。(填>,=,<) 14、一个单位长度上绕有n匝线圈的长直螺线管,每匝线圈中通有强度为I的电流,管内充满相对磁导率为?r的磁介质,则管内中部附近的磁感强度B= ,磁场强度H= 。 二、计算题:(每小题10分,共60分) 1、 有一质量为m,长为l的均匀细杆,可绕一水平转轴O在竖直平面内无摩擦地转动,O 离杆的一端距离角速度ω。 l,如图。设杆在水平位置自由转下,当转过角度θ时,求棒的角加速度β,3 2、 如图所示,已知弹簧的劲度系数为k,两物体的质量分别是m1和m2。m1和m2之间的静摩擦系数为?0。m1和水平桌之间是光滑的,试求在保持m1、m2发生相对滑动之前,系统具有的最大振动能量。 Oθ m2m13、长为2l的带电细棒,左半部均匀带有正电荷,右半部均匀带有负电荷。电荷 线密度分别为+λ和-λ,如图所示。P点在棒的延长线上,距B端l,Q点在棒的垂直平分线上,到棒的垂直距离为l。 (1)求P点的电势UP; (2)求Q点的电势UQ。 All++++++------QO lBlP 4、一平行板电容器,极板面积为S,两极板相距d,现在两极板间平行插入一块相对介电常数为?r的电介质板,介质板厚度为 2d,求该电容器的电容C。 3d01-24 sεr23 d 5、长为L=0.10m,带电量q=1.0?10?10C的均匀带电细棒,以速率v=1.0m·s-1 沿x轴正方向运动。当细棒运动到与y轴重合的位置时,细棒的下端点与坐标原点O的距离为a=0.10m,如图所示。求此时O点的磁感强度的大小和方向。 01-25 ylvaox 6、如图所示,线框中ab段能无摩擦地滑动,线框宽为l=9cm,设总电阻近以不变为R=2.3?10?,旁边有一条无限长载流直导线与线框共面且平行于框的长边,距离为d=1cm,忽略框的其它各边对ab段的作用,若长直导线上的电流I1=20A,导线ab以v=50 m·s-1的速度沿图示方向作匀速运动,试求: (1) ab导线段上的感应电动势的大小和方向。 (2) ab导线段上的电流。 (3) 作用于ab段上的外力。 RbI1avld?2 苏州大学 普通物理(一)上 课程试卷(13)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、一质点从t=0时刻由静止开始作圆周运动,切向加速度的大小为at是常数,质点的速率为 ;假如在t时间内质点走过1/5圆周,则质点在t时刻的法向加速度的大小为 。 2、如图所示,质量为M,半径为R的均匀圆盘可绕垂直于盘面的光滑轴O在竖直平面内转动。盘边A点固定着质量为m的质点。若盘自静止开始下摆,当OA从水平位置下摆的角度??30时,则系统的角速度ω= ,质点m的切向加速度at= 。 3、一个沿x轴作简谐运动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表达,当t=0时,振子过x??A/2处向正方向运动,则振子的振动方程为x= 。 4、一横波沿绳子传播的波动方程为y?0.05cos(10?t?4?x),式中各物理量单位均为国际单位制。那么绳上各质点振动时的最大速度为 ,位于x=0.2m处的质点在t=1s时的相位,它是原点处质点在t= 时刻的相位。 5、玻尔氢原子模型中,质量为9.11?10?31?OθA kg的电子以向心加速度a?9.1?10m/s,绕 222原子核作匀速圆周运动,则电子的轨道半径为 ;电子的速度大小为 。 6、边长为a的立方形高斯面中心有一电量为q的点电荷,则通过该高斯面任一侧面的电通量为 。 7、一平行板电容器,圆形极板的半径为8.0cm,极板间距1.0mm,中间充满相对介电常数 ?r?5.5的电介质。