Mirror World and its Cosmological Consequences
更新时间:2023-05-30 17:50:01 阅读量: 实用文档 文档下载
- mirror推荐度:
- 相关推荐
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
February1,200822:54WSPC/INSTRUCTIONFILEzurig-berez
3
2
c
e
D
3
2
1
v
53
3
2
1
3
/
h
p
-
p
e
:hv
iX
r
aInternationalJournalofModernPhysicsA cWorldScienti cPublishingCompanyMIRRORWORLDANDITSCOSMOLOGICALCONSEQUENCESZURABBEREZHIANIDipartimentodiFisica,Universit`adiL’Aquila,67010Coppito,L’Aquila,andINFN,LaboratoriNazionalidelGranSasso,67010Assergi,L’Aquila,Italy;e-mail:berezhiani@fe.infn.itWebrie yreviewtheconceptofaparallel‘mirror’worldwhichhasthesameparticlephysicsastheobservableworldandcouplestothelatterbygravityandperhapsotherveryweakforces.Thenucleosynthesisboundsdemandthatthemirrorworldshouldhaveasmallertemperaturethantheordinaryone.Bythisreasonitsevolutionshouldsubstan-tiallydeviatefromthestandardcosmologyasfarasthecrucialepochslikebaryogenesis,nucleosynthesisetc.areconcerned.Inparticular,weshowthatinthecontextofcertainbaryogenesisscenarios,thebaryonasymmetryinthemirrorworldshouldbelargerthanintheobservableone.Moreover,weshowthatmirrorbaryonscouldnaturallyconsti-tutethedominantdarkmattercomponentoftheUniverse,anddiscussitscosmologicalimplications.Keywords:Extensionsofthestandardmodel;baryogenesis;darkmatter1.IntroductionTheoldideathattherecanexistahiddenmirrorsectorofparticlesandinteractionswhichistheexactduplicateofourvisibleworldhasattractedasigni cantinterestoverthelastyears.Thebasicconceptistohaveatheorygivenbytheproduct
G×G′oftwoidenticalgaugefactorswiththeidenticalparticlecontents,whichcouldnaturallyemergee.g.inthecontextofE8′
Inparticular,onecanconsideraminimalsymmetry×E8superstring.
GSM
SU(2)×U(1)standsforthestandardmodelofobservable×G′SM,whereGSM=SU(3)×particles:threefamiliesofquarksandleptonsandtheHiggs,whileG′SM=[SU(3)×SU(2)×U(1)]′isitsmirrorgaugecounterpartwithanalogousparticlecontent:threefamiliesofmirrorquarksandleptonsandthemirrorHiggs.(Fromnowonall eldsandquantitiesofthemirror(M)sectorwillbemarkedby′todistinguishfromtheonesbelongingtotheobservableorordinary(O)world.)TheM-particlesaresingletsofGSMandviceversa,theO-particlesaresingletsofG′SM.Besidesthegravity,thetwosectorscouldcommunicatebyothermeans.Inparticular,ordinaryphotonscouldhavekineticmixingwithmirrorphotons2,34,ordinary(active)neutrinoscouldmixwithmirror(sterile)7neutrinosortwosectorscouldhaveacommongaugesymmetryof avour.
AdiscretesymmetryP(G G′)interchangingcorresponding eldsofGandG′,socalledmirrorparity,guaranteesthatbothparticlesectorsaredescribedby
1
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
2ZurabBerezhiani
thesameLagrangians,withallcouplingconstants(gauge,Yukawa,Higgs)havingthesamepattern,andthustheirmicrophysicsisthesame.
Ifthemirrorsectorexists,thentheUniversealongwiththeordinaryphotons,neutrinos,baryons,etc.shouldcontaintheirmirrorpartners.OnecouldnaivelythinkthatduetomirrorparitytheordinaryandmirrorparticlesshouldhavethesamecosmologicalabundancesandhencetheO-andM-sectorsshouldhavethesamecosmologicalevolution.However,thiswouldbeintheimmediatecon ictwiththeBigBangnucleosynthesis(BBN)boundsonthee ectivenumberofextralightneutrinos,sincethemirrorphotons,electronsandneutrinoswouldgiveacontribu-tiontotheHubbleexpansionrateequivalentto Nν
UniversetheM-systemshouldhavealowertemperature 6.14.thanTherefore,ordinaryinparticles.theearlyThissituationisplausibleifthefollowingconditionsaresatis ed:
A.AftertheBigBangthetwosystemsarebornwithdi erenttemperatures,namelythepost-in ationaryreheatingtemperatureintheM-sectorislowerthaninthevisibleone,TR′<TR.Thiscanbenaturallyachievedincertainmodels8,9,10.
B.Thetwosystemsinteractveryweakly,sothattheydonotcomeintothermalequilibriumwitheachotherafterreheating.Thisconditionisautomaticallyful lledifthetwoworldscommunicateonlyviagravity.Iftherearesomeothere ectivecouplingsbetweentheO-andM-particles,theyhavetobeproperlysuppressed.
C.Bothsystemsexpandadiabatically,withoutsigni cantentropyproduction.Ifthetwosectorshavedi erentreheatingtemperatures,duringtheexpansionoftheUniversetheyevolveindependentlyandtheirtemperaturesremaindi erentatlaterstages,T′<T,thenthepresenceoftheM-sectorwouldnota ectprimordialnucleosynthesisintheordinaryworld.
Atpresent,thetemperatureofordinaryrelicphotonsisT≈2.75K,andthemassdensityofordinarybaryonsconstitutesabout5%ofthecriticaldensity.MirrorphotonsshouldhavesmallertemperatureT′<T,sotheirnumberdensityisn′γ=x3nγ,wherex=T′/T.ThisratioisakeyparameterinourfurtherconsiderationssinceitremainsnearlyinvariantduringtheexpansionoftheUniverse.boundon Nνimpliestheupperboundx<0.64 Nν1/4TheBBN.Asformirrorbaryons,adhoctheirnumberdensityn′bcanbelargerthannb,andiftheratioβ=n′b/nbisabout5orso,theycouldconstitutethedarkmatteroftheUniverse.
