南城3×50MW供热式火力发电厂发电厂电气部分设计

更新时间:2023-12-15 06:15:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

密级:内部

城南二次变电所电气工程

(部分)设计

学 院:电气工程学院 专业/班级:电气工程及其自动化 学 号:3000232 学 生姓 名:徐 涛 指 导教 师:王瑞艳

2004 年6 月

I

毕业设计(论文)指导教师审阅意见

题目:3×50MW供热式火力发电厂发电厂电气部分设计 评语: 指导教师: (签字) 年 月 日

II

毕业设计(论文)评阅教师审阅意见

题目:3×50MW供热式火力发电厂发电厂电气部分设计 评语: 评阅教师: (签字) 年 月 日

III

毕业设计(论文)答辩成绩评定

专业毕业设计(论文)第 答辩委员会于

年 月 日审定了 班级 学生的毕业设计(论文)。

设计(论文)题目:________________________________________ _______________________________________________________ _______________________________________________________ 设计论文说明书共 页,设计图纸 张。 毕业设计(论文)答辩委员会意见:

成 绩:__________

_________专业毕业设计(论文)答辩委员会

主任委员

IV

摘 要

本毕业设计论文是城南二次变电所电气工程(部分)初步设计。 全论文除了摘要、毕业设计书之外,还详细的说明了各种设备选择的最基本的要求和原则依据。 变压器的选择包括:主变压器的台数、容量、型号等主要技术数据的确定;电气主接线主要介绍了电气主接线的重要性、设计依据、基本要求、各种接线形式的优缺点以及主接线的比较选择,并制定了适合本厂要求的主接线; 厂用电接线包括:厂用电接线的总要求以及厂用母线接线设计。短路电流计算是最重要的环节,本论文详细的介绍了短路电流计算的目的、假定条件、一般规定、元件参数的计算、网络变换、以及各短路点的计算等知识; 高压电气设备的选择包括母线、高压断路器、隔离开关、电流互感器、电压互感器的选择原则和要求,并对这些设备进行校验和产品相关介绍 。而根据本论文所介绍的高压配电装置的设计原则、要求和60KV的配电装置,决定此次设计对本厂采用分相中型布置。继电保护和自动装置的规划,包括总则、自动装置、一般规定主变压器、母线等设备的保护, 而变电所的防雷保护则主要针对避雷针和避雷器的设计。此外,在论文适当的位置还附加了图纸(主接线、平面图、断面图、防雷保护等)及表格以方便阅读、理解和应用。

关键字:短路计算 校验 设备选择

V

Abstract

This graduate design thesis is a City southTransformer Substation Two Times Electrical Engineering (part) Design. Whole thesis besides summary graduate to design the book outside, returned the expatiation every kind of most basic request that equipments choose with principle according to. The choice of the transformer includes: Main transformer use the main technique in number, capacity, model number...etc. in set data of the transformer to really settle; The electricity lord connected the line to introduce primarily the electricity lord connects the linear importance, design according to, the basic request, every kind of merit and shortcoming and lords that connect the line form connects the linear choosing more, the lord that combine to establish the in keeping with my plant the request connects the line; The transformer substation connects with the electricity the line includes: The transformer substation connect the linear total request and factory to connect the line design with the mother line with the electricity. The short-circuit galvanometer is regarded as the most important link, this thesis introduced the calculating purpose in short-circuit electric current, assumption term, general provision, the calculation, network transformation of a parameter detailed, and each calculation etc. knowledge that short circuit order; The choice of the high pressure electricity equipments includes the mother line, high pressure breaks the road machine and insulate the switch, electric current to feels with each other the machine, electric voltage feels with each other the choice principle of the machine, high pressure switch cabinet with request, and proceed to these equipments the school check with the related introduction in product. But go together with the design principle of the electricity device, request to go together with the electricity device with 60 KV according to this thesis a high pressure for introducing, decide this time design to adopt the cent the mutually medium-sized arranging to the my plant. After electricity protection with the programming of the automatic device, include total, automatic device, general provision with the protection of generator, transformer, mother line etc. equipments, but power plant with change to give or get an electric shock a design for defending thunder protecting then primarily aiming at lightning rod with lightning arrester. In addition, return in the appropriate position in thesis additional diagram paper ( the

VI

lord connects the line diagram, plane chart defend thunder protection disgram, Cross section diagram etc.) and forms read, comprehend with the convenience with applied. Key word: Short circuit calculation Examination The choice of the equipments

VII

目 录

摘 要 ········································································································································································ V ABSTRACT ··························································································································································VI 引言 ··········································································································································································· 1 第一部分 说明书 ··················································································································································· 2 第一章 原始资料分析 ·········································································································································· 2 第二章 主变压器的选择 ····································································································································· 2 2.1 变电所主变压器的容量和台数 ················································································································ 2 2.1.1 变压器容量的确定································································································································ 2 2.1.2 主变压器的台数的确定······················································································································· 2 2.2 主变压器型式的选择 ·································································································································· 2 2.2.1 相数的选择 ············································································································································· 2 2.2.2 主变压器绕组的数量 ··························································································································· 3 2.2.3 绕组连接方式········································································································································· 3 第三章 电气主接线的选择 ································································································································· 4 3.1 主接线方案 ······················································································································································ 4 3.1.1 主接线方案的确定································································································································ 5 3.1.2 主接线二次方案的几点说明 ·············································································································· 6 第四章 短路电流计算 ·········································································································································· 7 4.1 电路元件参数计算······································································································································· 7 4.1.1 基准值计算 ············································································································································· 7 4.1.2 各元件参数标幺值的计算 ·················································································································· 7 4.2 网络变换 ························································································································································ 8 4.3 分支系数的计算 ··········································································································································· 8 4.4 转移电抗、计算电抗的求得····················································································································· 8 4.5 冲击电流的求得 ··········································································································································· 9 4.6 短路容量的求得 ········································································································································· 10 第五章 电气设备的选择 ··································································································································· 11 5.1 高压断路器的选择····································································································································· 11 5.1.1 60KV侧高压断路器得选择 ············································································································· 12

