J. Phys. Chem. B 2005, 109, 14410-14415-(meida)

更新时间:2023-05-16 14:38:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

14410J.Phys.Chem.B2005,109,14410-14415

Platinum/CarbonNanotubeNanocompositeSynthesizedinSupercriticalFluidasElectrocatalystsforLow-TemperatureFuelCells

YueheLin*andXiaoliCui

PacificNorthwestNationalLaboratory,902BattelleBouleVard,P.O.Box999,Richland,Washington99352

CliveYenandChienM.Wai*

DepartmentofChemistry,UniVersityofIdaho,Moscow,Idaho83844ReceiVed:March21,2005;InFinalForm:May9,2005

Carbonnanotube(CNT)-supportedPtnanoparticlecatalystshavebeensynthesizedinsupercriticalcarbondioxide(scCO2)usingplatinum(II)acetylacetonateasmetalprecursor.Thestructureofthecatalystshasbeencharacterizedwithtransmissionelectronmicrograph(TEM)andX-rayphotoelectronspectroscopy(XPS).TEMimagesshowthattheplatinumparticles’sizeisintherangeof5-10nm.XPSanalysisindicatesthepresenceofzero-valenceplatinum.ThePt-CNTexhibitedhighcatalyticactivitybothformethanoloxidationandoxygenreductionreaction.Thehighercatalyticactivityhasbeenattributedtothelargesurfaceareaofcarbonnanotubesandthedecreaseintheoverpotentialformethanoloxidationandoxygenreductionreaction.CyclicvoltammetricmeasurementsatdifferentscanratesshowedthattheoxygenreductionreactionatthePt-CNTelectrodeisadiffusion-controlledprocess.AnalysisoftheelectrodekineticsusingTafelplotsuggeststhatPt-CNTfromscCO2providesastrongelectrocatalyticactivityforoxygenreductionreaction.Forthemethanoloxidationreaction,ahighratioofforwardanodicpeakcurrenttoreverseanodicpeakcurrentwasobservedatroomtemperature,whichimpliesgoodoxidationofmethanoltocarbondioxideonthePt-CNTelectrode.ThisworkdemonstratesthatPt-CNTnanocompositessynthesizedinsupercriticalcarbondioxideareeffectiveelectrocatalystsforlow-temperaturefuelcells.

Introduction

Directmethanolfuelcells(DMFCs)areconsideredtobeoneofthemostpromisingoptionsforaddressingfutureenergyneeds.1DMFCsprovideacleanandmobilepowersourcewithhigh-energyconversionefficiencyandlowpollutantemissions.ThebasicprincipleemployedinDMFCsinvolvesmethanoloxidationandoxygenreductionoverpreciousmetalcatalysts,suchasplatinumandplatinum-rutheniumalloydispersedoveracarbonsupport.TherearesomeobstaclesinhibitingtheapplicationsofDMFCs;oneofthemainproblemsisthelowcatalyticactivityofelectrodesbothforoxygenreductionreaction(ORR)andformethanoloxidationreaction.Boththecarbonsupportandthedispersionofcatalystsaretwomainconcernstoenhancethecatalyticactivity.

Carbonblack(VulcanXC-72,aregisteredtradenamefromCABOT)hasbeenthemostwidelyusedsupportforpreparingfuelcellcatalystbecauseofitsgoodcompromisebetweenelectronicconductivityandsurfacearea.2However,toincreaseorimproveactivity,anewcarbonsupportwithahighsurfaceareamayprovidebetterutilizationoftheelectrocatalysts.Othercarbontypessuchascarbontubulemembranes,3orderedporouscarbon,4graphitenanofibers,5filmsofC60clusters,6ahardcarbonspherules,7andcarbonnanotubes(CNT)havebeenusedassupports8forDMFCs.Inparticular,CNThaveattractedspecialattentionbecauseoftheirexcellentcatalyticandelectronicpropertiesandextensiveapplicationsinmanyareas,forexample,

*Authorstowhomcorrespondenceshouldbeaddressed.Tel:509-376-0529;fax:509-376-5106;e-mail:yuehe.lin@pnl.gov(Y.L.).Tel:208-885-6787;fax:(208)885-6173;e-mail:cwai@uidaho.edu(C.M.W.). Permanentaddress:DepartmentofMaterialsScience,FudanUnivesity,Shanghai,200433,China.E-mail:xiaolicui@.inchemicalsensors,9forhydrogenstorage,edCNTasaplatinumsupportforprotonexchangemembranefuelcellsasawaytoreducethecostoffuelcellsthroughincreasedutilizationofplatinum.8dItisalsoreportedthatCNTwith12wt%Ptdepositioncangive10%highervoltagethancarbonblackwith29%Ptdepositioninpolymerelectrolytefuelcells.8cThus,CNTshowgreatpotentialforuseindesigningelectrodesforminiaturefuelcells.