Inthispaperwestudythecosmologyofthemirrorsectoranddiscussthecom-parativetimehistoryofthetwosectorsintheearlyUniverse.Weshowthatduetothetemperaturedi erence,inthemirrorsectorallkeyepochsasthebaryoge-nesis,nucleosynthesis,etc.proceedatsomewhatdi erentconditionsthanintheobservableUniverse.Inparticular,weshowthatincertainbaryogenesisscenariostheM-worldgetsalarger11baryonasymmetrythantheO-sector,anditisprettyplausiblethatβ>1.ThissituationemergesinaparticularlyappealingwayintheleptogenesisscenarioduetotheleptonnumberleakingfromtheO-totheM-sectorwhichleadston′b≥nb,andcanthusexplainthenearcoincidenceofvisibleanddarkcomponentsinarathernaturalway12,13.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...3
2.Mirrorworldandmirrorsymmetry
2.1.Particlesandcouplingsintheordinaryworld
NowadaysalmosteveryparticlephysicistknowsthatparticlephysicsisdescribedbytheStandardModel(SM)basedonthegaugesymmetryGSM=SU(3)×SU(2)×U(1),whichhasachiralfermionpattern:fermionsarerepresentedasWeylspinors,sothattheleft-handed(L)quarksandleptonsψL=qL,lLandright-handed(R)onesψR=qR,lRtransformdi erentlyundertheSU(2)×U(1)gaugefactor.Moreprecisely,thefermioncontentisthefollowing:
lL= νL
qL= eL uL
dL ~(1,2, 1);lR= NR~(1,1,0)(?)~(3,2,1/3);qR= eRu~(1,1, 2)R
dR~~(3(3,,11,,4 /23)/3),(1)
wherethebracketsexplicitlyindicatetheSU(3)andSU(2)contentofthemultipletsandtheirU(1)hypercharges.Inaddition,oneprescribesagloballeptonchargeL=1totheleptonslL,lRandabaryonchargeB=1/3toquarksqL,qR,sothatbaryonsconsistingofthreequarkshaveB=1.
TheSU(2)×U(1)symmetryisspontaneouslybrokenatthescalev=174GeVandW±,Zgaugebosonsbecomemassive.AtthesametimechargedfermionsgetmassesviatheYukawacouplings(i,j=1,2,3arethefermiongenerationindexes)
LYuk=YijudRqLjφd+Yije
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
4ZurabBerezhiani
However,onecansimplyrede nethenotionofparticles,namely,tocallψL, LasL-particlesandψ ψ
R,ψR,asRantiparticles
L fermions:ψL,ψ L;R antifermions:ψ R,ψR(5)
Hence,thestandardmodel elds,includingHiggses,canberecastedas:a
L set:(q,l,u ,d, e ,N )L,φu,φd;R set:( q, l,u,d,e,N)R,φ u,φ d(6)whereφ u,d=φ u,d,andthetheYukawaLagrangian(2)canberewrittenas
LYuk=u TYuqφu+d TYdqφd+e TYelφd+h.c.(7)
wheretheC-matrixaswellasthefamilyindicesareomittedforsimplicity.
Intheabsenceofright-handedsingletsNtherearenorenormalizableYukawacouplingswhichcouldgenerateneutrinomasses.However,oncethehigherordertermsareallowed,theneutrinoscouldgetMajoranamassesviatheD=5operators:
Aij
ItisconvenienttoparametrizetheirmassmatrixasM2(MijNiNj+Mij N iN j).
ij=GijM,whereMisa
typicalmassscaleandGisamatrixofdimensionless
theotherhand,theN Yukawa-likeconstants.On
statescancoupletolviaYukawatermsanalogousto(7),
andthusthewholesetofYukawatermsobtainthepattern:
lTYNφ u+M
10.InSO(10)
modelallLfermionsin(5)sitinonerepresentationL~16,whiletheRanti-fermionssitinR ~
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...5
symmetricwithrespecttoexchangeoftheLparticlestotheRones.Inparticular,thegaugebosonsofSU(2)coupletotheψL eldsbutdonotcoupletoψR.Infact,inthelimitofunbrokenSU(2)×U(1)symmetry,ψLandψRareessentiallyindependentparticleswithdi erentquantumnumbers.Theonlyreasonwhywecalle.g.stateseL lLandeRrespectivelytheleft-andright-handedelectrons,isthataftertheelectroweakbreakingdowntoU(1)emthesetwohavethesameelectricchargesandformamassiveDiracfermionψe=eL+eR.
Nowwhatwecallparticles(1),theweakinteractionsareleft-handed(V A)sinceonlytheL-statescoupletotheSU(2)gaugebosons.Intermsofantiparticles
(3),theweakinteractionswouldberight-handed(V+A),sincenowonlyRstatescoupletotheSU(2)bosons.Clearly,onecouldalwaysrede nethenotionofparticlesandantiparticles,torenameparticlesasantiparticlesandviceversa.Clearly,thenaturalchoiceforwhattocallparticlesisgivenbythecontentofmatterinourUniverse.Matter,atleastinourgalaxyanditsneighbourhoods,consistsofbaryonsqwhileantibaryonsq canbemetonlyinacceleratorsorperhapsincosmicrays.However,ifbychancewewouldliveintheantibaryonicislandoftheUniverse,wewouldclaimthatourweakinteractionsareright-handed.
InthecontextoftheSMoritsgranduni edextensions,theonlygoodsymmetrybetweentheleftandrightcouldbetheCPsymmetrybetweenL-particlesandR-antiparticles.E.g.,theYukawacouplings(7)inexplicitformread
L=( uTYuqφu+d TYdqφd+e TYelφd)L+(uTYu q φ u+dTYd q φ d+eTYe lφ d)R(10)However,althoughthese
theL-particlesandR termsarewritteninansymmetricmannerintermsof
-antiparticles,theyarenotinvariantunderL→R dueto
irremovablecomplexphasesintheYukawacouplingmatrices.Hence,Naturedoesnotrespectthesymmetrybetweenparticlesandantiparticles,butratherappliestheprinciplethat”theonlygooddiscretesymmetryisabrokensymmetry”.
Itisaphilosophicalquestion,whoandhowhaspreparedourUniverseattheinitialstatetoprovideanexcessofbaryonsoverantibaryons,andtherefore xedapriorityoftheV AformoftheweakinteractionsovertheV+Aone.ItisappealingtothinkthatthebaryonasymmetryitselfemergesduetotheCP-violatingfeaturesintheparticleinteractions,anditisrelatedtosomefundamentalphysicsbeyondtheStandardModelwhichisresponsiblefortheprimordialbaryogenesis.