VIII

5.1.2 10KV侧高压断路器的选择 ············································································································· 13 5.2 隔离开关的选择 ········································································································································· 15 5.2.1 60KV侧隔离开关的选择·················································································································· 16 5.2.2 10KV侧隔离开关的选择·················································································································· 16 5.3 互感器的选择·············································································································································· 16 5.3.1 电压互感器的选择······························································································································ 17 5.3.2 电流互感器的选择······························································································································ 18 5.4 补偿装置的选择 ········································································································································· 19 5.5 母线的选择 ·················································································································································· 21 5.6.1 60KV 侧母线的选择 ·························································································································· 21 5.6.2 10KV 侧母线选择E ··························································································································· 21 5.6 避雷器的选择·············································································································································· 22 5.7 主要设备表 ·················································································································································· 22 第六章 继电保护及自动装置规划设计········································································································· 23 6.1 60KV线路保护 ·········································································································································· 23 6.2 主变压器保护·············································································································································· 23 6.3 10KV侧线路保护······································································································································ 24 6.4 并联电容器组保护····································································································································· 24 6.5 变压器备用电源自投装置 ······················································································································· 25 6.6 10KV分段开关备用自投装置 ··············································································································· 25 第七章 配电装置设计 ········································································································································ 26 7.1 总的原则 ······················································································································································ 26 7.2 设计要求 ······················································································································································ 26 7.2.1 满足安全净距的要求 ························································································································· 26 7.2.2 施工、运行和检修的要求 ················································································································ 26 7.2.2.1 施工要求········································································································································· 26 7.2.2.2 运行要求········································································································································· 27 7.2.2.3 检修要求········································································································································· 27 7.2.3 噪音的允许标准及限制措施 ············································································································ 28 第八章 过电压防雷保护 ··································································································································· 29 8.1 直击雷的保护范围和保护措施 ·············································································································· 29 8.2 避雷针保护对象 ········································································································································· 29

IX

8.2 避雷针保护范围的计算···························································································································· 29 第二部分 计算书 ················································································································································· 31 第一章 变压器容量的确定 ······························································································································· 31 第二章 短路计算 ················································································································································· 31 2.1 元件参数计算·············································································································································· 31 2.2 网络变换 ······················································································································································ 32 2.3 分支系数、转移电抗、计算电抗·········································································································· 32 2.4 基准值的计算·············································································································································· 34 2.5 冲击电流: ·················································································································································· 34 2.6 短路容量的计算 ········································································································································· 34 第三章 设备的选择 ············································································································································ 36 3.1 断路器的选择·············································································································································· 36 3.1.1 60KV侧断路器的选择 ······················································································································ 36 3.1.2 10KV侧高压断路器的选择 ············································································································· 37 3.2 电流湖互感器的校验 ································································································································ 37 3.2.1 60KV侧LCW-60型电流互感器校验 ··························································································· 37 3.2.2 10KV侧LAJ-10型电流互感器校验 ····························································································· 38 3.3 母线的选择和校验····································································································································· 38 3.4 补偿装置容量的确定 ································································································································ 39 第四章 过电压防雷保护 ································································································································· 40 4.1 单支避雷针的保护范围···························································································································· 40 4.2 两支等高避雷针的保护范围··················································································································· 41 设计总结 ································································································································································ 41 致谢 ········································································································································································· 42 参考文献 ································································································································································ 43

X

引言

随着电网的规模的迅速扩大,电压等级和自动化水平的不断提高,供电部门为适

应市场机制,加强科技进步和提高经济效益就成为电力经营管理关注的重点问题。发展形式要求城乡变电站尽快实现无人值班。从国内外电网发展的情况看,变电站采取无人值班是电网的科学管理水平和科技进步的重要标志。因此,在发达国家或地区的电网中。无人值班变电站已从35~110kv扩大到了220kv,甚至向更高电压等级的变电站方向发展,由此可见无人值班变电站是大势所趋。

在我国,无人值班运行管理不是个新话题,早在50年代末60年代初,许多供电局就曾进行过变电站无人值班的试点,当时采用的是原苏联的技术,并且风行一时,但后来由于技术的不完善,还有管理和认识上的种种原因。多少地区没有坚持下去。80年代以后,随着自动化技术的发展和完善,特别是人们对变电站无人值班认识的提高。郑州、深圳、大连、广州等地区出现了大量的无人值班变电站,就据有关资料介绍,到1996年底,全国已有600余座无人值班变电站。而到1997年底已达到1000余座。

近年来,随着电网的发展,原电力工业部和国家电力公司先后颁布了有关变电站无人值班工作的意见和要求。目前有关无人值班变电站设计规程正在编写之中,不久即将正式颁发,这些文件的颁布与实施必然大大推动变电站无人值班工作更快发展。

待设计变电所是60/10KV地区一般性变电所,分别有近期负荷和远期负荷两种负荷方案。其10KV侧供电负荷出线共有16回,重要负荷有10回,占总负荷的34.16%,为了保证供电的可靠性和一次性满足远期负荷的要求,本设计将按照远期负荷规划进行设计建设,从而保证该变电所能够长期可靠供电。

本设计是我们在校期间进行的一次比较系统,具体,完整的颇为重要的设计,它是我们将在校期间所学的专业知识进行理论与实践的很好结合,在我们的大学生活中占有极其重要的作用,是学生在校期间最后一个重要的综合性实践教学环节,是学生全面运用所学基础理论、专业知识和基本技能,对实际问题进行设计(或研究)的综合性训练。也是我们将来走向工作岗为奠定良好基石的实践。通过毕业设计,可以培养我们运用所学知识解决实际问题的能力和创新能力,增强工程观念,以便更好地适应工作的需要。

1

第一部分 说明书 第一章 原始资料分析

该变电所为一般性的地区终端变电所,电压等级为60/10KV,有4回进线,根据《变电所设计技术规程》60KV侧需用单母分段主接线,由于低压侧有16回出线,所以可采用单母分段带旁路接线。因为地势平坦、交通方便且年平均气温为10℃,所以主变压器的运输是没有问题的,变压器冷却方式也可以选风冷。

第二章 主变压器的选择

2.1 变电所主变压器的容量和台数

2.1.1 变压器容量的确定

对于一般性的地区变电所,一般按变电所建成后5~10年的规划负荷选择,并要适当考虑到远期10~20年负荷发展。在原始材料中给出了10KV侧负荷表、线损率、变电所的平均功率因数。由此已知条件可得出远期最大总负荷:

P∑·

1.05%COS? P∑─总负荷

对于该变电所,当一台主变压器停运时,另一台变压器应能保证全部负荷的70%~80%,所以总负荷乘以75%,得出得结果为一台变压器所要保证的负荷容量,根据该容量确定变压器的容量。

2.1.2 主变压器的台数的确定

由于该变电所为一般的地区终端变电所,也时造纸厂专用变电所,所以装设两台主变压器为宜。

2.2 主变压器型式的选择

2.2.1 相数的选择

根据主变压器相数选择原则可知:当不受运输条件限制时,330KV及以下(待

2

设变电所为60/10KV)的变电所,均应选用三相变压器。

2.2.2 主变压器绕组的数量

待设变电所深入引进至负荷中心,是具有直接从高压降为低压供电条件的变电所,所以为简化电压等级或减少重复降压容量,可采用双绕组变压器。

2.2.3 绕组连接方式

我国35KV以上采用Y连接,其中中性点通过消弧线圈接地。35KV以下采用Δ连接。

综上所述,该变电所主变压器选用SF7-20000/63 SF7-20000/63概述:

该电力变压器用于额定频率50Hz,电压等级为63KV,容量为20000KVA的输变电线或变电所中,作传输电能和改变电压用,可在户外连续工作。 油浸式变压器的基本组成有铁心、线圈、器身、油箱、调压装置、冷却装置、出线装置及测量保护装置等部分。

