Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys
更新时间:2023-08-15 04:59:01 阅读量: 人文社科 文档下载
- calculation推荐度:
- 相关推荐
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
J.Serb.Chem.Soc.70(1)9–20(2005)
JSCS–3243UDC546.681'.683':86–034:536.7.001.2OriginalscientificpaperCalculationofthethermodynamicpropertiesoftheGa–Sb–Tlliquidalloys
DRAGANMANASIJEVI]*1,DRAGANA IVKOVI]1,IWAOKATAYAMA2and IVAN
IVKOVI]1
1TechnicalFaculty,UniversityofBelgrade,VJ12,19210Bor,SerbiaandMontenegro
(e-mail:dmanasijevic@tf.bor.ac.yu)and2OsakaUniversity,GraduateSchoolofEngineering,Department
ofMaterialsScienceandProcessing,2-1Yamadaoka,Suita,Osaka565-0871,Japan
(Received21April,revised27May2004)
Abstract:Theresultsofthecalculationofthethermodynamicpropertiesforliquid
Ga–Sb–Tlalloysatthetemperature1073Karepresentedinthispaper.Initially,the
mostappropriatethermodynamicmodelfortheinvestigatedsystemwasselected.
Basedonacomparisonofthevaluescalculatedbydifferentgeometricmodels
(Kohler,Muggianu,Toop,Hillert,Chou)withtheexistingexperimentalbaseddata,
asymmetricmodelsofcalculationweredeterminedtogivethebestresults.The
asymmetricnatureoftheinvestigatedternarysystemwasadditionallyconfirmedby
theChousimilaritycoefficientconcept.Forthesereasons,furthercompletethermo-
dynamiccalculationswereperformedaccordingtotheHillertmodelinfivesections
oftheternaryGa–Sb–Tlsystemfromeachcornerwiththemoleratioofothertwo
componentsbeing9:1;7:3;5:5;3:7and1:9.Theobtainedresultsincludeintegral
excessGibbsenergydependencesoncompositionforalltheinvestigatedsections.
Thecalculatedactivityvaluesat1073Kforallcomponentsaregivenintheformof
parisonbetweenthecalculatedandexperimentallyob-
tainedgalliumactivitiesshowsgoodagreement.
Keywords:thermodynamicsofalloys,Ga–Sb–Tlsystem,geometricmodels,inte-
gralexcessGibbsenergy,activities.
INTRODUCTION
TheGa–Sbbinarysystemisasubsystemofvariouscomplexelectronicmate-rials.Forthisreason,manythermodynamicstudieshavebeencarriedoutonalloysystemscontainingtheGaSbsemiconductingcompound.ThepresentstudywasperformedinordertocreateasetofthermodynamicdataforliquidGa–Sb–Tlter-naryalloyswhichmaybeofuseforfurtherassessmentofthissystemandtoinves-tigatethemutualagreementamongtheresultsobtainedbysomeofthemostfre-quentlyusedmethodsforthepredictionofthermodynamicpropertiesofternarysystemsbasedontheknowndatafortheconstitutivebinaries.
Phone/Fax:++38130424547.
9
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
10MANASIJEVI]etal.
Literaturethermodynamicdatafortheconstitutivebinarysystemsarenumer-ous.DirectcalorimetricmeasurementsoftheGa–Sbbinarysystemhavebeenper-formedbyYazawaetal.,1PredelandStein2andGambinoandBros.3ActivitiesoftheliquidGa–SballoyshavebeenmeasuredbyelectrochemicaltechniquesbyGerasimenkoetal.,4DanilinandYatsenko,5Andersonetal.6andKatayamaetal.,7andvaporpressuremeasurementsbyHsi-Hsiungetal.8andBergmanetal..9
DanilinandYatsenko10usedtheelectromotive-force(EMF)measurementsonfusedsaltstoobtaintheactivityofTlinliquidGa–Tlalloysinthetemperaturerange695–1024Koverthewholecompositionrange.PredelandStein11measuredtheenthalpyofmixingofliquidGa–Tlalloysusinghigh-temperaturecalorimetry,anddeterminedtheentropyofmixingbasedontheresultsofthesolubilityequilib-riaevaluation.Katayamaetal.12performedEMFmeasurementswithzirconiaassolidelectrolyteovertheentirecompositionrangeofliquidGa–Tlalloysinthetemperaturerange973–1273Ktoobtaintheactivityofgallium.