Itiswell-knownthattheparticleshapeandsize,aswellasdispersion,ofPt-basedcatalystsarekeyfactorsthatdeterminetheirORRactivityandcellperformanceforDMFCs.Severalapproaches,includingimpregnationandchemicalreduc-tion2a,2c,8b,8e,15andelectrodeposition,6,8d,8g,8hhavebeendevelopedtoloadPtorothermetalcatalystparticlesonthesurfaceofsupports.PlatinumnanocatalystssupportedonVulcanXC-72carbonhavebeensynthesizedthroughthereductionofchloro-platinicacidwithformicacid,usingsurfactanttetraoctylam-moniumbromideasthestabilizerinthesolventtetrahydrofuran.2cThroughchemicalreductioninH2at580°C,Cheetal.wereabletofilltheverynarrowsizePt-RualloyparticlesinCNTmembranes.3Liuetal.8eloadedPtnanoparticlesontheCNTbyanelectrolessplatingmethodthroughtwo-stepsensitizationandactivationprocesses.However,conventionalpreparationtechniquesbasedonwetimpregnationandchemicalreduction

10.1021/jp0514675CCC:$30.25©2005AmericanChemicalSociety

PublishedonWeb07/12/2005

Platinum/CarbonNanotubeNanocomposite

ofthemetalprecursorsoftendonotprovideadequatecontrolofparticleshapeandsize.Inaddition,theseprocedurescanbetime-consumingandlabor-intensive.Consequently,continuingeffortsareunderwaytodevelopalternativesynthesismethodstogeneratecolloidsandclustersonthenanoscalewithgreateruniformity.Electrodepositionofplatinumparticleshastheadvantageofhigh-puritydepositsandasimpledepositionprocedure.6,8d,8g,8hOneof+theproblems,however,isthelikelyconcurrentreductionofHduringtheelectrodepositionprocess.Theloadingmassofthemetalliccatalystisnoteasytoestimateaccordingtothedepositioncharge.ThecurrentefficiencyforPtdepositionisnotequalto100%.6eThesynthesisofnanoscaleparticleswithgooddispersionoverthecarbonaselectrocatalyticmaterialsstillremainsachallenge.

Inrecentyears,theuseofsupercriticalfluids(SCFs)forthesynthesisandprocessingofnanomaterialshasproventobearapid,direct,andcleanapproachtodevelopnanomaterialsandnanocomposites.11c,16Inarecentpaper,platinum/carbonaerogelnanocompositesweresynthesizedusingasupercriticaldeposi-tionmethod.17SCFsareidealsolventstosynthesizeandprocessmanytypesofnanomaterials,includingnanoparticales,nano-crystals,nanotubes,nanowires,andnanocomposites.Theap-plicationofsupercriticalfluidtechnologycanresultinproducts(andprocesses)thatarecleaner,lessexpensive,andofhigherqualitythanthosethatareproducedusingconventionaltech-nologiesandsolvents.Throughhydrogenreductionofmetal- -diketonecomplexesinsupercriticalcarbondioxide(scCO2),CNTcanbedecoratedbymetalnanoparticlessuchasPd16g,16jandRh16fwithuniformitytoachievenanocomposites.11c,16hInthispaper,platinumnanoparticlesweredecoratedonCNTsurfacesinscCO2andwerecharacterizedbytransmissionelectronmicrograph(TEM)andX-rayphotoelectronspectro-scopy(XPS).ThePt-CNTpowderwasloadedontheglassycarbon(GC)electrodethroughacastingprocess,andtheelectrocatalyticactivityformethanoloxidationandoxygenreductionwasinvestigatedatroomtemperatureusingcyclicvoltammetry(CV)andchronoamperometry(CA).

ExperimentalSection

Reagents.Multiwalledcarbonnanotubes(>95%purity,diameter20~50nm,length1~5µm)werepurchasedfromNanoLab,Inc.(Newton,MA).Nafion-perfluorinatedion-exchangeresin(5wt%solution)waspurchasedfromAldrich,andH2SO4waspurchasedfromFischerChemicals.Ultrapurewater(~18.3M cm)wasusedtopreparethesolutions.Platinumprecursor,platinum(II)acetylacetonate,Pt(acac)2,97%,purchasedfromAldrich,wasusedasreceived.High-purityhydrogen,carbondioxide,nitrogen,andoxygengaswereusedinallexperiments.Apureoxygenflowwasintroducedintothesolutiontosupplyoxygenfortheoxygenreductionexperimentsandwaspassedoverthetopofthesolution.Allmeasurementswereconductedatroomtemperature.