线圈高压部分采用多层分段连式,低压部分采用螺旋式结构。

调压装置的高压绕组抽分接头,无励磁调压分接头开关,调压范围为+5%及+2×2.5两种。

冷却装置为三相风冷。联结组标号为YN, d1

3

第三章 电气主接线的选择

我国《变电所设计技术规程》SDJ2-79规定:“变电所的主接线根据变电所在电力系统的地位、回路数、设计特点及负荷性质等条件确定,并且应满足运行可靠、简单灵活、操作方便和节约投资等要求。”

3.1 主接线方案

主接线的初步设计至少给出两种方案,以便在审核中进行比较。根据系统和负荷性质的要求,主接线方案初步给出以下两种。 第一种方案 图3.1

4 一次侧采用单母分段接线,二次侧采用单母分段带旁路母线的主接线。 第二种方案 一次侧采用单母线分段接线,二次侧采用双母分段的主接线。 图3.2 3.1.1 主接线方案的确定 以上两个方案中,主接线一次侧方案相同,只比较二次侧方案。

第一方案的特点如下:用断路器把母线分段后,对主要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障切除,通过旁路给重要负荷继续供电,保证正常段母线不间断供电和不致主要用户停电。缺点:当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间停电,且影响主变压器的负荷分配;当出线为双回路时,常使架空线路出现交叉跨越,扩建使需要向两个方向均衡扩建。

第二个方案的特点如下:供电可靠,通过两组母线的隔离开关的倒闸操作,可以轮流检修一组母线而不致使供电中断;一组母线故障后,能迅速恢复供电;

5

检修任意一组母线的隔离开关,只停回路;调度灵活,各个电源和各回路负荷可以任意分配到某一组母线上,能灵活的适应系统中各种运行方式调度和潮流变化的需要;扩建方便,向双母线的左右任何一个方向扩建,均不影响两组母线的电源和负荷均匀分配,不会引起原有回路停电。当有双回架空线路时,可以顺序布置,从致连接不同的母线段时,不会如单母分段那样导致出线交叉跨越;便于实验,当个别回路需要单独进行实验时,可将该回路分开,单独接至一组母线上。缺点:增加一组母线和使每回路就需要增加一组母线隔离开关;当母线故障或检修时,隔离开关作为倒闸操作电器,容易误操作,为了避免隔离开关误操作,需在隔离开关和断路器之间装设连锁装置。

从经济性来看,由于两种方案变压器型号和容量的选择均相同,所以只是比较中和综合造价。显而易见,第二中方案不经济。

从可靠性来看,第一种方案由于当一段母线或断路器发生故障时,使得变压器负荷分配不均匀。而第二种方案不存在这种状况,所以第二种方案可靠性较高,但对于一座一般性的地区终端变电所,第一种方案的可靠性可以满足。 从运行灵活性来看,第一种方案比第二种方案的倒闸操作要简便。 通过以上的比较,可以发现第一种方案投资少、可靠满足、操作简便为主要优点,第二种方案可靠性高、扩建方便为主要优点。考虑综合因素选第一种方案为本变电所的主接线方案。

3.1.2 主接线二次方案的几点说明

1、主接线二次母线采用单母分段目的是,当一段母线或母线隔离开关出现故障时,由母线隔离开关把故障段隔离,保证完好段母线继续向用户供电、,可减少停电范围。

2、考虑对用户不间断供电,设置了旁路柜和旁路母线,这样当某一个出线回路断路器或其他设备故障检修时,可通过旁路回路仍向该回路不断供电。 3、原则上每段线设置一组电压互感器,而本方案在二次母线上只设置了一组电压互感器,这就要求除了一段母线故障检修时母联隔离分段时,平时无论一台变压器运行还是两台变压器运行都不允许母联隔离分段。 4、所用变设置两台变压器,其中一台处于备用状态。

6

第四章 短路电流计算

短路计算的目的时为了电气元件的选择和校验,还有母线的选择和校验。

4.1 电路元件参数计算

4.1.1 基准值计算

高压短路电流计算一般只计算发电机、变压器、线路的电抗,采用标幺值计算。为了计算方便,通常只取基准容量SB=100MVA,基准电压UB一般取各级平均电压,即

UB=1.05Ue Ue—额定电压。

当基准容量SB(MVA)与基准电压UB(KV)选定后,基准电流IB(KA)已决

定: IB=

SB3UB

4.1.2 各元件参数标幺值的计算

计算公式如下:

发电机电抗标幺值:

X*d″=Xd″×

SBPe/cos?

Xd″—电机次暂态电抗百分值;

Pe—指电机额定容量。

20MVAV、63MVA变压器电抗标幺值:

X*d=Ud×

USBSe

d—变压器短路电压的百分值;

SBSe/cos?Se—最大容量绕组的额定容量,单位MVA。

电力系统标幺值:X*S″=X*d×

SBU2B

线路标幺值: X?=

7

4.2 网络变换 在网络简化中,对短路点具有局部对称或全部对称的网络,同电位的点可以短接,其间的电抗可以略去,如图4-1所示。 GGGGGGSBLBB60KVBBL60KV60KV60KVf1f2L60KV10KVB10KVS

图4.1 由于五台发电机和变压器的型式、电压等级都相同,可以简化;72Km、44Km两回线路可简化,而系统和很它相连的72Km电线也可简化,如图4-1所示。

4.3 分支系数的计算

XGS?X?G∥X?S

CS?XGSXG CG?XGSXS

4.4 转移电抗、计算电抗的求得

=

XGS?XCS*LXGS?X XfG*LXfS=

CG

8

X?S=X=jS1XfS X=XjSfS?5?SGSB

经过电路点f1、f2的短路电流的标幺值可通过查 《电力工程电气设计手册 (电气一次部分)》 中得汽轮机运算曲线数字表来取得 0 S、 0.6 S、 1.2 S、4 S 的短路电流标幺值。短路电流得有名值可通过标幺值乘以基准值(I=I*·IB)得,其结果如表4-1所示。

短路电流计算结果 表4.1

短路点 短路持续时间(s) 0 项目 标幺值 有名值 标幺值 有名值 标幺值 有名值 标幺值 有名值 标幺值 有名值 标幺值 有名值 标幺值 有名值 标幺值 有名值 G(1~5) 0.829 0.759 0.799 0.732 0.870 0.797 0.882 0.808 0.504 2.645 0.509 2.672 0.513 2.693 0.513 2.693 S 0.861 0.789 0.861 0.789 0.861 0.789 0.861 0.789 0.523 2.745 0.523 2.745 0.523 2.745 0.523 2.745 流过电路点的电流(KA) 1.548 0.6 f1 1.2 1.521 1.586 4 1.597 0 5.390 0.6 f2 1.2 5.417 5.438 4

5.438 4.5 冲击电流的求得

三相短路发生后得半个周期(t=0.01S),短路电流的瞬时值达到最大,称为

9

冲击电流ich,其值按下式计算: 冲击电流的瞬时值:

ich=2kchI″

式中:kch—冲击系数,可从《电力工程电气设计手册 (电气

一次部分)》中的表4-15查得。

I″—0s的短路电流。 冲击电流的有效值:

Ich=1?2(Kch?1)I″ (1?2(Kch?1)=1.52)

224.6 短路容量的求得

当供电电源为无穷大的时候,不考虑短路电流周期分量得衰减。

短路点f1: X???X?G1//X?S1?X?L

=

SBX??