ThermodynamicpropertiesoftheliquidSb–TlalloyswereinvestigatedbyKameda.13BasedontheresultsofEMFmeasurementsinthetemperaturerange953–1230K,negativedeviationsfromRaoult’slawwereobtainedforbothcom-ponentsoverthewholeconcentrationranges.
RecentlyKatayamaetal.14performedEMFmeasurementswithzirconiaassolidelectrolyteintheGa–Sb–Tlsystemandderivedgalliumactivityinthreecrosssectionsfromthegalliumcorner(xSb:xTl=3:1;1:1;1:3)inthetemperaturerange973–1273K.
Asacontributiontoamorecompleteknowledgeofthethermodynamicbe-havioroftheGa–Sb–Tlsystem,theresultsofthecalculationofthermodynamicpropertiesarepresentedinthispaper.TheresultsusingtheHillert,Toop,Kohler,MuggianuandChoumodelswerecomparedtoavailableexperimentaldataandmutuallytoeachother.Aso-obtainedsetofthermodynamicdataforliquidGa–Sb–Tlalloysmaybeusefulforfurtherassessmentofthissystem.
RESULTSANDDISCUSSION
Thereareseveraltraditionalmodelsfromwhichthermodynamicpropertiesofaternarysystemcanbeextrapolatedusingthethreeconstitutivebinarysystemsasbasis.Thesemodelsareclassified,accordingtoHillert,15intotwocategories:sym-metrical(Kohler,16Muggianu17)andasymmetrical(Toop,18Hillert15).
Thebasicanalyticalinterpretationsofthesemodelsaregivenby:
–Kohlermodel16
x1x2öx2x3öEæ2DGEæç÷ç÷DGE=(x1+x2)2DG12+x)+(x;;2323ççx+xx+x÷÷+xxxx++è1è2213ø323ø(1)x1öEæx32+(x3+x1)DG31ççx+x;x+x÷÷è1313ø
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
Ga–Sb–TlLIQUIDALLOYS11
–Muggianumodel17
DGE=4x1x2Eæ1+x1-x21+x2-x1öDG12;ç÷+(1+x1-x2)(1+x2-x1)22øè
4x2x3Eæ1+x2-x31+x3-x2ö+DG23;ç÷+(1+x2-x3)(1+x3-x2)22øè
4x3x1Eæ1+x3-x11+x1-x3ö+DG31;ç÷(1+x3-x1)(1+x1-x3)22øè
x2xEE(x1;1–x1)+3DG13(x1;1–x1)+DG121-x11-x1
x2x3öEæç+(x2+x3)2DG23;çx+xx+x÷÷è2323ø
–Hillertmodel15
DGE=x2xEE(x1;1–x1)+3DG13(x1;1–x1)DG121-x11-x1
xxE+23DG23+(n23;n32)n23n32(3)(2)–Toopmodel18DGE=(4)
wherenij=(1+xi–xj)/2.
Inallgivenequations,DGEandDGEijcorrespondtotheintegralmolarexcessGibbsenergyforternaryandbinarysystems,respectively,wherex1,x2,x3corre-spondtothemolefractionofcomponentsinaninvestigatedternarysystem.
GraphicalinterpretationofthesemodelsisshowninFig.1.
Theuseofasymmetricalmodelwhenanasymmetricalmodelismoreappro-priatecanoftengiverisetoerrors.Categorizationofaninvestigatedternarysystemintooneortheotherofthesetwocategoriesisinsomecases,especiallywhenade-quateexperimentaldataarelacking,anuncertaintask.Also,adifferentchoiceofthearrangementofthethreecomponentstothethreeapexesofthetriangleinthecaseoftheapplicationofanasymmetricmodelleadstoadifferentresultoftheter-naryGibbsenergyofmixing.Forthesereasons,Chou19proposedanewmodelbasedonthe“similaritycoefficientconcept”,theadvantageofwhichisthatitsap-plicationrequiresneitherthepredeterminationofwhetherasystemissymmetricalornot,northechoiceofthesymmetricandasymmetriccomponentsinaparticularternarysystem.Thecorrectnessofthismodelhasalreadybeenconfirmedinsomepracticalexamples(Ga–Sb–Snsystem20;Ga–Sb–Bisystem21;Ga–In–Tesys-tem22).Therefore,besidesthetraditionalmodels,thismodelisalsoapplicableforthecalculationofthethermodynamicpropertiesoftheGa–Sb–Tlternarysystem.