对它充电到100V,则极板上所带的电量Q= ;电容器贮有的电 ?122能W= 。(?0?8.85?10c/v?m) 8、真空中有一均匀带电细圆环,电荷线密度为λ,则其圆心处的电场强度 E0= ;电势U0= 。(远无穷处电势为零) 01-26 9、若通电流为I的导线弯成如图所示的形状(直线部分伸向无限远),则O点的磁感强度大小为 ,方向是 。 RO10、半径为R,载有电流I的刚性圆形线圈,在图示均匀磁场B中,因电流的磁矩大小为 ,它在磁场中受到的力矩大小为 。 ?IB 11、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r1和r2,管内充满均匀介质,其磁导率分别为μ1和μ2,设r1:r2?1:2,?1:?2?2:1,当两螺丝管串联在电路中通电流稳定后,其自感之比L1:L2? ,磁能之比 Wm1:Wm2? 。 二、计算题:(每小题10分,共60分) 1、 一子弹水平地穿过两个静止的前后并排放在光滑水平上的木块,木块的质量分别是m1和m2,设子弹穿过木块所用的时间分别为Δt1和Δt2,求子弹穿过两木块后,两木块的运动速度(设木块对子弹的阻力为恒力F)。 2、一半径r=5厘米的球,悬于长为l=10厘米的细线上成为复摆,如图所示。若把它视为摆长为L=l+r=15厘米的单摆,试问它的周期会产生多大误差?已知球体绕沿直径的转轴的转动惯量为 m1m2 22mr。 5ol 3、一均匀带电球体,电荷体密度为ρ,球体半径为R。 (1) 求球内和球外电场强度的分布; (2) 求球内距球心距离为r的一点的电势。 cr 4、两个同心导体半球面如图所示,半径分别为R1和R2,其间充满电阻率为ρ的均匀电介质,求两半球面间的电阻。 R1R2 5、一长直导线载有电流50A,离导线5.0cm处有一电子以速率1.0?10m?s运 01-27 7?1动。求下列情况下作用在电子上的洛仑兹力的大小和方向。(请在图上标出) (1) 电子的速率v平行于导线。(图中(a)) (2) 设v垂直于导线并指向导线(图中(b)) ??v1?(3) 设v垂直于导线和电子所构成的平面(图中(c)) 6、如图所示,一直长导线通有电流I,旁边有一与它共面的长方形线圈ABCD (a)Iv2dv3(c) (b)(AB=l,BC=a)以垂直于长导线方向的速度v向右运动,求线圈中感应电动势的表示式。(作为AB边到长直导线的距离x的函数) IxADBCv 苏州大学 普通物理(一)上 课程试卷(14)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、一个步兵,他和枪的质量共为100kg,穿着带轮的溜冰鞋站着。现在他用自动步枪在水平方向上射出10发子弹,每颗子弹的质量为10g,而出口速度为750m/s,如果步兵可以无摩擦地向后运动,那么在第10次发射后他的速度是 ,如果发射了10s,对他的平均作用力是 。 2、今有劲度系数为k的弹簧(质量忽略不计),竖直放置,下端悬一小球,球的质量为m,使弹簧为原长而小球恰好与地面接触。今将弹簧上端缓慢地提起,直到小球刚能脱离地面为止,在此过程中外力作的功为 。 3、弹簧振子的总能量为2?10?5J,振子物体离开平衡位置1/2振幅处的势能 EP= ,动能Ek= 。 4、在实验室做驻波实验时,将一根长1m的弦线的一端系于电动音叉的一臂上,这音叉在垂直于弦线长度的方向上以60赫兹的频率作振动,且使弦线产生有四个波腹的振动,那么在弦线上波动的波长λ= ,波速v= 。 5、如图,若取P点的电势为零,则M点的电势为UM= 。 