2.2.ParticlesandcouplingsintheO-andM-worlds
Letusassumenowthatthereexistsamirrorsectorwhichhasthesamegaugegroupandthesameparticlecontentastheordinaryone.Intheminimalversion,whentheO-sectorisdescribedbythegaugesymmetryGSM=SU(3)×SU(2)×U(1)withtheobservablefermionsandHiggses(6),theM-sectorwouldbegivenbythegaugegroupG′SM=SU(3)′×SU(2)′×U(1)′withtheanalogousparticlecontent:L′ set:(q′,l′,u ′,d ′,e ′,N ′)L,φ′u,φ′d;R ′ set:( q′, l′,u′,d′,e′,N′)R,φ ′u,φ ′d(11)
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
6ZurabBerezhiani
Inmoregeneralview,onecanconsiderasupersymmetrictheorywithagaugesymmetryG×G′basedongranduni cationgroupsasSU(5)×SU(5)′,SO(10)×SO(10)′,etc.ThegaugefactorGoftheO-sectorcontainsthevectorgaugesuper eldsV,andleftchiralmatter(fermionandHiggs)super eldsLaincertainrepresentationsofG,whileG′standsfortheM-sectorwiththegaugesu-per eldsV′,andleftchiralmattersuper eldsL′a~rainanalogousrepresentationsofG′.
TheLagrangianhasaformLgauge+Lmat.ThematterLagrangianisdeterminedbytheformofthesuperpotentialwhichisaholomorphicfunctionofLsuper eldsandingeneralitcancontainanygaugeinvariantcombinationofthelatter:
W=(MabLaLb+gabcLaLbLc)+(Mab′L′aL′b+g′abcL′aL′bL′c)+...(12)ly,wehave
Lmat= dθ2W(L)+h.c.(13)
or,inexplicitform,
Lmat= dθ2(MabLaLb+gabcLaLbLc+Mab′L′aL′b+g′abcL′aL′bL′c)
+ d
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...7
Eithertypeofparityimpliesthatthetwosectorshavethesameparticlephysics.cIfthetwosectorsareseparateanddonotinteractbyforcesotherthangravity,thedi erencebetweenDandPparitiesisrathersymbolicanddoesnothaveanyprofoundimplications.However,inscenarioswithsomeparticlemessengersbetweenthetwosectorsthisdi erencecanbeimportantandcanhavedynamicalconsequences.
2.3.CouplingsbetweenO-andM-particles
Nowwediscuss,whatcommonforcescouldexistbetweentheO-andM-particles,includingmatter eldsandgauge elds.
GSM ×KineticG′mixingtermbetweentheO-andM-photons2,3,4.InthecontextofSM,thegeneralLagrangiancancontainthegaugeinvariantterm
L= χBµνB′µν,(19)
whereBµν= µBν νBµ,andanalogouslyforB′µν,whereBµandB′µaregauge eldsoftheabeliangaugefactorsU(1)andU(1)′.Obviously,aftertheelectroweaksymmetrybreaking,thistermgivesrisetoakineticmixingtermbetweenthe eld-strengthtensorsoftheO-andM-photons:
L= εFµνFµν′(20)
withε=ξcos2θW.Thereisnosymmetryreasonforsuppressingthisterm,andgenerallytheconstantεcouldbeoforder1.
Ontheotherhand,experimentallimitsontheorthopositroniumannihilationimplyastrongupperboundonε.Thisisbecauseonehastodiagonalize rstthekinetictermsoftheAµandA′µstatesandidentifythephysicalphotonasacertainlinearcombinationofthelatter.Onehastonoticethatafterthekinetictermsarebroughttocanonicalformbydiagonalizationandscalingofthe elds,(A,A′)→(A1,A2),anyorthonormalcombinationofstatesA1andA2becomesgoodtodescribethephysicalbasis.Inparticular,A2canbechosenasa”sterile”statewhichdoesnotcoupletoO-particlesbutonlytoM-particles.Then,theorthogonalcombinationA1couplesnotonlytoO-particles,butalsowithM-particleswithasmallcharge∝2ε–inotherwords,mirror14matterbecomes”milicharged”withrespecttothephysicalordinaryphoton2,.Inthisway,theterm(20)shouldinducetheprocesse+e →.e′+e′ ,withanamplitudejust2εtimesthes-channelamplitudefore+e →e+e Bythisdiagram,orthopositroniumwouldoscillateintoitsmirrorcounterpart,whichwouldbeseenasaninvisibledecaymodeexceedingexperimentallimitsunlessε<5×10 7orso3.
cThemirrorparitycouldbespontaneouslybrokenandtheweakinteractionscales φ =vand φ′ =v′couldbedi erent,whichleadstosomewhatdi erentparticlephysicsinthemirrorsector.Themodelswithspontaneoulsybrokenparityandtheirimplicationswereconsideredinrefs.6,9,10.Inthispaperwemostlyconcentrateonthecasewithexactmirrorparity.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
8ZurabBerezhiani
Forexplainingnaturallythesmallnessofthekineticmixingterm(20)one
needs
to
invoketheconcept
of
grand
uni cation.
Obviously,
the
term
(19)isforbiddenifGSM×G′SMisembeddedinGUTslikeSU(5)×SU(5)′orSO(10)×SO(10)′whichdonotcontainabelianfactors.However,giventhatbothSU(5)andSU(5)′symmetriesarebrokendowntotheirSU(3)×SU(2)×U(1)subgroupsbytheHiggs24-pletsΦandΦ′,itcouldemergefromthehigherordere ectiveoperator
L= ζ
ij
2M(liφ)(ljφ)+A′
(liφ)(l′jφ′
M)+h.c.,(22)
The rstoperatorineq.(22),duetotheordinaryHiggsvacuumVEV φ =v~100GeV,theninducesthesmallMajoranamassesoftheordinary(active)neutrinos.SincethemirrorHiggsφ′alsohasanon-zeroVEV φ′ =v′,thesecondopera-torthenprovidesthemassesoftheM-neutrinos(whichinfactaresterilefortheordinaryobserver),and nally,thethirdoperatorinducesthemixingmassterms
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...9
betweentheactiveandsterileneutrinos.Thetotalmassmatrixofneutrinosν landν′ l′readsas6:
Mν= mνmνν′
mTν′ =1νν′m
2MabNaNb+h.c.(24)
Inthisway,Nplaytheroleofmessengersbetweenordinaryandmirrorparti-cles.Afterintegratingouttheseheavystates,theoperators(22)areinducedwithA=YG 1YT,A′=Y′G 1Y′TandD=YG 1Y′T.InthenextsectionweshowthatinadditiontheNstatescanmediateLandCPviolatingscatteringprocessesbetweentheO-andM-sectorswhichcouldprovideanewmechanismforprimordialleptogenesis.