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
12MANASIJEVI]etal.Fig.1.
Selectedcompositionsofthethreeconstitutivebinarysystemsforthecalculationofthein-
tegralexcessGibbsenergyofaternaryalloyaccordingtotheKohler,Muggianu,Toopand
Hillertmodel.
ThebasicequationoftheChoumodelisgivenasfollows(indetailseeRef.19):
DGE=x1x2(A012+A112(x1–x2)+A212(x1–x2)2)+x2x3(A023+A123
(x2–x3)+A223(x2–x3)2)+x3x1(A031+A131(x3–x1)+
+A231(x3–x1)2)+fx1x2x3(5)
whereDGEistheintegralexcessGibbsenergyforaternarysystem,x1,x2,x3arethemolefractionsofaternaryalloy,A0ij,A1ij,A2ijareparametersforthebinarysystem“ij”whichcanbetemperaturedependent.
Thefunctionfistheternaryinteractioncoefficientexpressedby:
f=(2x12–1){A212((2x12–1)x3+2(x1–x2))+A112}+(2x23–1)
{A223((2x23–1)x1+2(x2–x3))+A123}+(2x31–1)
{A231((2x31–1)x2+2(x3–x1))+A131}(6)
wherexijarethesimilaritycoefficientsdefinedbynicalledthedeviationsumofsquares:
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
Ga–Sb–TlLIQUIDALLOYS13
xij=hi/(hi+hj)
where:
EE2hI=ò(DG12)dX1-DG13
EE2hII=ò(DG21)dX2-DG23
1
0011(7)hIII=ò
andE(DG31E2)-DG32dX3(8)
X1(12)=x1+x3x12
X2(23)=x2+x1x23
X3(31)=x3+x2x31(9)
Inordertoinvestigatewhichamongthechosengeometricmodelsgivethemostaccurateresults,experimentallybaseddata14oftheexcessGibbsenergyat1073KforthesectionsfromthegalliumcornerwithmoleratioofxSb:xTlequalto3:1,1:1and1:3werecomparedwiththeresultscalculatedaccordingtothefollow-ingcalculationmodels–Kohler,Muggianu,Toop,HillertandChou.
ThebasicdataforthemodelcalculationswerethevaluesoftheparametersoftheRedlich-KisterequationgivenasDGE=XiXj(å(Xi-Xj)uL(u)ij(T))at
v=0n
1073KfortheconstitutivebinarysystemstakenfromRef.7fortheSb–Gasystem,Ref.12fortheGa–TlsystemandRef.13fortheTl–SbsystemgiveninTableI.TABLEI.TheRedlich–KistercoefficientsfortheSb–Ga7;Ga–Tl12andTl–Sb13binarysystemsat1073K
Sb–Ga
L(0)SbGa
L(1)SbGa
L(2)SbGa–8341.951810.725363.025L(0)GaTlL(1)GaTlL(2)GaTlGa–Tl14210.511501740.5L(0)TlSbL(1)TlSbL(2)TlSbTl–Sb–11227.3–5197.6146.725
Thebinaryregular-solutionparametersofthebinarysystemsSb–Ga,Ga–TlandTl–SbareequaltotheRedlich–KistercoefficientsshownintheTableI,whilerelatedsimilaritycoefficientswerecalculatedaccordingtoEq.(7)andareshownintheTableII.
ThevaluesofDGEwasdoneusingdatafromTablesIandIIandtheresultsforthethreesectionswithmoleratioofSb:Tlequalto3:1,1:1and1:3at1073K,areshowninFig.2,togetherwithliteraturedata14forcomparison.
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
14MANASIJEVI]etal.