Sf1

所有的短路计算结果如计算书中表2 -1所示。

10

第五章 电气设备的选择

5.1 高压断路器的选择

断路器及其操动机构应按下表所列的技术条件选择。

断路器参数选择 表5.1 项目 正常工作条件 短路稳定性 承受过电压能力 技术条件 参数 电压、电流、频率、机械负荷 动稳定电流、热稳定电流和持续时间 对地和断口间的绝缘水平、泄露比距 开端电流、短路关合电流、操作循环、操作次数、操作性能 操作相数、分合闸时间及同期性、对过电压的限制、某些特需的开断电流、操动机构 环境温度、日温差、最大环境 环境保护 风速、相对湿度、污秽、海拔高度、地震烈度 噪音、电磁干扰 环境条件

对于断路器型式的选择,除应满足各项技术要求和环境条件外,还应考虑便于施工调试和运行维护,并经经济比较后确定。该变电所所选的是六氟化硫断路器,其综合条件满足要求,而且六氟化硫断路器是目前的主流产品。

校验开断能力的量,在校验断路器的断流能力时,应用开断电流代替断流容量。一般取断路器实际开断时间(继电保护动作时间与断路器固有分闸时间之和)的短路电流作为校验条件。

设备的选择应该以最大运行方式下得最大短路电流作为依据,为了计算方便

11

本设计在设备选择中把系统容量视为无穷大电源,这样假设对于设备选择校验是偏于保守得。无穷大电源的特点视短路电流周期分量不衰减,即 It″=I0″=I,其短路电流周期分量衰减系数β″=1

5.1.1 60KV侧高压断路器得选择

60KV侧高压断路器得最大长期工作电流计算如下: 控制20MVA变压器得断路器, Igmax=1.05·

S3Ve

根据最大长期工作电流和网络额定电压,七台均断路器选用OFI-63 其断路器的参数如表5-2所示。

60KV高压断路器技术参数表 表5.2

定短路开断电定电型号 压(KV) 高工作电压(KV) 流定电流(额定稳定50 5 定短路关合电流(额定动稳定电3 10V 路电流 有分闸时间闸时间不大于 定开断时间 Hz) 3 (KA) (KA) 制回(A) 3s热(ms) (ms) 电流) 流) OFPI-63

校验:根据系统设计要求60KV侧继电保护动作时间为0.5s,燃弧时间为0.05s。 t?tg?tb?th 式中:tg—断路器固有分闸时间;

tb—断路器继电保护时间(取后备保护第二段保护时间); th—断路器触头开断燃弧时间;

12

3 25 30 20

由于β″=1

则tfz=taβ″2查tz=f(t,β″)曲线得 tz 故短路电流发热等值时间为: tdz?tfz?tz

260KV侧短路发热量为: I??tdz

式中: tfz—短路电流非周期分量发热等值时间;

tz—短路电流周期分量发热等值时间; tdz—短路电流全电流发热等值时间; 断路器触头开断计算时间为:tk?tg?tb

因为t>0.1s,断路器触头开断的瞬间短路电流为:I=I″

60KV侧得计算数据列于计算书表2中。

OPFI-63 概述:该产品为瓷瓶式,由三个相同得单级和操作机构组成。没级由底座、下瓷瓶和上瓷瓶组成。传动机构室置于底座下部,下瓷瓶作对地绝缘用,中间由操作杆通过。上瓷瓶内装由灭弧室,合闸时触头向上运动,灭弧室垂直安装。其技术数据见表5-2。

5.1.2 10KV侧高压断路器的选择

看断路器的规定可知,35KV及以下的场所可以选用真空断路器,因为35KV及以下的线路开断次数比较多,从真空断路器的技术参数表中看出可以满足要求,而且真空断路器也是主流产品。低压母线上有电容补偿装置,电容器可以通过真空断路器投切更安全、跟稳定。

10KV侧的变压器二次侧总受断路器的最大长期工作电流计算如下: Igmax=1.05

Se3Ve

根据最大长期工作电流和网络的电压断路器选为ZN4-10C型真空断路器。 校验:ZN4-10型真空断路器的固有合闸时间为0.05s,取继电保护整定时间为

0.05s,则短路电流持续时间:

t?tg?tb?th

13

tfz=taβ″

查tg=f(t,β″)曲线得tz, tdz?tfz?tz 断路器触头开断计算时间为: tk?tg?tb

因为tk>0.1s,断路器触头开断瞬间的短路电流为:Ikb=I″

10KV其他馈出线断路器得选择,除了最大长期工作电流按每个回路得最大负荷电流计算外,其余参数均相同,且每个回路得最大负荷电流均小于变压器回路得电流,故变压器二次侧出口的断路器选ZN12-10Ⅰ型,各负荷支路选ZN4-10C型真空断路器,它的计算数据合参数比较列于计算书表3中。

ZN12-10Ⅰ型真空断路器概述:ZN12-10Ⅰ型真空断路器概述;ZN12-10型交流高压真空断路器为额定电压10KV、三相交流50Hz的户内高压开关设备,示引进德国西门子公司技术制造的产品。本断路器的操动机构为弹簧储能式,可以用交流或支流操作,亦可手动操作。本断路器结构简单,开断能力强,寿命长,操作功能齐全,无爆炸危险,维修简便,适用于发电厂、变电所等输配电系统的控制或保护开关,尤其适用于开断重要负荷及频繁操作的场所。其技术参数如表3所示。

ZN4-10C型真空断路器概述;ZN4-10C型交流真空断路器系三相交流50Hz的配电装置,用于10KV及以下配电网络或电缆线路中,作为高压线路的频繁操作和短路快速开断之用。本真空断路器配有专用的直流电磁操动机构,适用于配电网络或电缆线路中的配电开关、电厂厂用电开关、电炉及其他负荷开关。本真空断路器配用于开关柜中,ZN4-10C型为手推车式,可以装在固定开关柜内。其技术参数如表5-3所示。

真空断路器技术参数表 表5.3

额定电压(KV) 最大工作电压(KV) 额定电流(A) 额定开断电流(KA) 极限通过电流 峰值(KA)

ZN12-10Ⅰ 10 11.5 1250 31.5 80 14

ZN4-10C 10 11.5 600 17.3 44

最大关合电流 峰值(KA) 3s、4s热稳定电流(KA) 固分时间(s) 固合时间(s) 机械寿命(次) 额定短路电流开断次数(次)