ItisconvenienttopresenttheheavyneutrinomassmatrixasMab=GabM,MbeingtheoverallmassscaleandGabsometypicalYukawaconstants.Withoutlossofgenerality,Gabcanbetakendiagonalandreal.UnderPorDparities,ingeneralsomeofthestatesNawouldhavepositiveparity,whileotherscouldhaveanegativeone.
Onetheotherhand,theYukawamatricesingeneralremainnon-diagonalandcomplex.ThenDparitywouldimplythatY′=Y,whilePparityimplesY′=Y (c.f.(16)and(18)).
InteractiontermbetweentheO-quarticandM-interactionHiggses.IntermthebetweencontextoftheGSM
O-and×G′SM,
thegaugesymmetryallowsalsoaM-Higgsdoubletsφandφ′:
λ(φ φ)(φ′ φ′)(25)
Thistermiscosmologicallydangerous,sinceitwould
equilibriumintheearlyUniverseviainteractionsφφ¯bringthetwosectorsinto
→φ¯′φ′unlessλisunnaturally
small,λ<10 8.9
However,thistermcanbeproperlysuppressedbysupersymmetry.InthiscasestandardHiggsesφu,dbecomechiralsuper eldsaswellastheirmirrorpartnersφ′u,d,andsotheminimalgaugeinvarianttermbetweentheO-andM-Higgsesinthesuperpotentialhasdimension5:(1/M)(φuφd)(φ′uφ′d),whereMissomebigcuto
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
10ZurabBerezhiani
mass,e.g.oftheorderoftheGUTscaleorPlanckscale.Therefore,thegeneralHiggsLagrangiantakes
L= theform:
d2θ[µφuφd+µφ′uφ′1
d+
M d2θz(φuφd)(φ′uφ′d)+h.c.,wherez=mSθ2beingthesupersymmetrybreak-ingspurionwithmS~100GeV,givesrisetoaquarticscalarterm
λ(φuφd)(φ′uφ′d)+h.c.(28)
withλ~mS/M 1.Thusforµ,mS
stronglysuppressed,andhencearesafe.~100GeV,allthesequarticconstantsare
with MixedO-particlesmultipletsbeingbetweensingletstheofmirrortwosectors.gaugeUntilfactornowG′andwediscussedviceversa,theM-particlessituationbeingsingletsofordinarygaugegroupG.However,inprincipletherecouldbealsosome eldsinmixedrepresentationsofG×G′.Such eldsusuallyemergeifthetwogaugefactorsGandG′areembeddedintoabiggergranduni cationgroupG.Forexample,consideragaugetheorySU(5)×SU(5)′wheretheO-andM-fermionsrespectivelyareinthefollowingleft-chiralmultiplets:L~(¯5+10,1)andL′~(1,5+10,
3πM2Tr[(YY′)2](29)
exactlywhatweexpectedfromthee ectiveoperator
(21).Hence,theheavymixedmultipletsinfactdonotdecoupleandinducetheO-andM-photonkineticmixing
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...11
termproportionaltothesquareoftypicalmasssplittingsinthesemultiplets(~ Φ 2),analogouslytothefamiliarsituationforthephotontoZ-bosonmixinginthestandardmodel.
particles Interactionshavecommonviacommonforcesmediatedgaugebosons.bytheItisgaugeprettybosonspossibleofsomethatO-andadditionalM-symmetrygroupH.Inotherwords,onecanconsideratheorywithagaugegroupG×G′
correspondingly×H,wheretheirO-particlesantiparticlesareareininsomeantirepresentations,representationsofR H,La~ra,and
a
particles,viceversa,wetakeL′~r¯a.AsforM-a
Gpatterniscompatiblewiththe~r¯a,andsoR ′aofmirrorparity(17).~ra.OnlysuchaprescriptionInaddition,inthiscaseH
symmetryautomaticallybecomesvector-likeandsoitwouldhavenoproblemswithaxialanomalieseveniftheparticlecontentsofO-andM-sectorsseparatelyarenotanomaly-freewithrespecttoH.
Letusconsiderthefollowingexample.Thehorizontal avoursymmetrySU(3)Hbetweenthequark-leptonfamiliesseemstobeverypromisingforunderstandingthefermionmassandmixingpattern21,22.Inaddition,itcanbeusefulforcontrol-lingthe avour-changingphenomenainthecontextofsupersymmetry7.Onecanconsidere.g.aGUTwithSU(5)×SU(3)HsymmetrywhereL-fermionsin(6)aretripletsofSU(3)H.SoSU(3)Hhasachiralcharacteranditisnotanomaly-freeunlesssomeextrastatesareintroducedfortheanomalycancellation21.
However,theconceptofmirrorsectormakesthethingseasier.Considere.g.SU(5)×SU(5)′×SU(3)HtheorywithL-fermionsin(6)beingtripletsofSU(3)HwhileL′-fermionsin(11)areanti-triplets.Hence,inthiscasetheSU(3)Hanomaliesoftheordinaryparticlesarecancelledbytheirmirrorpartners.AnotheradvantageisthatinasupersymmetrictheorythegaugeD-termsofSU(3)Hareperfectlycancelledbetweenthetwosectorsandhencetheydonotgiverisetodangerous avour-changingphenomena7.
TheimmediateimplicationofsuchatheorywouldbethemixingofneutralO-bosonstotheirM-partners,ly,oscil-lationsπ0→π′0orK0→K′0becomepossibleandperhapsevendetectableifthehorizontalsymmetrybreakingscaleisnottoohigh.
Anotherexampleisacommonleptonnumber(orB L)symmetrybetweenthetwosectors.LetusassumethatordinaryleptonslhaveleptonchargesL=1underthissymmetrywhilemirroronesl′haveL= 1.Obviously,thissymmetrywouldforbidthe rsttwocouplingsin(22),A,A′=0,whilethethirdtermisallowed–D=0.Hence,‘Majorana’masstermswouldbeabsentbothforO-andM-neutrinosin(23)andsoneutrinoswouldbeDiracparticleshavingnaturally smallmasses,withleftcomponentsνL landrightcomponentsbeingν ′R l.