TABLE.II.BinarysolutionparametersandsimilaritycoefficientscalculatedbytheChoumodelfortheGa–Sb–Tlliquidalloysat1073K
A(0)SbGa
–8341.95
A(0)GaTl
14210.5
A(0)TlSb
–11227.3A(1)SbGa1810.725A(1)GaTl1150A(1)TlSb–5197.6A(2)SbGa363.025A(2)GaTl1740.5A(2)TlSb146.725hI517419.8hII17254719hIII22151446xSbGa0.029114xGaTl0.437869xTlSb0.977175
Further,rootmeansquaredeviationanalysiswasappliedontheDGEdataobtainedforthementionedthreesectionsinordertodetermineaccuratelywhichoftheappliedmodelswasthemostadequateoneforliquidGa–Sb–Tlalloys:
St=1/N[S(DGEexp–DGEcalc)2]1/2
where:St–rootmeansquaredeviation,N–thenumberofcountingpoints,DGEexp–literatureresults14forDGEandDGEcalc–calculatedvaluesforDGE.TheresultsofsuchananalysisarepresentedinTableIII,whichindicatesthat:a)theinvesti-gatedsystemGa–Sb–Tlshouldberegardedasanasymmetricsystemandb)theHillertmodelisthemostadequatemodelforitsthermodynamicdescription.a)b)
c)
parisonbetweencalculatedandlit-
eraturedataforDGEofliquidGa–Sb–Tlal-
loysinthesectionswithmoleratioxSb:xTl=
3:1(a);1:1(b)and1:3(c)at1073K.
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
Ga–Sb–TlLIQUIDALLOYS15
TABLEIII.Therootmeansquaredeviationfromtheexperimentaldataforeachcalculationmodel
Section
xSb:xTl=3:1
xSb:xTl=1:1
x:x=1:3Hillert7072179Toop7674182Chou7078184Muggianu139156198Kohler174158185
TheChousimilaritycoefficientconcept19wasusedasanadditionaltoolintheprocessofselectinganappropriatemethodforthermodynamicprediction.Thisconcept,dependingonsimilaritycoefficientsvaluesforthethreebinariesintheternarysystemconsidered,indicateswhetheranasymmetricalorasymmetricalmodelistobeusedinaspecificcase.InthecaseoftheGa–Sb–Tlsystem,thecal-culatedsimilaritycoefficientsforthethreeconstitutivebinariesarepresentedinTableIIandtheobtainedrelationsbetweentheternaryandbinarycompositionac-cordingtoEq.(9)areshowninFig.3(foratemperatureof1073K).
Fig.3.Selectedbinarycompositions
forthethreebinariesintheternary
systemGa–Sb–Tlaccordingtothe
Choumodelat1073
K.
AnalyzingthecalculatedvaluesofthesimilaritycoefficientsfortheGa–Sb–Tlsys-tem(TableII)itmaybeseenthatonesimilaritycoefficient(xSbGa)isclosetozero,whileoneisclosetounity(xTlSb).TheselectedbinarycompositionsaccordingtotheChoumodelinthiscaseareveryclosetotheselectedbinarycompositionsac-cordingtotheasymmetricHillertandToopmodels(Fig.3).ItcouldbeconcludedthatthisparticularsituationreducestheChoumodeltoanasymmetricmodelverysimilartotheTooporHillertmodelwhenantimonyischosenascomponent"1"(Eqs.(3)and(4)).
TakingintoaccountTableIIIandFig.3,itisobviousthatinthecaseoftheGa–Sb–Tlsystem,theresultsofasymmetricalmodelsaremoreprecisethanthesymmetricmethods,whiletheresultsoftheChoumodelresultsarepositionedveryclosetotheresultsoftheasymmetricmodelsforthisparticularternarysys-tem.Hence,thegraphicalrepresentationgiveninFig.3confirmsasymmetricna-
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
16MANASIJEVI]etal.
tureoftheinvestigatedsystemandfinallyindicatestheapplicationoftheHillertmodelasthemostadequateinthethermodynamicinvestigationoftheGa–Sb–Tlliquidalloys.Forthisreason,allfurtherdetailedthermodynamicanalysiswasper-formedusingtheHillertmodelwithantimonyascomponent"1"andgalliumandthalliumascomponents"2"and"3",respectively.
FurtherthermodynamiccalculationsoftheinvestigatedternarysystemGa–Sb–TlwerepreformedaccordingtoEq.(4)infivesectionsfromanycornerwithmolera-tiosofothertwocomponentsequalto9:1;7:3;1:1;3:7and1:9atatemperature1073K.ThevaluesoftheintegralmolarGibbsexcessenergiesforthechosensec-tions,calculatedbytheHillertmodel,arepresentedinTableIV.
a)b)
c)
Fig.4.Isoactivitycurvesforgallium(a),anti-
mony(b)andthallium(c)at1073K.