DecoratingPlatinumNanoparticlesonCarbonNanotubes.ThesupercriticalfluidreactionsystemforthedepositionofPtnanoparticleonCNTwasdescribedinapreviousreport.16fThePtnanoparticlesweresynthesizedusingthefollowingproce-dures.TheCNT(20mg)andthemetalprecursorPt(acac)2(50mg)withasmallamountofmethanolasamodifierwereloadedintoahigh-pressurereactioncelllocatedinanovenheatedto200°C.CO2gaswasintroducedintothereactioncellandpressurizedto80bartoproduceasupercriticalfluid.H2gasat10barwasinitiallyintheH2+CO2mixercellandwasthenaddedtotheCO2gasof120bar.After1h,whentheprecursorwascompletelydissolvedinthescCO2,theH2+CO2gaswasintroducedintothereactioncellbypressurizingitto160bar.

J.Phys.Chem.B,Vol.109,No.30,200514411

ThereductionofthePt2+toPt0wasfast,occurringwithinonly~powder15min.wasAfterrecovered,thereactionwashedcellwithwasmethanol,depressurized,andsonicatedPt-CNTfivetimes.

ElectrodePreparationandModification.A0.5wt%Nafionsolutionwaspreparedbydilutingthe5wt%Nafionsolutionwithwater.Catalystpowderwasdispersedultrasoni-callyinthe0.5wt%Nafionsolutiontoobtainahomogeneousblacksuspensionsolutionwith1mg/mLPt-CNT,anda5-µLaliquotofthissolutionwaspipettedontothesurfaceofa3-mm-diameterglassycarbon(BAS,WestLafayette,IN)electrode.Beforethesurfacemodification,theGCelectrodewaspolishedwith0.3-µmand0.05-µmaluminaslurries,washedwithwaterandacetone,andthensubjectedtoultrasonicagitationfor1mininultrapurewateranddriedunderanairstream.Thecoatingwasdriedatroomtemperatureintheairfor1h.Themodifiedelectrodesurfacewasthenwashedcarefullywithultrapurewaterbeforemeasurement.

Apparatus.TheTEMimagesofthedecoratedCNTweretakenusingaJEOLJEM2010microscopeequippedwithanOx-fordISISsystem.Theoperatingvoltageonthemicroscopewas200keV.Allimagesweredigitallyrecordedwithaslow-scanCCDcamera(imagesize1024×1024pixels),andimagepro-cessingwascarriedoutusingaDigitalMicrograph(Gatan).ToobtainTEMimages,theas-synthesizedplatinum-modifiedCNTpowderwasdispersedinethanolsolutionunderultrasonicagita-tionfor1minandthenwasdepositedonacopper-carbongrid.FortheXPSanalysis,aKratosAXIS165multitechniqueelectronspectrometerwasusedtoconfirmthepresenceofzero-valenceplatinum.TheloadingofPtismeasuredbyenergy-dispersiveX-rayspectroscopy.TheinstrumentationisLEOSUPRA35VP(FESEN).

CyclicvoltammetricandchronoamperometryexperimentswereperformedwithaCHI660electrochemicalworkstation(CHInstrumentsInc,Austin,TX).Allexperimentswereconductedinaconventionalthree-electrodesystematroomtemperature.TheworkingelectrodewasGCcoatedwithPt-CNTcompositefilms.AAg/AgCl(saturatedbyKClsolution)referenceelectrodewasusedforallelectrochemicalmeasure-ments,andallthepotentialswerereportedversusthisreferenceelectrode.Aplatinumwirewasusedasacounterelectrode.Toobtainreproducibleandreliableresults,afreshmethanolsolutionwasusedineverymeasurement.

ResultsandDiscussion

CharacterizationofCarbonNanotubesDecoratedwithPlatinumNanoparticles.Figure1showsthetypicalTEMimageoftheCNTdecoratedwithplatinumnanoparticlessynthesizedinscCO2.Nanoparticlesofplatinumwithasizeof5~10nmcanbeobservedclearlyonthesurfaceofCNTwithrelativeuniformity.TheloadingplatinumonthesurfaceofCNTwas25%,whichwasestimatedbyenergy-dispersiveX-rayspectroscopy.

ThechemicalcompositionoftheplatinumnanoparticlesdepositedontofunctionalizedCNTwasalsoanalyzedbyXPS.Figure2displaysatypicalXPSspectrumofCNTcoatedwithplatinumnanoparticles.ThebindingenergyforametallicPt4f7/2peakis71.2eV,accordingtotheliterature.18OursamplehasaPt4f7/2peakof71.1eV,whichisveryclosetothatvalue.Wealsofindasmallshoulderpeaknear72-73eV,whichmaycorrespondtotheplatinumoxides.ThespectrashowninFigure2indicatethatmostoftheplatinumparticlesinourcatalystarezero-valence.