ThemodelwithcommonPeccei-QuinnsymmetrybetweentheO-andM-sectorswasconsideredin23.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
12ZurabBerezhiani
3.TheexpansionoftheUniverseandthermodynamicsoftheO-andM-sectors
Letusassume,thatafterin ationended,theO-andM-systemsreceiveddi erentreheatingtemperatures,namelyTR>TR′.ThisiscertainlypossibledespitethefactthattwosectorshaveidenticalLagrangians,andcanbenaturallyachievedincertainmodelsofin ation8,9,10.d
Ifthetwosystemsweredecoupledalreadyafterreheating,atlatertimesttheywillhavedi erenttemperaturesT(t)andT′(t),andsodi erentenergyandentropydensities:
ρ(t)=π2
g′ (T′)T′4
30,(30)
s(t)=2π2
g′s(T′)T′3
45.(31)
Thefactorsg ,gsandg′ ,g′saccountingforthee ectivenumberofthedegreesoffreedominthetwosystemscaningeneralbedi erentfromeachother.LetusassumethatduringtheexpansionoftheUniversethetwosectorsevolvewithseparatelyconservedentropies.Thentheratiox≡(s′/s)1/3istimeindependentwhiletheratioofthetemperaturesinthetwosectorsissimplygivenby:
T′(t)
g′s(T′) 1/3.(32)
The Hubbleexpansionrateisdeterminedbythetotalenergydensityρ¯=ρ+ρ′,H=
2t=1.66
ofO-andM-temperatures M=1.66PlT(t)andT′(t), M(33)Plintermswhere
g¯ (T)=g (T)(1+x4),g¯′ (T′)=g′ (T′)(1+x 4).(34)
Inparticular,wehavex=T0′/T0,whereT0,T0′arethepresenttemperaturesoftheO-andM-relicphotons.Infact,xistheonlyfreeparameterinourmodelanditisconstrainedbytheBBNbounds.
Theobservedabundancesoflightelementsareingoodagreementwiththestan-dardnucleosynthesispredictions.AtT~1MeVwehaveg =10.75asitissatu-ratedbyphotonsγ,electronseandthreeneutrinospeciesνe,µ,τ.Thecontributionofmirrorparticles(γ′,e′andν′e,µ,τ)wouldchangeittog¯ =g (1+x4).Deviationsfromg =10.75areusuallyparametrizedintermsofthee ectivenumberofextraneutrinospecies, g=g¯ 10.75=1.75 Nν.Thuswehave:
Nν=6.14·x4.(35)
dForanalogy,twoharmonicoscillatorswiththesamefrequency(e.g.twospringswiththesamematerialandthesamelength)arenotobligedtooscillatewiththesameamplitudes.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...13
Thislimitveryweaklydependson Nν.Namely,theconservativebound Nν<1impliesx<0.64.Inviewofthepresentobservationalsituation,confrontingtheWMAPresultstotheBBNanalysis,theboundseemstobestronger.However,e.g.x=0.3impliesacompletelynegligiblecontribution Nν=0.05.
Asfarasx4
dominatedbythe O-matter1,inarelativisticdensityandepochthepresencetheHubbleoftheexpansionM-sectorratepractically(33)isdoesnota ectthestandardcosmologyoftheearlyordinaryUniverse.However,evenifthetwosectorshavethesamemicrophysics,thecosmologyoftheearlymirrorworldcanbeverydi erentfromthestandardoneasfarasthecrucialepochslikebaryogenesis,nuclesosynthesis,etc.areconcerned.AnyoftheseepochsisrelatedtoaninstantwhentherateoftherelevantparticleprocessΓ(T),whichisgenericallyafunctionofthetemperature,becomesequaltotheHubbleexpansionrateH(T).Obviously,intheM-sectortheseeventstakeplaceearlierthanintheO-sector,andasarule,therelevantprocessesintheformerfreezeoutatlargertemperaturesthaninthelatter.
Inthematterdominationepochthesituationbecomesdi erent.Inparticular,weknowthatordinarybaryonsprovideonlyasmallfractionofthepresentmatterdensity,whereastheobservationaldataindicatethepresenceofdarkmatterwithabout5timeslargerdensity.ItisinterestingtoquestionwhetherthemissingmatterdensityoftheUniversecouldbeduetomirrorbaryons?Inthenextsectionweshowthatthiscouldoccurinaprettynaturalmanner.
ItcanalsobeshownthattheBBNepochinthemirrorworldproceedsdi er-entlyfrom11theordinaryone,anditpredictsdi ly,mirrorheliumabundancecanbeintherangeY4′=0.6 0.8,considerablylargerthantheobservableY4 0.24.
4.BaryogenesisinM-sectorandmirrorbaryonsasdarkmatter
4.1.VisibleanddarkmatterintheUniverse
Thepresentcosmologicalobservationsstronglysupportthemainpredictionsofthein ationaryscenario: rst,theUniverseis at,withtheenergydensityveryclosetothecritical =1,andsecond,primoridaldensityperturbationshavenearly atspectrum,withthespectralindexns
asmallfractionofthepresentenergy≈density,1.Theaboutnon-relativistic m
attributedtothevacuumenergy(cosmologicalterm) Λ 00..7327,matter
24whilegives
.Thethefactrestonlythatis
mand Λareofthesameorder,givesrisetosocalledcosmologicalcoincidenceproblem:whyweliveinanepochwhenρm~ρλ,ifintheearlyUniverseonehadρm ρΛandinthelateUniverseonewouldexpectρm ρΛ?Theanswercanbeonlyrelatedtoanantrophicprinciple:thematterandvacuumenergydensitiesscaledi erentlywiththeexpansionoftheUniverseρm
theyhavetocoincideatsomemoment,andweare∝justa 3andρΛ
hencehappyto∝beconst.,here.Moreover,forsubstantiallylargerρΛnogalaxiescouldbeformedandthustherewouldnotbeanyonetoaskthisthisquestion.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
14ZurabBerezhiani
Ontheotherhand,thematterintheUniversehastwocomponents,visibleanddark: m= b+ d.Thevisiblematterconsistsofbaryonswith b
thedarkmatterwith d 0.044
veryweaklyinteractingwith 0the.22observableisconstitutedmatter.bysomeItishypotheticatantalizingparticlequestion,specieswhilewhythevisibleanddarkcomponentshavesocloseenergydensities?Clearly,theratio
β=ρd
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...15
theO-baryondensitynb.Thus,onecouldquestionwhethertheratioβ=n′b/nbcouldbenaturallyorder1orsomewhatbigger.