01-28 qaPaM6、一平行板电容器的电容为10pF,充电到极板带电量为1.0?10C后,断开电源,则电容器储存的电能为W= ;若把两极板拉到原距离的两倍,则拉开前后电场能量的改变量ΔW= 。 7、玻尔的氢原子模型中,质量9.1?10?31?8kg的电子沿半径为5.3?10?11m的圆形轨道绕核 (一个质子)运动,则电子加速度的大小an= 。 8、若高斯面上场强处处不为零,能否说高斯面内无电荷? (填“能”或“不能”) 9、图示电路中各已知量已标明,则等值电容C= ;电容器C3上的电压U3= 。 UC1C3C2 ??10、图示载流细线框abcda,ab弧的半径为R,dc弧的半径为r,圆心角 为 Iadbco ?/2,电流I方向如图中所示,圆心O点的磁感强度大小 为 ,方向为 。 11、如图所示,在一长直导线L中通有电流I,ABCD为一矩形线圈,它与L皆在纸面内,且AB边与L平行。当矩形线圈在纸面内向右移动时,线圈中感应电动势的方向为 。若矩形线圈绕AD边旋转,当BC边已离开纸面正向外运动时,线圈中的感应电动势的方向为 。 ILBCAD 12、发电厂的汇流条是两条3米长的平行铜棒,相距0.5m;当向外输电时,每条棒中的电流都是10000A。作为近似,把两棒当作无穷长的细线,则它们之间的相互作用力为 。 13、将一多面体放入非均匀磁场中,已知穿过其中一个面的磁通量为?,则穿过其它面的磁通量是 。 二、计算题:(每小题10分,共60分) 1、 如图所示,长为l的匀质细杆,一端悬于O点,自由下垂。在O点同时悬一单摆,摆长也是l,摆的质量为m,单摆从水平位置由静止开始自由下摆,与自由下垂的细杆作完全弹性碰撞,碰撞后单摆恰好静止。求: (1)细棒的质量M;(2)细棒摆动的最大角度?。 2、质量为10克的子弹,以1000米/秒的速度射入置于光滑平面上的木块并嵌入 木块中,致使弹簧压缩而作简谐振动,若木块的质量为4.99千克,弹簧的劲度系数为8000 01-29 mlol 牛顿/米。试求: (1)振动的振幅。(2)写出振动的运动学方程。 3、一竖直的无限大均匀带电平板附近有一固定点O,一质量m?2.0?10kg,带电量 ?6q?4.0?10?8C的小球被用细线悬挂于O点,悬线与竖直方向成??30?角,求带电平板 的电荷面密度?。 4、求图示电路中各条支路中的电流。 R1=24Ωε1=6Voθm,q R2=6Ωε2=3VR3=8Ω 5、如图所示,一半径为R=0.10m的半圆形闭合线圈,载有电流I=10A,放在均匀外磁场中,磁场方向与线圈平面平行,磁感强度B=0.5T。试求: (1) 线圈的磁矩m; (2) 线圈所受的磁力矩的大小,在此力矩作用下线圈将转到何位置。 ? IBR 6、一无限长直导线通以电流I?I0sin?t,和直导线在同一平面内有一矩形线框,其短边与直导线平行,线框的尺寸及位置如图所示,且b/c?3。试求: (1) 直导线和线框的互感系数。 (2) 线框中的互感电动势。 cIab 苏州大学 普通物理(一)上 课程试卷(15)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、一质量为10kg的物体沿x轴无摩擦地运动,设t=0,物体位于原点,速度为零,如果物体在力F=(3+6x)牛顿的作用下移动了3m(x 以米为单位)它的加速度a= ,速度v= 。 2、如图所示,小球系在不可伸长的细线一端,线的另一端穿过一竖直小管,小球绕管轴沿半径为r的圆周作匀速圆周运动,每分钟转120转。今将管中的线向下拉一段,使小球作圆 r2 01-30 r 7、一空气平行板电容器,极板间距为d,电容为C,若在两极板间平行地插入一块厚度为d/3的金属板,则其电容值变为 。 