CharacterizationofPlatinumfromCyclicVoltammetry.CyclicvoltammogrammsforPt-CNTelectrodesatdifferent

14412J.Phys.Chem.B,Vol.109,No.30,2005Figure1.AtypicalTEMimageofCNTdecoratedbyplatinumnanoparticlessynthesizedinsupercriticalcarbondioxide.

Figure2.XPSspectraofCNTdecoratedwithplatinumnanoparticles.

scanrangesin0.5MH2SO4solutionsaturatedbynitrogenarepresentedinFigure3.Finestructuresofhydrogenabsorption/desorptionpeaksclearlyappeared(Figure3A).Areductionpeakcenteredat0.45Vcanbeobservedduringthenegative-goingpotentialsweep(Figure3B).Thisreductionpeakcanbeattributedtothereductionofplatinumoxide.ThisfeatureofthecurveisconsistentwiththoseofthecyclicvoltammogrammcurvesforPtelectrodes.19Thus,itmayalsobeconcludedthattheplatinumnanoparticleshaveaverycleanactivesurface.Thisisfurtherevidenceofthepresenceofplatinumontheelectrodesurface.

ElectrocatalyticActivityofOxygenReductionReaction.TheORRisespeciallyimportantforrealizinghighlyefficientfuelcells,batteries,andmanyotherelectrodeapplications.Platinumandplatinumalloyparticlesonavarietyofcarbonsupportsarethemostwidelyusedandefficientcatalystsforthefuelcellcathode.13,20

FortheoxygenreductionexperimentswiththePt-CNTelectrode,asolutionof0.1MH2SO4waspurgedwithultrapureoxygenfor~15min.Thesolutionbecamecompletelysaturatedwithoxygen.Theelectrodewasscannedoverapotentialrangefrom0.7Vto0V,involvingfivecyclesatdifferentscanrates

Linet

al.

Figure3.Cyclicvoltammogramin0.5MH2SO4solutionsaturatedbyN2forPt-CNTelectrodeat20mV/s.(A)shortpotentialrangebetween-0.2and0.6Vand(B)longpotentialrangebetween-0.22and1.3V.

Figure4.TypicalcyclicvoltammogramsofPt-CNTelectrodeforoxygenreductionreactionin0.1MH2SO4saturatedwithoxygenat20mV/s.Alargerreductioncurrentcanbeobservedinthefirstcycle.Thecyclicvoltammogramsatotherscanrateshaveasimilarphenom-enon.

toensurereproducibility.Figure4showstypicalcyclicvolta-mmogramsfortheORRatPt-CNTelectrodesinasolutionof0.1MH2SO4saturatedbyoxygen.Itisinterestingthatthefirstcyclealwaysinvolvesalargerreductioncurrentatallthescan

Platinum/CarbonNanotubeNanocompositeFigure5.CyclicvoltammogramsatafreshPt-CNTelectrodeforoxygenreductionreactionatvariousscanrates,0.01,0.02,0.04,0.06,0.08,and0.10V/s,frominsidetooutside.Theelectrolytewas0.1MH2SO4saturatedwithoxygen.Thescaninvolvedfivecyclesateachscanrate,andthefifthcycle(lastcycle)isshownhere.Thedependenceofpeakcurrentonscanratesisshownintheinset.

ratesandbecomesstablefromthesecondcycle.OtherelectrodessuchasPd-CNTonglassycarbonsurfacealsoexperiencethisphenomenon,whichmayberelatedtotheabsorptionofoxygenontheelectrodesurfaceandtothereductionofplatinumoxidewhichisformedwhentheworkingelectrodeispolarizedtothestartingpotential.Moreexperimentalstudiesarenecessarytogivesuitableexplanationsforthisphenomenon.

Thecathodiccurrentflowingduringthereductionofoxygenshouldalsocontainthecathodiccurrentofthereductionofplatinumoxide.Itisimpossibletoseparatethesetwocontribu-tionsaccurately.However,thecathodiclimitingcurrentsofoxygenreductionunderpresentconditionsweremuchlargerthanthecurrentofplatinumoxidereduction,whichhasbeenconfirmedfromthecathodiccurrentinnitrogen-saturatedsolution.Thus,itisreasonabletoconcludethatthemajorcontributionofthecathodiccurrentinoxygen-saturatedsolutionresultedfromoxygenreduction.