ThevisiblematterintheUniverseconsistsofbaryons,whiletheabundanceofantibaryonsisvanishinglysmall.IntheearlyUniverse,attempreaturesT 1GeV,thebaryonsandantibaryonshadpracticallythesamedensities,nb
nbslightlyexceedingn¯thatthebaryonnumberdensitywassmall,≈nBn=¯bwithb,so
nb n¯b nb.Iftherewasnosigni cantentropyproductionafterthebaryogenesisepoch,thebaryonnumberdensitytoentropydensityratiohadtobethesameastoday,B=nB/s≈8×10 11.e
Onecanquestion,whoandhowhaspreparedtheinitialUniversewithsuchasmallexcessofbaryonsoverantibaryons.IntheFriedmanUniversetheinitialbaryonasymmetrycouldbearrangedapriori,intermsofnon-vanishingchemicalpotentialofbaryons.However,thein ationaryparadigmgivesanothertwisttothisquestion,sincein ationdilutesanypreexistingbaryonnumberoftheUniversetozero.Therefore,afterin atondecayandthe(re-)heatingoftheUniverse,thebaryonasymmetryhastobecreatedbysomecosmologicalmechanism.
ThereareseveralrelativelyhonestbaryogenesismechanismsasareGUT25baryo-genesis,leptogenesis,electroweakbaryogenesis,etc.(forareview,seee.g.).TheyareallbasedongeneralprinciplessuggestedlongtimeagobySakharov26:anon-zerobaryonasymmetrycanbeproducedintheinitiallybaryonsymmetricUniverseifthreeconditionsareful lled:B-violation,C-andCP-violationanddeparturefromthermalequilibrium.IntheGUTbaryogenesisorleptogenesisscenariostheseconditionscanbesatis edinthedecaysofheavyparticles.
Atpresentitisnotpossibletosayde nitelywhichoftheknownmechanismsisresponsiblefortheobservedbaryonasymmetryintheordinaryworld.However,itismostlikelythatthebaryonasymmetryinthemirrorworldisproducedbythesamemechanismandmoreover,thepropertiesoftheBandCPviolationprocessesareparametricallythesameinbothcases.Butthemirrorsectorhasalowertemperaturethanordinaryone,andsoatepochsrelevantforbaryogenesistheout-of-equilibriumconditionsshouldbeeasierful lledfortheM-sector.
4.2.BaryogenesisintheO-andM-worlds
Letusconsiderthedi erencebetweentheordinaryandmirrorbaryonasymme-triesontheexampleoftheGUTbaryogenesismechanism.Itistypicallybasedon‘slow’B-andCP-violatingdecaysofasuperheavybosonXintoquarksandleptons,whereslowmeansthatatT<MtheHubbleparameterH(T)isgreaterthanthedecayrateΓ~αM,αbeingthecouplingstrengthofXtofermionsandMitsmass.Theotherreactionratesarealsoofrelevance:inversedecay:ΓI~Γ(M/T)3/2exp( M/T)forT<MX,andtheXbosonmediatedscatteringeInthefollowingweuseB=nB/swhichisrelatedwiththefamiliarη=nB/nγasB≈0.14η.However,BismoreadoptedforfeaturingthebaryonasymmetrysinceitdoesnotdependontimeiftheentropyoftheUniverseisconserved.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
16ZurabBerezhiani
processes:ΓS~nXσ~Aα2T5/M4,wherethefactorAamountsforthepossiblereactionchannels.
The nalBAdependsonthetemperatureatwhichXbosonsgooutfromequilibrium.Onecanintroduceaparameterwhichmeasuresthee ectivenessofdecayattheepochT~M:k=(Γ/H)T=M=0.3¯g 1/2the(αMPl/M).Fork 1theout-of-equilibriumconditionisstronglysatis ed,andperdecayofoneXparticleonegeneratesthebaryonnumberproportionaltotheCP-violatingasymmetryε.Thus,wehaveB=ε/g ,g isanumberofe ectivedegreesoffreedomatT<M.Thelargerkis,thelongerequilibriumismaintainedandthefreeze-outabundanceofXbosonbecomessmaller.Hence,theresultingbaryonnumbertoentropyratiobecomesB=(ε/g )D(k),wherethedampingfactorD(k)isadecreasingfunctionofk.Inparticular,D(k)=1fork 1,whileforkexceedingsomecriticalvaluekc,thedampingisexponential.
Thepresenceofthemirrorsectorpracticallydoesnotaltertheordinarybaryo-genesis.Thee ectiveparticlenumberisg¯ (T)=g (T)(1+x4)andthusthecon-tributionofM-particlestotheHubbleconstantatT~Missuppressedbyasmallfactorx4.
Inthemirrorsectoreverythingshouldoccurinasimilarway,apartfromthefactthatnowatT′
speciesbutbyordinary~Mones:theg¯Hubble′ (T′) constantg′ (T′)(1is+notx 4dominated).Asaconsequence,bythemirrorwehavek′=(Γ/H)|T′=M=kx2.Therefore,thedampingfactorformirrorbaryonasymmetrycanbesimplyobtainedbyreplacingk→k′=kx2inD(k).Inotherwords,thebaryonnumberdensitytoentropydensityratiointheM-worldbecomesB′=n′B/s′ ( /g )D(kx2).SinceD(k)isadecreasingfunctionofk,thenforx<1wehaveD(kx2)>D(k)andthusweconcludethatthemirrorworldalwaysgetsalargerbaryonasymmetrythanthevisibleone,B′>B.fNamely,fork>1thebaryonasymmetryintheO-sectorisdampedbysomefactor–wehaveB (ε/g )D(k)<ε/g ,whileifx2<k 1,thedampingwouldbeirrelevantfortheM-sectorandhenceB′
thisdoesnot ε/g .
However,apriorimeanthat ′bwillbelargerthan b.Sincetheentropydensitiesarerelatedass′/s=x3,fortheratioβ= ′b/ bwehave:
β(x)=n′BD(kx2)
Bs=x3
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...17
longerthaninthemirrorone,andthusordinaryBAcanbesuppressedbyanexponentialBoltzmannfactorwhilethemirrorBAcouldbeproducedstillintheregimek′=kx2 1,whenbaryogenesisD(k′)≈1.However,theGUTpicturehasthefollowinggenericproblem.Inscenariosbasedongranduni cationmodelslikeSU(5),theheavygaugeorHiggsbosondecaysviolateseparatelyBandL,butconserveB L,andso nallyB L=0.Ontheotherhand,thenon-perturbativesphaleronprocesses,whichviolateB+LbutconserveB L,aree ectiveattemperaturesfromabout1012GeVdownto100GeV27.Therefore,ifB+Liserasedbysphalerontransitions,the nalBandLbothwillvanish.