UsingthecalculatedvaluesfortheintegralexcessGibbsenergiesasthestart-ingdataandtheknownrelationbetweenintegralandpartialexcessGibbsenergyEæöad(DG)iE+(1–x)÷givenbythefollowingexpression:GEi=RTlnç,the=DGiçx÷dxèiøi
activitiesofallthreecomponentsintheinvestigatedsectionsweredetermined.Theisoactivitycurvesforgallium,antimonyandthalliumat1073KaregraphicallypresentedinFig.4.
ThecalculatedisoactivitycurvesforgalliumandantimonyareverysimilartothoseshowninourpreviouspaperabouttheGa–Sb–Pbliquidalloys.23Within-
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
Ga–Sb–TlLIQUIDALLOYS17
TABLEIV.IntegralmolarexcessGibbsenergies,DGE(inJ/mol),forthechosensectionsintheGa–Sb–Tlsystemat1073KaccordingtotheHillertmodel
a)Antimonycornerxx:x=9:1
01422
0.1205
0.2–697
0.3–1315
0.4–1678
0.5–1812
0.6–1745
0.7–1503
0.8–1112
0.9–599
xx:x=9:1
0–632
0.1–1031
0.2–1360
0.3–1606
0.4–1755
0.5–1798
0.6–1720
0.7–1512
0.8–1160
0.9–654
c)Thalliumcorner
x0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9x:x=9:1–610–1038–1488–1911–2259–2482–2530–2354–1904–1132DGE/Jmol-1x:x=7:3x:x=1:13139361015031793253411–645–576–1226–1212–1524–1538–1575–1596–1413–1429–1071–1078–586–585DGE/Jmol-1x:x=7:3x:x=1:1–1917–2803–1786–2125–1639–1518–1475–985–1297–534–1104–173–89893–681255–452305–213237DGE/Jmol-1x:x=7:3x:x=1:1–1589–2075–1558–1577–1578–1194–1620–904–1652–690–1646–533–1570–414–1395–316–1090–220–626–108x:x=3:729441159–163–1070–1612–1839–1802–1549–1130–595x:x=1:91251–323–1416–2089–2403–2415–2185–1770–1228–617x:x=3:7–2790–1685–741376401060128513081116701x:x=1:9–1380–959491763233526562712249319851178x:x=3:7–1893–968–244296666880950889710424x:x=1:9–8714041363204224552615253422251700972
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
18MANASIJEVI]etal.
creasingcontentofantimonyinGa–Sb–Tlalloys,boththegalliumandthalliumactivitydecreasestrongly.Ontheotherhand,replacementbetweengalliumandthalliumhasonlyasmalleffectontheantimonyactivity.
ThecalculatedactivitiesofgalliumfromthisworkaregraphicallycomparedwiththeexperimentallyobtainedgalliumactivitiesinFig.5.
TheresultspresentedinFig.5showthatthereisgoodagreementbetweenex-perimentallyobtainedandcalculatedactivitiesofgalliuminthexSb:xTl=3:1and1:1sectionswhileforthesectionwithamolefractionsratioxSb:xTl=1:3,theagreement
isnotsogood.
parisonoftheexperimentally
obtainedgalliumactivityandthecalculated
valuesintheGa–Sb–Tlsystemat1073K.
TheactivityofgalliumshowsslightnegativedeviationsfromtheRaoultlawinthesectionwithxSb:xTl=3:1,moderatelypositivedeviationsinxSb:xTl=1:1sectionandlargepositivedeviationsfromtheidealthermodynamicbehaviorinthesectionwithxSb:xTl=1:3.
CONCLUSION
ThethermodynamicpropertiesoftheliquidGa–Sb–Tlsystemwereinvesti-gatedusingdifferentmodelsforthermodynamicpredictions.