Figure5showsthecyclicvoltammogramsofthePt-CNTelectrodeatdifferentscanrates.Thescanwasperformedwithsuccessivefivecyclestoobtainthestableresponseandthelastcycle(fifth)isshowninFigure5.ThepeakcurrentincreaseslinearlywiththesquarerootofthescanratesasshownintheFigure5inset.ThisfactindicatesthattheORRprocessonPt-CNTiscontrolledbythediffusionofoxygentotheelectrodesurface.SimilarresultswereobservedonaglassycarbonelectrodemodifiedbyPd-CNTnanocomposite14andahybridthinfilmcontainingplatinumnanoparticlesand[tetrakis(N-methylpyridyl)porphyrinato]cobaltmodifiedCNTonaglassycarbonelectrodesurfacefabricatedbyDongandcolleagues.13ATafelplotwasrecordedfrom1.0Vto0Vin0.1MH2SO4solutionsaturatedbyoxygen.AplotoflogiversuspotentialforafreshPt-CNTelectrodeisshowninFigure6.Theexchangecurrentdensitycanbeobtainedbyextrapolatingthelinearregiontozerooverpotential.WefindtheTafelslopeforPt/CNTtobe-21mV/decadeinthepotentialrangefrom0.63to0.76V.TheresultingTafelslopeandexchangecurrentdensityarelistedinTable1.ATafelslopeof-38mV/decadeatOTE/SWCNT/PtwasreportedbyKamatetal.8hTheexchangecurrentdensityonPt-CNTelectrodeisabout1orderlargerthanthatofcommercialPt/Ceventhoughtheloadingofcatalystsismuchlessinoursystem.12aThedifferencebetweenGC/Pt-CNTandOTE/SWCNT/Ptmaybecausedbythe

J.Phys.Chem.B,Vol.109,No.30,2005

14413

Figure6.TafelpolarizationcurveforPt-CNTelectrodein0.1MH2SO4solutionsaturatedbyoxygenat1mV/s.

differentloadingofplatinum,differentcarbonnanotubes,ordifferentmethodsofpreparingcatalystsandelectrodes.

ElectrocatalyticActivityforMethanolOxidationReaction.Cyclicvoltammetryisavaluableandconvenienttoolforstudyingmethanoloxidationcatalysts.TheelectrocatalyticactivityformethanoloxidationofPt-CNTpreparedinscCO2wascharacterizedbycyclicvoltammetryinanelectrolyteof1MH2SO4and2MCH3OHat50mV/s,andtheresultingvoltammogramsareshowninFigure7.Thecurrentfrommethanoloxidationbecomesapparentasthepotentialrisesabove0.35V.Intheforwardscan,methanoloxidationproducedaprominentsymmetricanodicpeakaround0.70V.Inthereversescan,ananodicpeakappearedataround0.53V.Thisanodicpeakinthereversescancouldbeattributedtotheremovaloftheincompletelyoxidizedcarbonaceousspeciesformedintheforwardscan.2aThereactionmechanismofelectrooxidationmethanolonthesurfaceofplatinumisacomplexonewhichinvolvesmanycarbonaceousspeciesasintermediates.Thereareseveraldifferentversionsofthereactionmechanism.However,itisgenerallyagreedthatthemostabundantsurfaceintermediateischemisorbedcarbonmonoxide.20cThisfeatureofthecyclicvoltammetriccurveisinagreementwiththereportsforPt/Ccatalysts.2a,2cTheratiooftheforwardanodicpeakcurrent(If)tothereverseanodicpeakcurrent(Ib)canbeusedtodescribethecatalysttolerancetocarbonaceousspeciesaccumulation.2a,2cAhighIf/IbvalueimpliesgoodoxidationofmethanoltoCO2.Inourexperiments,theratiowasestimatedtobe1.4forthePt-CNTelectrodefromthefirstcycleand1.6and1.3forthesecondandthirdcycles.SuchahighvalueindicatesthatmostoftheintermediatecarbonaceousspecieswereoxidizedtoCO2intheforwardscan.Forcomparison,theratio0.87wasreportedwithananosizedPtonXC-72synthesizedbyamicrowave-assistedpolyolprocess.2aTheseexperimentalresultshighlightedthehighactivityformethanoloxidationofPt-CNTpreparedfromscCO2.ItalsoimpliesthatthemajordeficiencyofallPtcatalysts,thatis,theaccumulationofintermediatecarbonaceousspeciesonthecatalysts’surfaceleadingto“catalystpoisoning”,canbepartlyovercomeusingthisnovelPt-CNTindesigningfuelcellelectrodes.ThehighactivitymaybearesultofthehighsurfaceofCNTandthenanostructureofplatinumparticles.Theoxidativecurrentincreaseswithrepetitivescansintheinitialperiodandreachesaplateauafterthreecycles(Figure7).Incontrast,thepeakcurrentinthereversescanincreaseswiththe

14414J.Phys.Chem.B,Vol.109,No.30,2005

TABLE1:ElectrochemicalParametersforOxygenReductionReactionatPt-CNTElectrodes

electrodes

Pt/CNT(25%Pt/CNT,0.07mg/cm2)

Pt/C/Nafion(commercial,20%Pt/C,0.4mg/cm2)OTE/SWCNT/Pt

slope/mV-21-38

exchangecurrent/A/cm2

8.9e-71.09e-76.3e-4

Linet

al.

refsthiswork12a8h

cycle,whichreflectstheaccumulationofintermediatecarbon-aceousspeciesonthecatalysts’surface.