Hence,inarealisticscenariooneactuallyhastoproduceanon-zeroB Lratherthanjustanon-zeroB,afactthatstronglyfavoursthesocalledleptogenesisscenario28.Theseesawmechanismforneutrinomasseso ersanelegantpossibilityofgeneratingnon-zeroB LinCP-violatingdecaysofheavyMajorananeutrinosNintoleptonsandHiggses.ThesedecaysviolateLbutobviouslydonotchangeBandsotheycouldcreateanon-zeroB L= ly,
constants,thedecayratesΓ(N→lφ)andΓ(N→ lφ duetocomplexYukawa
)canbedi erentfromeach
other,sothattheleptonslandanti-leptons lareproducedindi erentamounts.
Whensphaleronsareinequilibrium,theyviolateB+Landsoredistributenon-zeroB ly,the nalvaluesofBandB LarerelatedasB=a(B L),whereaisorder1coe cient,namelya 1/3intheSMandinitssupersymmetricextension25.Hence,theobservedbaryontoentropydensityratio,B≈8×10 11,needstoproduceB L~2×10 10.
However,thecomparativeanalysispresentedabovefortheGUTbaryogenesisintheO-andM-worlds,isessentiallytruealsofortheleptogenesisscenario.Theout-of-equilibriumdecaysofheavyNneutrinosoftheO-sectorwouldproduceanon-zeroB LwhichbeingreprocessedbysphaleronswouldgiveanobservablebaryonasymmetryB=a(B L).Ontheotherhand,thesamedecaysofheavyN′neutrinosoftheM-sectorwouldgivenon-zero(B′ L′)andthusthemirrorbaryonasymmetryB′=a(B′ L′).InordertothermallyproduceheavyneutrinosinbothO-andM-sectors,thelightestofthemshouldhaveamasssmallerthanthereheatingtemperatureTR′intheM-sector,i.e.MN<TR′,TR.ThesituationMN>TR′wouldpreventthermalproductionofN′states,andsonoB′
begeneratedinM-sector.However,onecanconsideralsoscenarioswhen L′wouldbothNandN′statesarenon-thermallyproducedinin atondecays,butwithdi erentamounts.ThenthereheatingofbothsectorsaswellasB LnumbergenerationcanberelatedtothedecaysoftheheavyneutrinosofbothsectorsandhencethesituationTR′<TRcanbenaturallyaccompaniedbyB′>B.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
18ZurabBerezhiani
4.3.BaryogenesisviaOrdinary-Mirrorparticleexchange
Analternativemechanismofleptogenesisbasedonscatteringprocessesratherthanondecaywassuggestedinref.12.Themainideaconsistsinthefollowing.Thereexistssomehidden(shadow)sectorofnewparticleswhicharenotinthermalequi-libriumwiththeordinaryparticleworldasfarasthetwosystemsinteractveryweakly,e.g.iftheyonlycommunicateviagravity.However,othermessengersmaywellexist,namely,superheavygaugesingletslikeright-handedneutrinoswhichcanmediateveryweake ectiveinteractionsbetweentheordinaryandhiddenleptons.Then,anetB LcouldemergeintheUniverseasaresultofCP-violatinge ectsintheunbalancedproductionofhiddenparticlesfromordinaryparticlecollisions.Hereweconsiderthecasewhenthehiddensectorisamirrorone.Asfarastheleptogenesisisconcerned,weconcentrateonlyontheleptonsectorofbothOandMworlds.Thereforeweconsiderthestandardmodel,andamongotherparticlesspecies,concentrateontheleptondoubletsli=(ν,e)i(i=1,2,3isthefamilyindex)andtheHiggsdoubletφfortheO-sector,andontheirmirrorpartnersl′i=(ν′,e′)iandφ′.Theircouplingstotheheavysingletneutrinosaregivenby(24).
Letusdiscussnowtheleptogenesismechanisminourscenario.AcrucialroleinourconsiderationsisplayedbythereheatingtemperatureTR,atwhichthein atondecayandentropyproductionoftheUniverseisover,andafterwhichtheUniverseisdominatedbyarelativisticplasmaofordinaryparticlespecies.Aswediscussedabove,weassumethatafterthepostin ationaryreheating,di erenttemperaturesareestablishedinthetwosectors:TR′<TR,i.e.themirrorsectoriscoolerthanthevisibleone,orultimately,evencompletely“empty”.
Inaddition,thetwoparticlesystemsshouldinteractveryweaklysothattheydonotcomeinthermalequilibriumwitheachotherafterreheating.WeassumethattheheavyneutrinomassesarelargerthanTRandthuscannotbethermallyproduced.Asaresult,theusualleptogenesismechanismviaN→lφdecaysisine ective.
Now,theimportantroleisplayedbyleptonnumberviolatingscatteringsme-diatedbytheheavyneutrinosN.The“cooler”mirrorworldstartstobe“slowly”occupiedduetotheentropytransferfromtheordinarysectorthroughthe L=1reactionsliφ→¯l′kφ¯′,¯liφ¯→l′kφ′.IngeneraltheseprocessesviolateCPduetocomplexYukawacouplingsineq.(24),andsothecross-sectionswithleptonsandanti-leptonsintheinitialstatearedi erentfromeachother.Asaresult,leptonsleaktothemirrorsectormore(orless)e ectivelythanantileptonsandanon-zeroB LisproducedintheUniverse.
Itisimportanttostressthatthismechanismwouldgeneratethebaryonasym-metrynotonlyintheobservablesector,butalsointhemirrorsector.Infact,thetwosectorsarecompletelysimilar,andhavesimilarCP-violatingproperties.Wehavescatteringprocesseswhichtransformtheordinaryparticlesintotheirmirrorpartners,andCP-violatione ectsinthisscatteringowingtothecomplexcouplingconstants.TheseexchangeprocessesareactiveatsomeearlyepochoftheUniverse,
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...19
andtheyareoutofequilibrium.Inthiscase,ahypotheticalOobservershouldde-tectduringthecontactepochthat(i)matterslowly(incomparisontotheUniverseexpansionrate)disappearsfromthethermalbathofourworld,and,inaddition,(ii)particlesandantiparticlesdisappearwithdi erentrates,sothatafterthecontactepochendsup,heobservesthathisworldisleftwithanon-zerobaryonnumberevenifinitiallyitwasbaryonsymmetric.
Ontheotherhand,hismirrorcolleague,Mobserver,wouldseethat(i)mattercreationtakesplaceinhisworld,and(ii)particlesandantiparticlesemergewithdi erentrates.Therefore,afterthecontactepoch,healsowouldobserveanon-zerobaryonnumberinhisworld.