ComparisonofthepredictedintegralexcessGibbsenergieswiththeexperi-mentallybasedresultsindicatedtheHillertmodeltobethemostaccuratemodelforthethermodynamicdescriptionoftheGa–Sb–Tlsystem.Theasymmetricna-tureoftheinvestigatedternarysystemwasadditionallyconfirmedbytheChousimilaritycoefficientconcept.FurtherthermodynamiccalculationusingtheHillertmodelwasdoneinfivesectionsoftheternaryGa–Sb–Tlsystemfromeachcornerwithmoleratiosofothertwocomponentsequalto9:1;7:3;5:5;3:7and1:positionforalltheinvestigatedcrosssectionsandisoactivitydiagramsforallcomponentsoftheGa–Sb–parisonbetweenthecalculatedandexperi-mentallyobtainedgalliumactivitiesshowsgoodagreementinthesectionwithxSb:xTl=3:1and1:1andslightdisagreementinthesectionwithxSb:xTl=1:3.
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
Ga–Sb–TlLIQUIDALLOYS19
Theresultspresentedinthispaperareacontributiontoamorecompletether-modynamicdescriptionoftheGa–Sb–Tlsystemandmaybeusefulforthefurtherthermodynamicassessmentofthissystem.
IZVOD
PRORA^UNTERMODINAMI^KIHOSOBINATE^NIHGa–Sb–TlLEGURADRAGANMANASIJEVI]1,DRAGANA@IVKOVI]1,IWAOKATAYAMA2i@IVAN@IVKOVI]11Tehni~kifakultet,UniverzitetuBeogradu,VJ12,19210Bor,SrbijaiCrnaGorai2OsakaUniversity,GraduateSchoolofEngineering,DepartmentofMaterialsScienceandProcessing,2-1Yamadaoka,Suita,Osaka565-0871,
Japan
Uovomradujeizlo`enprora~untermodinami~kihveli~inaute~nimGa–Sb–Tlleguramana1073K.Naosnovupore|ewaprora~unatihintegralnihekscesnihGibsovihenergijaporazli~itimgeometrijskimmodelimatermodinami~kogpredvi|awa(Kohler,Muggianu,Toop,Hillert,Chou)sarezultatimabaziranimnaeksperimentalnimpodacimautvr|enojedaasimetri~nimodelidajuta~nijerezultate.Asimetri~nostispitivanogsistemajedodatnopotvr|enaChou-ovimkonceptomkoeficijenatasli~nosti.Izovihrazlogapotpuniprora~untermodinami~kihkarakteristikauternarnomGa–Sb–Tlsi-stemujeizvr{enHillert-ovimmodelom.RezultatiobuhvatajuzavisnostiintegralnihekscesnihGibsovihenergijaodsastavazapetnaestispitivanihpresekakaoidijagra-meizoaktivnihlinijazasvetrikomponenteispitivanogsistemana1073K.Dobijenirezultatipokazujudobroslagawesapostoje}imeksperimentalnimrezultatima.
(Primqeno21.aprila,revidirano27.maja2004)
REFERENCES
1.A.Yazawa,T.Kawashima,K.Itagaki,J.JapanInst.Metals,32(1968)1288
2.B.Predel,D.W.Stein,J.Less-CommonMet.24(1971)391
3.M.Gambino,J.P.Bros,J.Chem.Thermodyn.7(1975)443
4.L.N.Gerasimenko,I.V.Kirichenko,L.N.Lozhikin,A.G.Morachevski,Izv.Akad.NaukSSSR,
Otd.ObshchiTekhn.Khim.(1965)236
5.V.N.Danilin,S.P.Yatsenko,Tr.Inst.Khim.,Akad.Nauk.Ural.Finial.20(1970)142
6.T.J.Anderson,T.L.Aselage,L.F.Donaghey,J.Chem.Thermodyn.15(1983)927
7.I.Katayama,J.Nakayama,T.Nakai,Z.Kozuka,Trans.JIM28(1987)129
8.C.Hsi-Hsiung,C.Peng-Nien,C.C.Mo,ActaMet.9(1966)113
9.C.Bergman,ffitte,Y.Muggianu,HighTemp.-HighPress.6(1974)53
10.V.N.Danilin,S.P.Yatsenko,Zh.Fiz.Khim.41(1967)879
11.B.Predel,D.W.Stein,J.Less-CommonMet.24(1971)159
12.I.Katayama,K.Shimazawa,D. ivkovi},D.Manasijevi}, . ivkovi},T.Iida,Z.Metallknd.94
(2003)1296
13.K.Kameda,J.Jpn.Inst.Met.1(1989)81
14.I.Katayama,Y.Sendai,D. ivkovi},D.Manasijevi}, . ivkovi},H.Yamashita,Z.Metallknd
(tobepublished)
15.M.Hillert,Calphad4(1980)1
16.F.Kohler,Monatsh.Chem.91(1960)738
17.Y.M.Muggianu,M.Gambino,J.P.Bross,J.ChimiePhysique72(1975)83
18.G.W.Toop,Trans.Met.Soc.AIME233(1965)850
19.K.C.Chou,W.C.Li,F.Li,M.He,Calphad20(1996)395
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys合金热力学计算
20MANASIJEVI]etal.