8、边长为0.3m的正三角形abc,顶点a处有一电量为10-8C的正点电荷,顶点 b处有一电量为10-8C 的负点电荷。则顶点C处电场强度的大小为 ; 电势为 。( 14??0?9.00?109N?m2/C2) 9、一平行板电容器,圆形极板的半径为8.0cm,极板间距为1.00mm,中间充满相对介电常数?r?5.0的电介质。若对其充电至200V,则该电容器储有的电能为W= 。 10、一长直载流导线,沿OY轴正方向放置,在原点处取一电流元Idl,该电流元在点(a,a,0)处磁感强度大小为 ,方向为 。 11、长直载流导线I1的旁边,在同一平面上有垂直的载流导线ab,其中电流为I2,则ab所受力为 。 12、某点的地磁场为0.7?10T,这一地磁场被半径为5.0cm的圆形电流线圈中心产生的磁场所抵消,则线圈通过的电流为 。 13、如图所示为通过垂直于线圈平面的磁通量,它随时间变化的规律为??6t?7t?1,单位为韦伯,当t=2s时,线圈中的感应电动势为 ;若线圈电阻r?1?,负载电阻R?30?,当t=2s时,线圈中的电流强度为 。 二、计算题:(每小题10分,共60分) 1、 一静止的均匀细棒,长为l,质量为M,可绕O轴(棒的一端)在水平面内 无摩擦转动。一质量为m,速度为v的子弹在水平面内沿棒垂直的方向射入一端,设击穿后子弹的速度为v/2如图。 求:(1)棒的角速度。(2)子弹给棒的冲量矩。 2I1laI2db?4 R M,lO 2、 一个沿x轴作简谐振动的弹簧振子、振幅为0.1米,周期为0.2秒,在t=0时, 质点在x0=-0.05米处,且向正方向运动。求: (1)初相位之值;(2)用余弦函数写出振动方程;(3)如果弹簧的劲度系数为100牛顿/米,在初始状态,振子的弹性势能和动能。 3、 两无限长带异号电荷的同轴圆柱面,单位长度上的电量为3.0?10C/m,内 圆柱面半径为2?10m,外圆柱面半径为4?10m,(1)用高斯定理求内圆柱面 01-36 ?2?2?8a-λ+λb 内、两圆柱面间和外圆柱面外的电场强度;(2)若一电子在两圆柱面之间垂直于轴线的平面内沿半径3?10m的圆周匀速旋转,问此电子的动能为多少? 4、图示电路中,已知?1?20V,?2?18V,?3?10V,R1?6?,R2?4?,R3?2?,求通过每个电阻的电流和方向。 ε1R1?2 5、一半径为a的长直圆柱形导体,被一同样长度的同轴圆筒形导体所包围,圆筒半径为b,圆柱导体和圆筒载有相反方向的电流I。求圆筒内外的磁感强度(导体和圆筒内外的磁导率均为?0) 6、均匀磁场局限于一个长圆柱形空向内,方向如图所示,的均匀金属圆环同心放置在圆柱内,试求: (1) 环上a、b两点处的涡旋电场强度的大小和方向。 (2) 整个圆环的感应电动势。 (3) 求a、b两点间的电势差。 (4) 若在环上a点处被切断,两端分开很小一段距离,求两端点a,c(c 在a点的上方)的电势差。 苏州大学 普通物理(一)上 课程试卷(18)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、 一飞轮的角速度在5s内由90rad?s均匀地减到80rad?s,那么飞轮的角加速度 ?1?1R2ε2ε3R3 dB有一半径r=10cm?0.1T?s?1。 dtBab o?= ,在此5s内的角位移??= 。 2、两个相互作用的物体A和B无摩擦地在一条水平直线上运动,A的动量为pA?p0?bt,式中p0和b都是常数,t是时间。如果t=0时B静止,那末B的动量为 ;如果t=0时B的初始动量是-p0,那末B的动量为 。 