OnewouldnaivelyexpectthatinthiscasethebaryonasymmetriesintheOandMsectorsshouldbeliterallyequal,giventhattheCP-violatingfactorsarethesameforbothsectors.However,weshowthatinreality,theBAintheMsector,sinceitiscolder,canbeaboutanorderofmagnitudebiggerthanintheOsector,asfaraswashingoute ectsaretakenintoaccount.Indeed,thise ectsshouldbemoree cientforthehotterOsectorwhiletheycanbenegligibleforthecolderMsector,whichcouldprovidereasonabledi erencesbetweenthetwoworldsincasetheexchangeprocessisnottoofarfromequilibrium.Thepossiblemarriagebetweendarkmatterandtheleptobaryogenesismechanismiscertainlyanattractivefeatureofourscheme.
ThefastreactionsrelevantfortheO-sector′φ¯′,andthe L=2oneslikelφ→¯lφ¯arethe L=1oneliφ→¯lk,ll→φφetc.Theirtotalratesarecorrespondingly
ΓQn1=1eq
;Q2=Tr(A A)=Tr[(Y Y) G 1(Y Y)G 1
4πM2],(38)
whereneq (1.2/π2)T3isanequilibriumdensityper(bosonic)degreeoffreedom,andthesumistakenoverall avourandisospinindicesofinitialand nalstates.Itisessentialthattheseprocessesstayoutofequilibrium,which
ratesshouldnotexceedmuchtheHubbleparameterH=1.66g1 /2meansthattheirT2/MPlfortem-peraturesT≤TR,whereg isthee ectivenumberofparticledegreesoffreedom,namelyg 100intheSM.Inotherwords,thedimensionlessparameters
k1= Γ1
1/2
k g M2Γ2=2
g1 /2M2(39)
shouldnotbemuchlargerthan1.
LetusnowturntoCP-violation.In L=1processestheCP-oddleptonnum-berasymmetryemergesfromtheinterferencebetweenthetree-levelandone-loopdiagramsof g.1.However,CP-violationtakesalsoplacein L=2processes(see g.2).Thisisaconsequenceoftheveryexistenceofthemirrorsector,namely,it
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
20ZurabBerezhiani
Fig.1.Tree-levelandone-loopdiagramscontributingtotheCP-asymmetriesinlφ→¯l′φ¯′(leftcolumn)andlφ→l′φ′(rightcolumn).
comesfromthecontributionofthemirrorparticlestotheone-loopdiagramsof g.2.Thedirectcalculationgives:g
σ(lφ→¯l′φ¯′) σ(¯lφ¯→l′φ′)=( σ σ′)/2,
σ(lφ→l′φ′) σ(¯lφ¯→¯l′φ¯′)=( σ+ σ′)/2,
σ(lφ→¯lφ¯) σ(¯lφ¯→lφ)= σ;(40)
σ=3JS
32π2M4,(41)
whereSisthec.m.energysquare,J=ImTr[(Y Y) G 1(Y′ Y′)G 2(Y Y)G 1]istheCP-violationparameterandJ′isobtainedfromJbyexchangingY
Y′.Thecontributionsyieldingasymmetries σ′respectivelyforlφ→¯l′φ¯with
′and
lφ→l′φ′channelsemergefromthediagramswithl′φ′insidetheloops,notshownin g.1.
ThisisinperfectagreementwithCPTinvariancethatrequiresthattheto-talcrosssectionsfor
σ¯particleandanti-particlescatteringsareequaltoeachother:¯→X).Indeed,takingintoaccountthatσ(lφ→lφ)=σ
lφ¯(lφ→X)=σ(¯lφ(¯lφ¯→)byCPT,weseethatCPasymmetriesinthe L=1and L=2processesgItisinterestingtonotethatthetree-levelamplitudeforthedominantchannellφ→¯l′φ¯′goesas1/Mandtheradiativecorrectionsas1/M3.Forthechannellφ→l′φ′instead,bothtree-levelandone-loopamplitudesgoas1/M2
forbothlφ→¯l′φ¯.Asaresult,thecrosssectionCPasymmetriesarecomparable
′andlφ→l′φ′channels.
We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should h
MirrorWorld...21
Fig.2.Tree-levelandone-loopdiagramscontributingtotheCP-asymmetryoflφ→¯lφ¯.Theexternalleglabelsidentifytheinitialand nalstateparticles.
shouldberelatedas
σ(lφ→X′) σ(¯lφ¯→X′)= [σ(lφ→¯lφ¯) σ(¯lφ¯→lφ)]= σ,(42)whereX′arethemirrorsector nalstates,¯l′φ¯′andl′φ′.Thatis,the L=1and L=2reactionshaveCPasymmetrieswithequalintensitiesbutoppositesigns.
But,asLvariesineachcasebyadi erentamount,anetleptonnumberdecreaseisproduced,orbetter,anetincreaseofB L∝ σ(recallthattheleptonnumberLisviolatedbythesphaleronprocesses,whileB Lischangedsolelybytheaboveprocesses).
Asfarasweassumethatthemirrorsectoriscoolerandthusdepletedofpar-ticles,theonlyrelevantreactionsaretheoneswithordinaryparticlesintheinitialstate.Hence,theevolutionoftheB LnumberdensityisdeterminedbytheCPasymmetriesshownineqs.(40)andobeystheequation
dnB L σn2eq=1.8×10 3T8
4
g3 /2M4.(44)
hObservethatthemagnitudeoftheproducedB Lstronglydependsonthetemperature,namely,largerB Lshouldbeproducedinthepatcheswheretheplasmaishotter.Inthecosmologicalcontext,thiswouldleadtoasituationwhere,apartfromtheadiabaticdensity/temperatureper-turbations,therealsoemergecorrelatedisocurvature uctuationswithvariableBandLwhichcouldbetestedwiththefuturedataontheCMBanisotropiesandlargescalestructure.
正在阅读:
Mirror World and its Cosmological Consequences05-30
土地管理基础与法规精讲班第16讲作业卷03-21
信息化背景下企业集团的财务管理模式的研究 - 图文05-21
生日感言简短句子11-07
铁路实习报告范本参考04-04
改沟工程施工方案04-21
财政资金安全自查报告03-26
2014学校元旦晚会策划书11-14
- 1Unit 9 Mark Twain - Mirror of America
- 2unite 6 mark twain-mirror of america
- 3Comment on Cosmological Topological Massive Gravitons and Ph
- 4Global Warming and its Effect
- 5Global Warming and its Effect
- 6Introduce China to the world
- 7BBC,World,News
- 8cities around the world
- 9BBC,World,News
- 10Mark Twain—Mirror of America 中英对照翻译
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Cosmological
- Consequences
- Mirror
- World
- its