20.D. ivkovi},I.Katayama,A.Kostov, . ivkovi},J.ThermalAnalysisandCalorimetry71
(2003)567
21.D. ivkovi}, . ivkovi},J.[estak,Calphad23(1999)113
22.I.Katayama,K.Yamazaki,M.Nakano,T.Iida,Scan.J.Metall.32(2003)1
23.D.Manasijevi},D. ivkovi}, . ivkovi},Calphad27(2003)361.
正在阅读:
Calculation of the thermodynamic properties of the Ga Sb Ti liquid alloys08-15
2014年全国高考语文试题及答案-四川卷05-27
印刷原理复习资料10-19
红外激光器超声波12-15
三会一层议事规则01-26
神经精神系统考题04-09
矿井建井地质报告 - 图文10-05
五年级上册期末复习资料12-23
2022安全员C证考试最新题库及答案04-22
大国崛起与兴亡周期律10-24
- 1超同步GA手册
- 2Properties of Hadrons in the Nuclear Medium
- 37.1 Conditional Properties(part)
- 4超同步GA手册
- 5Luminescence properties of defects in GaN
- 6The penultimate rate of growth for graph properties
- 7Unit 11 make sb adj ;
- 8THERMODYNAMIC AND KINETIC MODELING OF PRECIPITATION PHENOMENA IN P9 STEELS
- 9THERMODYNAMIC AND KINETIC MODELING OF PRECIPITATION PHENOMENA IN P9 STEELS
- 10ionic liquid immobilized catalytic system for biomimetic dihydroxylation of olefins
- 粮油储藏基础知识
- 论文范文(包括统一封面和内容的格式)
- 经典解题方法
- 综合部后勤办公用品管理办法+领用表
- 学生宿舍突发事件应急预案
- 16秋浙大《生理学及病理生理学》在线作业
- 四分比丘尼戒本(诵戒专用)
- 浙江财经大学高财题库第一章习题
- 九大员岗位职责(项目经理、技术负责人、施工员、安全员、质检员、资料员、材料员、造价员、机管员)
- 旅游财务管理习题(学生版)
- 德阳外国语高二秋期入学考试题
- 投资学 精要版 第九版 第11章 期权市场
- 控制性详细规划城市设计认识
- bl03海运提单3国际贸易答案
- 2010-2011学年湖北省武汉市武珞路中学七年级(上)期中数学试卷
- VB程序填空改错设计题库全
- 教师心理健康案例分析 - 年轻班主任的心理困惑
- 民间借贷司法解释溯及力是否适用?
- 三联书店推荐的100本好书
- 《化工原理》(第三版)复习思考题及解答
- thermodynamic
- Calculation
- properties
- liquid
- alloys
- Ga
- Sb
- Ti
- 小学体育公开课优秀教案
- 个人发展计划(IDP)
- 2012年山东高考理科数学试题含答案
- O圈胶料物理机械性能指标
- 国考行测常识40000题171
- 分析语-综合语
- 钢波纹管涵施工工艺及技术要求
- 2014年底工作总结Microsoft Word 文档
- 开题教师代表发言稿 3
- 小学三年级语文下册四单元试卷及答案(完美版)
- 物业服务企业监督考核评分标准
- fewer,less,more的不不同用法
- 基于PLC控制系统优点
- 试论城乡统筹发展中的土地制度改革
- XX市XX街道XX粉尘企业2016年安全生产工作生产建设项目设备设施“三同时”管理制度
- 六、施工机械设备管理(09版)
- 绿色学校广播稿
- 本科毕业设计论文格式
- 北京市西城区九年级数学下册 学习 探究 诊断 )第二十六章 二次函数同步测试
- 社区工作者:2015年社区工作者笔试历年真题及解析(一)