3、光滑的水平桌面上有一长2l,质量为m的均质细杆,可绕通过其中点,垂直于杆的竖直轴自由转动,开始杆静止在桌面上,有一质量为m的小球沿桌面以速度v垂直射向杆一端,与杆发生完全非弹性碰撞后,粘在杆端与杆一起转动,那末碰撞后系统的角速度ω= 。 4、振幅为0.1m,波长为2m的一简谐余弦横波,以1m/s的速率,沿一拉紧的弦从左向右传播,坐标原点在弦的左端,t=0时,弦的左端经平衡位置向正方向运动,那末弦左端质点的 01-37 振动方程为 ,弦上的波动方程为 。 5、在边长为a的等边三角形的三个顶点上分别放置一个电量为-q和两个电量为+q的点电荷,则该三角形中心点处的电势为 。 6、如图,若C1?10?F,C2?5?F,C3?4?F,U?100V,则电容器组的等效是容C= ,电容器C3上的电压 C1UC3C2U3= 。 7、两个点电荷+q和+4q相距为l,现在它们的连线上放上第三个点电荷-Q,使整个系统受力平衡,则第三个点电荷离点电荷+q的距离为 ;其电量大小为 。 8、若一球形高斯面内的净电量为零,能否说该高斯面上的场强处处为零? (填“能”或“不能”) 9、真空中均匀带电的球面和球体,如果两者的半径和总电量都相等,设带电球面的电场能量为W1,带电球体的电场能量为W2,则W1 W2(填<、=、>) 10、如图所示,两个半径为R的相同的金属环在a、b两点接触(ab连线为环直径),并相互垂直放置,电流I由a端流入,b端流出,则环中心O点的磁感强度的大小为 。 11、长直载流I2与圆形电流I1共面,并与其一直径相重合,如图所示(但两者间绝缘),设长直导线不动,则圆形电流将 。(填“运动”或“不动”) oI1Iaob I2 12、两长直导线通有电流I,图中有三个环路,在每 ??种情况下,?B?dl等于 (环路a); LbcIacI (环路b); (环路c) 13、一电子射入B?(0.2i?0.5j)T的磁场中,当电??????6子速度为v?5?10jm/s时,则电子所受到的磁力F= 。 二、计算题:(每小题10分,共60分) 1、 一根均匀米尺,在60cm刻度处被钉到墙上,且可以在竖直平面内自由转动,先用手使 米尺保持水平,然后释放。求刚释放时米尺的角加速度,和米尺到竖直位置时的角速度 01-38 各是多少? 2、如图所示,A、B两点相距20米,为同一介质中的二波源,作同频率(??100赫兹),同方向的振动,它们激起的波设为 AB平面波,振幅均为5厘米,波速均为200米/秒,设A处波的?AO?0,B处波的?BO??。求AB连线上因干涉而静止的各点的位置。 3、电量Q(Q>0)均匀分布在长为L的细棒上,在细棒的延长线上距细棒中心O距离为a的P点处放一带电量为q(q>0)的点电荷,求带电细棒对该点电荷的静电力。 4、一电路如图,已知?1?1.0V,?2?3.0V,?3?2.0V,r1?r2?r3?1.0?, L++++++o+QaP+qR1?1.0?,R2?3.0?, (1) 求通过R2的电流。 (2) R2消耗的功率。 ε1,r1R1ε2,r2R2 ε3,r3 5、如图所示,有一均匀带电细直导线AB,长为b,线电荷密度为λ。此线段绕 垂直于纸面的轴O以匀角速度ω转动,转动过程中线段A端与轴O的距离a保持不变。 oaAbBω ?(1) O点磁感强度B0的大小和方向。 ?(2) 求转动线段的磁矩pm。 6、如图,一对同轴无限长直空心薄壁圆筒,电流I沿内筒流去,沿外筒流回,已知同轴空心圆筒单位长度的自感系数为L??0。 2?R1 R2 ; R2R1II(3) 求同轴空心圆筒内外半径之比(4) 若电流随时间变化,即I?I0cos?t,求圆筒单位长度产 生的感应电动势。 01-39 苏州大学 普通物理(一)上 课程试卷(19)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、一个半径R=1.0m的圆盘,可以绕一水平轴自由转动。