TheeffectofpotentialscanlimitonthereverseanodicpeakcurrentisshowninFigure8.ThisfeatureisconsistentwiththatreportedforPt/C.2aAsshowninFigure8,thereverseanodicpeakcurrentdecreaseswithincreasingtheanodiclimitintheforwardscan.ThisbehavioralsoindicatesthatthereverseanodicpeakcurrentisprimarilyassociatedwithresidualcarbonspeciesonthesurfaceofthePt-CNTelectrode.ItisreasonablethattheIf/Ibratioincreaseswiththeanodiclimit.

Chronoamperometriccurvesweremeasuredatdifferentpotentials0.3(a),0.6(b),and0.8V(c)atthePt-CNTelectrodefor10min,asshowninFigure9.Forthisexperiment,thepotentialwassteppedfromtheopen-circuitpotential(~0.3V)to0.8V.After2s,thepotentialwassteppedto0.3Vfor2s,thensteppedtothedesiredpotential,andthecurrent-timecurve

Figure7.Cyclicvoltammogramsofroom-temperaturemethanoloxidationonPt-CNTelectrodecycledbetweenpotentials0Vto1.0VvsAg/AgClat50mV/sin1MH2SO4,2MCH3OH.Resultsforcycles1-5(fromdownsidetoupside)correspondtosuccessivescansshowingthestabilizationofthecurrentpeak.

Figure8.Cyclicvoltammogramsofroom-temperaturemethanoloxidationonPt-CNTelectrodeat50mV/sin1MH2SO4,2MCH3OHfordifferentforwardpotentialscanlimits.

wasrecorded.Asshown,thelargestcurrentwasobservedat0.6V,andthecurrentdecaywithtimewasobserved.Thisresultisinagreementwithitsbehaviorinthecyclicvoltammogram.DMFCsBasedonElectrocatalystsfromScCO2.TheuseofscCO2canthusprovideanenvironmentallysoundalternativetootherconventionalsolvents.ScCO2hasbeenusedinmanyareas,includingmaterialcleaning,naturalproductextraction,chemicalreactions,samplepreparation,andenvironmentalremediation.ItisalsopossibletopreparecatalystsinSCFsappliedtotheactualminiaturizedfuelcells.

TheresultsaboveshowthatPt-CNTsynthesizedinscCO2haveahighactivitybothformethanoloxidationandoxygenreduction.Theexperimentalconditionsdiffersignificantlyfromthoseusedinanactualfuelcell.Theexperimentsinthisstudywerecarriedoutatroomtemperature,whilecommercialDMFCsareoperatedat40-100°C.ThecatalystloadingsontheelectrodesurfacedonotmatchthosetypicallyusedforDMFCs,whichresultedinthesmallercurrentdensity.However,thehighIf/IbvalueformethanoloxidationindicatedtheadvantagesofthecatalystspreparedinscCO2andtheuseofcarbonnanotubes.Furthermore,manymetalprecursorscanbeusedasstartingmaterialsforthenanoparticleproductioninscCO2.AbetterelectrocatalyticperformanceofbimetallicalloyPt-RuonthesurfaceofCNTsynthesizedinscCO2isexpectedforthemethanoloxidationreaction.Moredetailedstudiesareunderwayinthislaboratory,andtheresultswillbereportedinduecourse.

Figure9.Current-timecurvesat0.3,0.6,and0.8VforthePt-CNTelectrodein1MH2SO4,2MCH3OH.

Conclusions

Usingasupercriticalfluidtechnique,wehavesuccessfullydepositedplatinumnanoparticlesoncarbonnanotubesurfaces.Thisapproachprovidesanewwaytodevelopcatalystswithnanostructureanduniformity.Platinumdepositedoncarbonnanotubesinsupercriticalfluidshasbeenshowntopossessahighercatalyticactivity,bothformethanoloxidationandforoxygenreductionreaction.Thehighercatalyticactivityhasbeenattributedtothelargersurfaceareaofcarbonnanotubesandthedecreaseintheoverpotentialformethanoloxidationandoxygenreductionreaction.TheresultspresentedinthispaperdemonstratedtheuseofscCO2tobeanefficientwaytoprepare

Platinum/CarbonNanotubeNanocomposite

electrocatalystsandthefeasibilityofusingcarbonnanotubebasedelectrocatalystsforthedevelopmentoflow-temperaturefuelcells.