80 31.5 ≤0.065(0.045) ≤0.075 10000 10000 44 17.3 <0.05 (配CT8为:<0.06) <0.2 10000 16 5.2 隔离开关的选择

断路器及其操动机构应按下表所列的技术条件选择。

隔离开关参数选择 表5.4 项目 正常工作条件 短路稳定电压 技术条件 承受过电压 操作性能 参数 电压、电流、频率、机械荷载 动稳定电流、热稳定电流和持续时间 对地和断口之间的绝缘水平、泄露比距 分合小电流、旁路电流和母线环流,操作机构 环境温度、最大风速、覆冰厚度、相对温度、污秽、相对湿度、海拔高度、地震烈度 环境保护 电磁干扰 环境条件 环境

隔离开关的选择除了不校验开断电流以外,其余与断路器的选择相同。因为隔离开关与断路器串联在回路中,网络出现短路故障时,对隔离开关的影响完全

15

取决于断路器的开断时间。故计算数据与断路器选择时的计算数据完全相同。

5.2.1 60KV侧隔离开关的选择

本设计方案60KV侧其设置16组隔离开关,为了便于储备元件均选用同类型的隔离开关,即GW4-60G/630型。GW系列的隔开关是220KV及以下,系列较全,双柱式,可高型布置,重量较轻,可手动,电动操作。计算数据合隔离开关的参数列于表5-5中。

60KV隔离开关技术参数表 表5.5

计算参数 VgGW4-60G/630 60KV Ve Ieip2 63KV 630A 20KA 14?5 2Igmax192.45A 6.854KA 0.81?0.55 2 ich2I??tdzIth?t

5.2.2 10KV侧隔离开关的选择

为了购买合检修的方便,10KV侧的隔离开关均选用GN9-10/1250-40型。其计算数据合技术参数列于表5-6中。

10KV隔离开关技术参数表表 表5.6

计算参数 VgGN9-10/1250-40 10KV Ve Ieip 10KV 1250A 40KA 20?5 2Igmax1102.214A 23.863KA 9.4772 ich2I??tdz?0.575 Ith?t2

5.3 互感器的选择

跟断路器和隔离开关一样,如下表所示。

16

电流互感器的参数选择 表5.7 项目 正常工作条件 技术条件 短路稳定性 参数 一次回路电压,一次回路电流,二次回路电流,二次侧负荷,准确度等级,暂太特性,二次级数量,机械荷载 动稳定倍数、热稳定倍数 承受过电压能力 绝缘水平,泄露比距 环境条件

电压互感器的参数选择 表5.8 环境温度,最大风速相对湿度,污秽,海拔高度,地震烈度 项目 正常工作条件 级,机械荷载 参数 一次回路电压,二次电压,二次负荷,准确度等技术条件 承受过电压能力 绝缘水平,泄露比距 环境条件

环境温度,最大风速相对湿度,污秽,海拔高度,地震烈度 5.3.1 电压互感器的选择

电压互感器的选择根据额定电压、装置种类、结构形式、准确度级以及按副边负载选择。而副边负荷是在确定二次回路方案以后方可计算。故互感器初选形式如表5-9所示。

电压互感器技术参数表 表5.9

形式 JCC1-60 JYZJ-10

最大容2000 400 60/10/额定电压变比(KA) 额定容量(VA) 1级 500 80 3级 1000 200 量(VA) 原线圈 副线圈 辅助线圈 0.5级 3 0.1/3 0.1/3 0.1/3 0.1/3 50 3 由于电压互感器与电网并联。当系统发生短路时,互感器本身并不遭受短路电流的作用,因此不需要校验动稳定与热稳定。

17

5.3.2 电流互感器的选择

1、 60KV侧电流互感器的选择

根据电压等级合电流互感器安装处的长期最大工作电流,可选LCW-6型号的电流互感器。电流互感器的参数如表6所示。

60KV电流互感器技术参数表 表5.10

秒定 电 压V 0.5级 1级 D级 欧姆 倍数 CW-60

动稳定校验公式:

0 2×200/5 0.5/1 1.2 1.2 1.5 热额定电流比 次组合 额定二次阻抗(Ω) 10%倍数 稳定倍数 75 200 稳定倍数 型号 2IcKem<6.845

2

热稳定校验公式:(IeKch)·t I?tdz<2.25×10 2、10KV侧电流互感器的选择

10KV侧电流互感器可根据安装地点合最大长期工作电流来选择。电流互感器的参数如表5-11所示。

10KV电流互感器技术参数表 表5.11 28

额定型号 电压KV LAJ-10

10 额定二次负荷额定电流比 额定组合 0.5级 1500/5 0.5/D 1.6 VA D级 0.8 10%倍数 欧姆 2/3 倍数 /10 一秒热稳定倍数 50 动稳定倍数 90 动稳定合热稳定校验与60KV侧的电流互感器的校验公式是相同的。

18

5.4 补偿装置的选择

该变电所装设补偿装置是为了提高变电所的平均功率因数。并联电容补偿装置,对于终端变电所主要是为了提高电压和补偿主变压器的无功损耗,因此并联电容补偿装置满足要求。

并联电容补偿装置容量选择:对于直接供电的末端变电所,安装的最大容性无功量应等于装置所在母线上的负荷按提高功率因数所需补偿的最大容性无功量与主变压器所需补偿的最大容量之和。

1、负荷所需补偿的最大容性无功量计算公式为:

Qc,f,m=Pfm(∣tg?1∣-∣tg?2∣)=Pfm1cos?12?1-

1cos?22?1

=PfmQcf0

式中: Qc,f,m — 负荷所需补偿的最大容性无功量(Kvar); Pfm — 母线上的最大有功负荷(KW); ?1 — 补偿前的最大功率因数角(°); ?2— 补偿后的最小功率因数角(°)

cos?2值不应小于《电力工程电气设计手册 (电气一次部

分)》表9-6中规定的允许值,并应尽量满足《电力工程电气

设计手册 (电气一次部分)》中表9-7所列数值。

Qcf0— 由cos?1补偿到cos?2时,每KW有功负荷所需补偿的容性

无功量(Kvar/KW),其值见《电力工程设计手册 (电气一次

部分)》 表9-8。

2、主变压器所需补偿的最大容性无功计算式为: Qcb,m=(

Ud%Im100Ie22?I0?%?100)Se

式中:Qcb,m—主变压器所需补偿的最大容性无功;

Ud(%)—需要进行补偿的变压器一侧的阻抗电压百分值(%); Im—母线装设补偿装置后,通过变压器需要补偿一侧的最大负荷电流值

19

(A);

Ie—变压器需要补偿一侧的额定电流值(A); I0%—变压器空载电流百分值(%);

Se—变压器需要补偿一侧的额定容量(KVA);