一根轻绳绕在盘子的边缘,其自由端拴一物体A(如图),在重力作用下,物体A从静止开始匀加速地下降,在t=2.0s内下降距离h=0.4m。物体开始下降后t?=3s末,轮边缘上任一点的切向加速度at= ,法向加速度an= 。 2、一质量m=50g,以速率v=20m/s作匀速圆周运动的小球,在1/4周期内向心力加给它的冲量的大小是 。 3、一个沿x轴作简谐运动的弹簧振子,劲度系数为k,振幅为A,周期为T,其振动方程用余弦函数表示,当t=0时,振子过x?AR A处向正方向运动,则振子的振动方程为2x= ,其初始动能Ek= 。 4、一横波沿绳子传播的波动方程为y?0.05cos(10?t?4?x),式中各物理量单位均为国际单位制。那么绳上各质点振动时的最大速度为 ,位于x=0.2m处的质点,在t=1s时的相位,它是原点处质点在t0= 时刻的相位。 5、一空气平行板电容器两极板面积均为S,电荷在极板上的分布可认为是均匀的。设两极板带电量分别为?Q,则两极板间相互吸引的力为 。 6、一同轴电缆,长l?10m,内导体半径R1?1mm,外导体内半径R2?8mm,中间充以电阻率??10??m的物质,则内、外导体间的电阻R= 。 7、真空中半径分别为R和2R的两个均匀带电同心球面,分别带有电量+q和-3q。现将一电量为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为 。 8、图示电路中,当开关K断开时,a、b两点间的电势差Uab= ;K闭合时,图中10μF电容器上的电量变化为Δq= 。 12ΩKa5μFb3Ω+20V1210μF 9、一空气平行板电容器,极板面积为S,两极板相距为d,电容器两端电压为U,则电容器极板上的电量q= 。若将厚度为d/2的金属板平行插入电容器内,保持电压U不变,则极板上电量增加Δq= 。 d/2 01-40 LAPadUBx
正在阅读:
苏大 基础物理(上)题库 试卷及答案04-25
林则徐是中华民族的千古罪人08-18
常考易错题04-02
县财政局2021年工作总结范文08-17
墙体裂缝成因分析与防治方法04-09
柜组主任(业务部分)06-23
离散型随机变量的均值与方差(详解教师版)06-13
2015年新疆维吾尔自治区市场营销策划师最新考试试题库06-12
订货会通知05-05
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 苏大
- 题库
- 试卷
- 物理
- 答案
- 基础
- 初三英语Unit 2 Keeping Healthy
- 2013年四川公务员面试热点:微博“国家队”如何更好发力
- 探究式课堂教学模式在初中数学教学中的应用
- 管理会计-王静-课后习题答案
- 华南师大高级英语散文赏析 翻译
- 如何打造持续高效的团队
- 嗨学网证券从业资格考试考前绝密押题《证券交易》
- 陕旅版三年级英语下册第一单元测试卷
- 东莞市生态园中央水系二期土方工程监理报告(内容)
- 2018-2019学年度第一学期人教版小学五年级数学上册第一单元《小
- 大学英语四级模拟卷一
- 针织学试卷
- 2009届硚口区高三数学交流卷(一)
- 储罐制作安装专项施工方案
- 06167 工程机械(复习题)
- 体育足球理论考试题级答案
- 基于单片机的电子时钟设计
- 绍兴市市属中小学教学案例获奖名单
- 2019六年级下册英语试题Unit2Lesson12HelenKeller冀教版语文
- 赵赫琼 30%浅谈机械振动在机械工业中的危害与应用