Acknowledgment.ThisworkissupportedbyalaboratorydirectedresearchanddevelopmentprogramatPacificNorthwestNationalLaboratory(PNNL)andagrantfromtheElectricityInnovationInstituteandtheElectricPowerResearchInstitute(E2-P261/C8273).TheresearchdescribedinthispaperwasperformedpartiallyattheEnvironmentalMolecularSciencesLaboratory(EMSL),anationalscientificuserfacilitysponsoredbytheU.S.DepartmentofEnergy’sOfficeofBiologicalandEnvironmentalResearchandlocatedatPNNL.PNNLisoperatedbyBattellefortheU.S.DepartmentofEnergyunderContractDE-AC05-76RL01830.TheauthorswouldliketothankMs.SueGano(PNNL)foreditingthemanuscript.ReferencesandNotes

(1)(a)Arico,A.S.;Srinivasan,S.;Antonucci,V.FuelCells2001,1,133.(b)Chan,K.Y.;Ding,J.;Ren,J.W.;Cheng,S.A.;Tsang,K.Y.J.Mater.Chem.2004,14,505.

(2)(a)Liu,Z.;Ling,X.Y.;Su,X.;Lee,J.Y.J.Phys.Chem.B2004,108,8234.(b)Lu,Q.;Yang,B.;Zhuang,L.;Lu,J.J.Phys.Chem.B2005,109,1715.(c)Prabhuram,J.;Wang,X.;Hui,C.L.;Hsing,I.-M.J.Phys.Chem.B2003,107,11057.(d)Moore,J.T.;Corn,J.D.;Chu,D.;Jiang,R.;Boxall,D.L.;Kenik,E.A.;Lukehart,C.M.Chem.Mater.2003,15,3320.(e)Lizcano-Valbuena,W.H.;Azevedo,D.C.;Gonzalez,E.R.Electrochim.Acta2004,49,1289.

(3)Che,G.L.;Lakshmi,B.B.;Fisher,E.R.;Martin,C.R.Nature1998,393,346.

(4)Chai,G.S.;Yoon,S.B.;Yu,J.-S.;Choi,J.-H.;Sung,Y.-E.J.Phys.Chem.B2004,108,7074.

(5)(a)Bessel,C.A.;Laubernds,K.;Rodriguez,N.M.;Baker,R.T.K.J.Phys.Chem.B2001,105,1115.(b)Steigerwalt,E.S.;Deluga,G.A.;Cliffel,D.E.;Lukehart,C.M.J.Phys.Chem.B2001,105,8097.(c)Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Phys.Chem.B2002,106,760.

(6)(a)Vinodgopal,K.;Haria,M.;Meisel,D.;Kamat,P.NanoLett.2004,4,415.(b)Wei,Z.D.;Chan,S.H.J.Electroanal.Chem.2004,569,23.(c)Antoine,O.;Durand,R.Electrochem.Solid-StateLett.2001,4,A55.(d)Chen,A.;LaRussa,D.J.;Miller,ngmuir2004,20,9695.(e)He,Z.;Chen,J.;Liu,D.;Tang,H.;Deng,W.;Kuang,Y.Mater.Chem.Phys.2004,85,396.

(7)Yang,R.;Qiu,X.;Zhang,H.;Li,J.;Zhu,W.;Wang,Z.;Huang,X.;Chen,L.Carbon2005,43,11.

(8)(a)Li,W.;Liang,C.;Qiu,J.;Zhou,W.;Han,H.;Wei,Z.;Sun,G.;Xin,Q.Carbon2002,40,791.(b)Li,W.;Liang,C.;Zhou,W.;Qiu,J.;Zhou,Z.H.;Sun,G.;Xin,Q.J.Phys.Chem.B2003,107,6292.(c)Matsumoto,T.;Komatsu,T.;Arai,K.;Yamazaki,T.;Kijima,M.;Shimizu,H.;Takasawa,Y.;Nakamura,mun.2004,840.(d)Wang,C.;

J.Phys.Chem.B,Vol.109,No.30,200514415

Waje,M.;Wang,X.;Tang,J.M.;Haddon,R.C.;Yan,Y.NanoLett.2004,4,345.(e)Liu,Z.;Lin,X.;Lee,J.Y.;Zhang,W.S.;Han,M.;Gan,ngmuir2002,18,4054.(f)Li,W.;Liang,C.;Zhou,W.;Qiu,J.;Li,H.;Sun,G.;Xin,Q.Carbon2004,42,436.(g)Tang,H.;Chen,J.H.;Huang,Z.P.;Wang,D.Z.;Ren,Z.F.;Nie,L.H.;Kuang,Y.F.;Yao,S.Z.Carbon2004,42,191.(h)Girishkumar,G.;Vinodgopal,K.;Kamat,P.J.Phys.Chem.B2004,108,19960.(j)Yao,Y.L.;Zhang,D.;Xia,X.H.Chin.J.InorgChem.2004,20,531.(k)Rajesh,B.;Karthik,V.;Karthikeyan,S.;RavindranathanThampi,K.;Bonard,J.M.;Viswanathan,B.Fuel2002,81(17),2177.