Qc,f,m+Qcb,m就是所需并联电容补偿装置的容量。根据容量和电压等级选用的并联电容补偿装置为TBB10.5-12000/100-D 型并联补偿置。

TBB10.5-12000/100-D 型补偿装置的概述;TBB并联补偿成套装置主要用于6~35KV、50Hz的电力系统中,作为一种改善功率因数、调整电压、降低网络损耗的容性无功功率补偿装置。TBB系列补偿装置由开关柜、进线保护柜、电抗器柜、电容器柜、放电柜、联线柜(根据需要)等组成。开关柜内装高压隔离开关、高压断路器、电流互感器及继电器、仪表。开关柜一般选用GBC-35、GFC-15、GG-1A。电抗器柜内装电抗器,进线分为内电缆进线和外母排进线。柜框架由角钢制成,表面装有门网,每面框架现场可装卸。进线柜内装接地开关、氧化锌、避雷器及放电线圈等,柜壳由角钢和钢板制成,前后有板门。进线有左右上母排,左、右下电缆之分。电容器柜内装电容器和熔断器。其技术参数如表5-12所示。

并联电容补偿装置技术参数表 表5.12 型号 额定电压(KV) 额定频率(Hz) 标称总容量(Kvar) 单台额定容量(Kvar) K=6% 装置额定电流(A) 电容器额定电压(KV) 装置额定电流(A) 电容器额定电压(KV) 电容器数量(台) 电容器相数量(面)

20

TBB1.05-9000/100-A 10.5 50 9000 100 472 11/3 433 12/3 900 6 K=12%

5.5 母线的选择

5.6.1 60KV 侧母线的选择

按最大长期工作电流选:

Igmax=192.45A

在《电气工程设计手册 1 》中查得,应选的母线为LMY-20×3(平放) Ip=204>192.45

为了使导线统一和购进材料得方便,60KV侧的所有母线均选用LMY-20×3型母线。

5.6.2 10KV 侧母线选择e

由于10KV侧的母线承受着较大的负荷电流,传输容量也较大,根据规定应按经济电流密度选择。

远期最大负荷运行小时为7000h,故查手册得经济电流密度Je=0.9A/mm2,则经济截面为:

Igmax Se=

Je=

1102.2140.9=1224.68mm2

按最大长期工作校验,查手查手册得2(80×8)=12880mm2的母线。 水平放置、环境温度为40℃时,允许流量为:

Ip=1291A>1102.214A。

热稳定校验使用的公式为:

Smin=

I?CtdzKf

动稳定校验:选取绝缘子的跨度L为开关柜的宽度L=1200mm,相间距离a=250mm,在短路电流作用下单位长度所受的最大电动力为: f=1.73ich21a?10?7 F=f×L

在电动力的作用下母线所受的最大弯矩为:M=FL/8 因为母线采用水平放置,其截面系数:W=bh2/6

21

母线材料的最大计算应力为:?max=M/W 查手册得母线允许应力为:?p

比较?max和来?p校验所选母线的动稳定性。

5.6 避雷器的选择

该变电所为中性点非直接接地系统,所以根据下表选择避雷器。

中性点非直接接地系统中保护变压器中型点绝缘的阀型避雷器 表5.13

变压器额定电压 避雷器型式

35 FZ-15+FZ-10

FZ-30 FZ-35

63 FZ-40 FZ-60

110 FZ-110J 4×FZ-15

由上表可知60KV侧避雷器选用FZ-60型,10KV侧选用FS-10型。

5.7 主要设备表

所选高压电器设备的型号、规格及参数列于下表中。

表5.14

名称 型号及规格 OFPI-63 单位 数量 组 组 组 台 台 台 台 台 组 组 7 16 2 2 1 5 20 2 1 8 隔离开关 ZN4-10C ZN12-10Ⅰ 电压互感器 JCC′-60 JYZJ-10 LCW-60 LAJ-10 SF7-20000/63 FZ-60 FS-10 22

电流互感器 变压器 避雷器

第六章 继电保护及自动装置规划设计

该变电所采用微机保护。

6.1 60KV线路保护

1、对于单相接地故障,应装设单相接地监视装置。

监视装置反映于零序电压,动作于信号。如果单相接地电流较大或保护反应接地电流的暂态值等,也可将保护装置接于三相电流互感器构成的零序回路中 2、相间保护:采用三段电流保护

根据《继电保护和安全自动装置技术规程》要求;35KV及以上中性点非直接接地电力网中的线路保护,可装设两段电流速断保护和过电流保护,必要时保护应具有方向性。

第一段保护是无时限电流速断保护,作为线路的主保护,使被保护线路一部分或大部分的相同故障能油选择性地瞬时切除,由于保护区伸向变压器,所以采用三相一次重合闸纠正保护动作的选择性。

第二段采用限时电流速断保护,与电压器差动保护配合获得选择性。 第三段为过电流保护,是后备保护。 3、断路器失灵保护

在母线分段断路器上装设相电流保护,作为母线充电合闸的保护。 4、电流差动保护

电流差动保护采用三相式,一带速饱和特性的电流继电器作为启动元件,两段母线均各自独立装设,并分别接有复合电压闭锁元件,各自闭锁相应的母线保护出口回路,以提高其可靠性。

6.2 主变压器保护

1、瓦斯保护

瓦斯保护分为重瓦斯保护和轻瓦斯保护。重瓦斯保护动作于跳闸,而轻瓦斯保护动作于发警报信号。

瓦斯保护范围应能反应油箱内部发生的各种故障,不能反应油箱以外的套管及引线等部位上发生的故障,因此瓦斯保护应于纵差动保护相互配合、相互补充。 瓦斯保护装置接线由信号回路和跳闸回路组成,变压器内部发生轻微故障时,继电器触头闭合,发出瞬时“轻瓦斯保护动作”信号。变压器内部发生严重故障时,油箱内产生大量气体,强烈的油流冲击挡板,继电器触头闭合,发出重

23

瓦斯跳闸脉冲,跳开变压器个侧断路器。因重瓦斯继电器触头有可能瞬时接通,故跳闸回路中要加自保持回路。变压器严重漏油使油面降低时,继电器动作,同样发出轻“瓦斯动作”信号。 2、纵差动保护

采用二次谐波制动带比率制动特性的变压器差动保护,并以不带延时的差流速断保护作为差动保护的辅助保护。

纵差动保护反应于变压器绕组、套管几引出线上的故障,并动作于跳闸。

补充说明:瓦斯保护、纵差动保护和不带延时的差流保护为主变压器的主保护,动作后,独立出口跳主变压器一次、二次侧及电容器开关。

3、对外部相间短路引起的变压器过电流,装设过电流保护。主变压器一次、二次侧及电容器开关。当用主变压器二次开关对10KV母线充电时,具有瞬时加速低过电流保护跳主变压器二次侧的措施,该保护为后备保护。 4过负荷保护延时作用于报警信号。 5低压断线保护延时作用于报警信号。

6风冷消失跳主变各侧断路器或发报警信号。 7温度过高跳主变各侧断路器或发报警信号。

6.3 10KV侧线路保护

1、对10KV母线采用不完全差动式母线保护,保护仅接入有电源支路的电流。 保护由两段组成:其第一段无时限或带时限的电流速断保护,

当灵敏系数不符合要求时,可采用电流闭锁电压速断保护,第二段采用过电流保护,当灵敏系数不符合要求时,可将一部分负荷较大的配电线路接入差动保护回路,以降低保护的起动电流。

2、过电流保护也可装设两段,第一段为不带时限的电流速断保护;第二段为带时限的过电流保护,保护装置可采用反时限特性的继电器。 3、三相一次重合闸。 4、低调减载保护。

6.4 并联电容器组保护

1、三相过电压保护。 2、相间低电压保护。

3、零序过电压保护(接于放电PT的开口三角)。

24

6.5 变压器备用电源自投装置

带负荷的线路故障或主变内部故障时,变压器备用电源自投装置启动。 启动条件:检测运行变压器10KV母线无电压,60KV侧无电流,

并检测备用变压器线路端有电压后,经延时后跳运行变压器一、二次侧开关。

6.6 10KV分段开关备用自投装置

两台主变分别带10KV一段母线附和时,任意一条60KV供电线路或一台主变发生故障,10KV备用电源自投装置启动,将分段开关合上。

启动条件:检测故障侧10KV母线无电压,60KV侧无电流,非故障侧10KV母线有电压,经延时后跳开故障侧变压器一、二次侧开关,确认其开关已跳开后,检测故障变压器二次开关 和10KV分段开关在开位后,自投10KV段开关。

25

第七章 配电装置设计

7.1 总的原则

高压配电装置的设计必须认真贯彻国家的设计经济政策,遵循上级颁发的有关规程、规范及技术规定,并根据电力系统条件、自然环境特点和运行、检修、施工方面的要求,合理制定布置方案和选用设备,积极慎重地采用新布置、新设备、新材料、新结构,使配电装置设计不断创新,做到技术先进、经济合理、运行可靠、维护方便。

变电所的的配电装置型式选择,应考虑所在地区的地理情况及环境条件,因地制宜,节约用地,并结合运行、检修和安装要求,通过技术经济比较予以确定。在确定配电装置型式时,必须满足下列四点要求。 1、节约用地;

2、运行安全和操作巡视方便; 3、便于检修和安装; 4、节约三材、降低造价。

7.2 设计要求

7.2.1 满足安全净距的要求

60KV侧屋外配电装置的安全净距不应小于规定值。

10KV侧屋内配电装置的安全净距不应小于规定值 ,配电装置中相邻带电部分的额定电压不同时,应按较高的额定电压确定其安全净距。屋外配电装置带电部分的上面或下面,不应有照明、通信和信号线路架空跨越或穿过;屋内配电装置带电部分的上面不应有明敷的照明或动力线路跨越。

7.2.2 施工、运行和检修的要求

7.2.2.1 施工要求

1、配电装置的结构在满足安全安全运行的前提下应尽量予以简化,

并考虑构件的标准化和工厂化减少构架类型,以达到节省三材、缩短工期的目的。 2、配电装置的设计要考虑安装检修时设备搬运及起吊的便利。

3、工艺布置设计应考虑土建施工误差,确保电气安全距离的要求,一般不宜选用规程规定的最小值,而应留有适当余度(5cm)左右这在屋内配电装置的设计

26

中更要引起重视。

4、配电装置的设计必须考虑分期建设和扩建的便利。 7.2.2.2 运行要求

1、各级电压配电装置之间,以及它们和各种建(构)筑物之间的距离和相对位置,应按最终规模统筹规划,充分考虑运行的安全和便利。 配电装置的方法应应由下列因素综合考虑确定: 1) 进出线方向;

2) 避免或减少各级电压架空出线的交叉;

3) 缩短主变压器各侧引线的长度,避免交叉,并注意平面布置的整体性。 2、配电装置的布置应该做到整齐清晰,各个间隔之间要有明显的界限,对同一用途的同类设备,尽可能布置在统一中心线上(指屋外),或处于同一标高(指屋内)。

1)架空出线间隔的排列应根据出线走廊规划的要求,尽量避免线路交叉,并与终端塔的位置配合,当配电装置为单列布置时,应考虑尽可能不在以上相邻间隔时引出架空线。

各级电压配电装置个回路的相序排列应尽量一致,一般为面对出线电流流出方向自左至右、有远到近、从上到下按A、B、C相顺序排列。对硬导体应颜色。色别为:A相黄色,B相绿色,C相红色。对绞线一般只标明相别。 2) 配电装置内应设有供操作、巡视用的通道。

屋外配电装置的通道宽度可取0.8~1.0m,也可利用电缆沟盖板作为部分巡视小道。

屋内配电装置各种通道的最小宽度(净距)不应小于规定值。 7.2.2.3 检修要求

为保证检修人员在检修电器及母线时的安全,对断路器两侧的隔离开关和线路隔离开关的线路侧,宜配置接地刀闸;每段母线上宜装设接地刀闸或接地器。其装设数量主要按作用在母线上的电磁感应电压确定,在一般情况下,每段母线宜装设二组接地刀闸或接地器,其中包括母线电压互感器隔离开关的接地刀闸。这可以从该变电所的电气主接线图中看到。

屋内配电装置间隔内的硬导体及接地线上,应留有接触面和连接端子,以便携带式接地线。

27

7.2.3 噪音的允许标准及限制措施

配电装置设计应重视对噪音的控制,降低有关运行场所的连续噪音级。配电装置中的主要噪音源是主变压器、电抗器及电晕放电,其中以前者最为严重,故设计时必须注意主变与主(网)控楼(室),通信楼(室)及办公楼的相对位置和距离,尽量避免平行相对布置,以便使变电所内个建筑的室内连续噪音级不超过允许值。

28

第八章 过电压防雷保护

8.1 直击雷的保护范围和保护措施

变电所的屋外配电装置,这包括组合导线和母线廊道,应装设直击雷保护装置。为保护其他设备而装设的避雷针不宜装在独立的主控制室和10KV的高压屋内配电装置室的顶上。

变电所必须进行防雷保护的对象和措施,详见下表

8.2 避雷针保护对象

表7.1

序号 1 2 建筑物及构筑物名称 35KV屋外配电装置 屋外安装的变压器 建筑物的结构特点 钢筋混凝土结构 防雷措施 装设独立避雷针 装设独立避雷针 装设独立避雷针;在不能装设独立避雷针时可以考3 屋外组合导线及母线桥 虑在附近主厂房屋顶装设避雷针,但应满足规定要求。 钢筋焊接成网并接地 钢筋焊接成网并接地 4 5 屋内配电装置 变压器检修间 钢筋混凝土结构 钢筋混凝土结构 8.2 避雷针保护范围的计算