(9)(a)Wang,J.;Musameh,M.;Lin,Y.J.Am.Chem.Soc.2003,125,2408.(b)Hrapovic,S.;Liu,Y.;Male,K.B.;Luong,J.H.T.Anal.Chem.2004,76,1083.(c)Lin,Y.;Yantasee,W.;Wang,J.Front.Biosci.2005,10,492.(d)Wang,J.;Musameh,M.Anal.Chem.2003,75,2075.(e)Musameh,M.;Wang,J.;Merkoci,A.;Lin,mun.2002,4,743.(f)Lin,Y.;Lu,F.;Ren,Z.NanoLett.2004,4,191.(g)Lin,Y.;Lu,F.;Wang,J.Electroanalysis2004,16,145.(h)Tu,Y.;Lin,Y.;Yantasee,W.;Ren,Z.Electroanalysis2005,17,79.(j)Deo,R.P.;Wang,J.;Block,I.;Mulchandani,A.;Joshi,K.;Trojanowicz,M.;Scholz,F.;Chen,W.;Lin,Y.Anal.Chim.Acta2005,530,185.

(10)Dillon,A.C.;Jones,K.M.;Bekkedahl,T.A.;Kiang,C.H.;Bethune,D.S.;Heben,M.J.Nature1997,386,377.

(11)(a)Serp,P.;Corrias,M.;Kalck,P.App.Catal.,A2003,253,337.(b)Pham,H.C.;Keller,N.;Charbonniere,L.J.;Ziessel,R.;Ledou,mun.2000,1871.(c)Lin,Y.;Ye,X.;Wai,C.M.NanostructuredMaterialsSynthesizedInSupercriticalFluid.InDekkerEncyclopediaofNanoscienceandNanotechnology;Schwarz,J.A.,Contescu,C.,Putye,K.,Eds.;MarcelDekker:NewYork,2004;pp2595-2607.

(12)(a)Britto,P.J.;Santhanam,K.S.V.;Rubio,A.;Alonso,J.A.;Ajayan,P.M.AdV.Mater.1999,11,154.(b)Zhang,M.;Yan,Y.;Gong,K.;Mao,L.;Guo,Z.;Chen,ngmuir2004,20,8781.

(13)Qu,J.;Shen,Y.;Qu,X.;Dong,mun.2004,34.(14)Lin,Y.;Cui,X.;Ye,mun.2005,7,267.(15)Lordi,V.;Yao,N.;Wei,J.Chem.Mater.2001,13,733.

(16)(a)Johnston,K.P.;Shah,P.S.Science2004,303,482.(b)Shah,P.S.;Hanrath,T.;Johnston,K.P.;Korgel,B.A.J.Phys.Chem.B2004,108,9574.(c)Ye,X.;Wai,C.M.;Zhang,D.Q.;Kranov,Y.;McIlroy,D.N.;Lin,Y.;Engelhard,M.Chem.Mater.2003,15,83.(d)Michel,P.Curr.Opin.SolidStateMater.Sci.2003,7,319.(e)Beckman,E.J.J.Supercrit.Fluids2004,28,121.(f)Ye,X.;Lin,Y.;Wang,C.M.;Engehard,M.H.;Wang,Y.;Wai,C.M.J.Mater.Chem.2004,14,908.(g)Ye,X.;Lin,Y.;Wang,C.M.;Wai,C.M.AdV.Mater.2003,15,316.(h)Ye,X.;Zhang,H.;Lin,Y.;Wang,L.S.;Wai,C.M.J.Nanosci.Nanotechnol.2004,4,82.(j)Ye,X.;Lin,Y.;Wai,mun.2003,642.

(17)Saquing,C.D.;Cheng,T.;Aindow,M.;Erkey,C.J.Phys.Chem.B2004,108,7716.

(18)Moulder,J.F.;Stickle,W.F.;Sobol,P.E.;BombenK.D.InHandbookofX-rayPhotoelectronSpectroscopy,2nded.;Chastain,J.,Ed.;Perkin-ElmerCorporation(PhysicalElectronics),1992.

(19)Woods,R.Chemisorptionatelectrodes.InElectroanalyticalChemistry;Bard,A.J.,Ed.;MarcelDekker:NewYork,1976;Vol.9,p1.(20)(a)Yang,H.;Vogel,W.;Lamy,C.;Alonso-Vante,N.J.Phys.Chem.B2004,108,11024.(b)Murthi,V.S.;Urian,R.C.;Mukerjee,S.J.Phys.Chem.B2004,108,11011.(c)Holstein,W.L.;Rosenfeld,H.D.J.Phys.Chem.B2005,109,2176.

本文来源:https://www.bwwdw.com/article/tz94.html

Top