1、单支避雷针的保护范围

假如避雷针的高度为15m,即h=15m,被保护无的最高高度为8.5m,即

hx=8.5m 因为hx>h

229

1

所以避雷针在8.5m水平面上的保护半径:

rx=(h-hx)p

p—避雷针高度影响系数,当 h≤30m是,p=1。

2、两支等高避雷针保护范围

两针间的保护最低点高度h0按下式计算:

h0 =h-

D7p D-------两支间的距离

该变电所装设四根15m避雷针,计算1#针、1#和2#针、1#和3#针间的保护范围,即可确定避雷针的装设位置,如防雷保护图所示。

30

第三章 设备的选择

3.1 断路器的选择

3.1.1 60KV侧断路器的选择

60KV高压断路器的最大长期工作电流:

Igmax=1.05×

S3Ve=1.05×

200003?63=192.45

短路电流持续时间为:t=tg+tb+th=0.03+0.5+0.05=0.58(s) 由于β\=1,则tfz=Taβ

\2=0.05×1=0.05(s)

查tz=f(t,β\)曲线得tz=0.5(s)

故短路电流发热等值时间为:tdz= tfz+ tz=0.05+0.5=0.55(s)

260KV侧短路发热量为:I?tdj=1.5972×0.55

断路器触头开断计算时间为:tK=tg+tb=0.03+0.5=0.53(s) 因为t﹥0.1s。断路器触头开断瞬间的短路电流为: I=I″=1.597(KA)

其计算数据和技术参数如表3-1所示。

计算数据与断路器参数对照表 表3.1 计算数据 VgOFPI-63 60KV Ve IeIeip2 63KV 1250A 63KA 25KA 252×1 Igmax192.45A 1.547KA 3.947KA 1.8972×0.55 Ikdich2I??tdzIth?t

从上表的列表可见:60KV侧选用OFPI-63型断路器满足要求。

36

3.1.2 10KV侧高压断路器的选择

10KV侧高压断路器的最大长期工作电流:

Igmax=1.05×

200003?11=1102.214A

短路电流持续时间:t=tg+tb+th=0.05+0.5+0.05=0.6(s) 断路器触头开断计算时间:tK=tg+tb=0.05+0.5=0.53(s) 因为tK﹥0.1s,断路器触头开断瞬间的短路电流为:

Ikd=I″=9.477KA

=Ta?″2=0.075×1=0.075(s) =tfz+ tz=0.075+0.6=0.675(s)

t=tg+tb+th=0.075+0.5+0.05=0.625(s)

tfz查tg= f(t,β\)曲线得tz=0.6(s)则

tdz因为tK﹥0.1s,断路器触头瞬间的短路电流为:Ikd=I″=5.438(KA) 由上所知,10KV侧高压断路器选为ZN4-10C型,断路器计算数据和参数列于表3-2中。

计算数据与断路器参数对照表 表3.2 计算数据 VgZN4-10C 10KV Ve IeIeip 10KV 17.3KA 17.3KA 25KA 17.3?4 2Igmax1102.214A 5.438KA 13.745KA 9.471?0.5752 Ikdich2I??tdz Ith?t2

3.2 电流湖互感器的校验

3.2.1 60KV侧LCW-60型电流互感器校验

校验动稳定:

2IeKem=2×200×200=56.568KA>6.854

37

校验热稳定:

?Iekch?2?t=?200I??tdz2?75??1=2.25×10

28

=1.5972?0.55<2.25×108

因此,所选电流互感器满足动稳定和热稳定要求。

3.2.2 10KV侧LAJ-10型电流互感器校验

校验动稳定:

2×1500×90=190.918KA>23.863KA

校验热稳定:

?Iekch?2?t=?1500I??tdz2?50??1=56.25×1028

=17.32?4<56.25×108

经校验 LAG-10型电流互感器满足动稳定和热稳定要求。

3.3 母线的选择和校验

1、60KV侧已在说明书中选好,采用LMY-25×3型母线,该母线不用校验。 2、10KV侧母线的选择和校验

最大负荷运行小时为7000h,故查手册得经济电流密度Je=0.9A/mm2,则经济截面为:

Se=

IgmaxJe=

1102.2140.9=1224.68 mm2

按最大长期工作电流校验,查手册得2(80×8)=1280mm2,母线水平放置环境温度为40℃时允许流量为:Ip=1291A>1102.214A 校验热稳定:

S≥

I?Ctj?kf=

543897?0.6=43.43mm2

满足热稳定要求。 校验动稳定:

在短路电流作用下单位高度所受的最大电动力为:

2?f=1.73ich1a?10?7=130.74N/m

38

F= f·L=130.74×1.2=156.89N

在电动力的作用下母线所受的最大弯矩为:

M=

FL8156.89?1.28==23.53N·m

因为母线采用水平放置。其截面系数为:

W=σ

bh62=

MW8?10?3?80?106??3?2=8.53×10?6m3

=max=

23.538.53?10?6=2.76MPa

母线材料的最大计算应力为:

查得铝母线允许应力为50~70MPa,所以所选母线满足动稳定要求。

3.4 补偿装置容量的确定

1、主变压器所需补偿的最大容性无功量计算式:

Se=3UeIe Ie=

Se3Ue=

200003?11=1049.728

QCB,m2?Ud?%?ImI0?%????·Sa ?=?2100??100Ie??9?1102.21420.9???=??100?1049.7282100?×20000=2164.5(Kvar)

??2、负荷所需的最大容性无功量计算式为:

Pfm=4800+3100+2900+2700+1800+1700+1800+1900+2000 =22700(KW)

Qwf,m=Pfm?tg?1?tg?2?=PfmQcf0=22700×0.27=6129(Kvar)

并联电容补偿装置容量为不小于6129+2164.5=7949.08(Kvar) 校验:通过查表得主变压器的总损耗:99+27.5=126.5(KW) 10KV母线上的感性无功功率为:

4800×0.45+3100×0.48+2900×0.48+2700×0.48+1800×0.53+1700×0.52+1800×0.52+1900×0.53+2000×0.62=11357(KW)

39

补偿后的变压器高压侧的无功功率是10KV母线上的无功功率+电容补偿装置的容性无功,即11357-18000×0.27=6497(KW)

(0.27为从0.8补偿到0.9每KW容性无功量所需的补偿容量,单位Kvar/KW) 变压器高压侧的有功功率为变压器的总损耗+负荷的总有功功率,即126.5+22700=22826.5(KW) 变压器补偿后的功率因数为:所选的补偿装置满足要求。

22826.522826.5?649722=0.96﹥0.9

第四章 过电压防雷保护

4.1 单支避雷针的保护范围

假设避雷针的高度为15mm,即h=15mm,被保护物的最大高度为8.5mm 即hx=8.5mm,因为hx<

12h

40

本文来源:https://www.bwwdw.com/article/tyj5.html

Top