实验四(IIR数字滤波器设计及软件实现)

更新时间:2024-04-22 04:07:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

10.4 实验四IIR数字滤波器设计及软件实现

10.4.1 实验指导

1.实验目的

(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;

(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理

设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; ②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3. 实验内容及步骤

(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图10.4.1 三路调幅信号st的时域波形和幅频特性曲线

(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为

60dB。

提示:抑制载波单频调幅信号的数学表示式为

1s(t)?cos(2?f0t)cos(2?fct)?[cos(2?(fc?f0)t)?cos(2?(fc?f0)t)]

2其中,cos(2?fct)称为载波,fc为载波频率,cos(2?f0t)称为单频调制信号,f0为调制正弦波信号频率,且满足fc?f0。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频fc?f0和差频fc?f0,这2个频率成分关于载波频率fc对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率fc对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。如果调制信号m(t)具有带限连续频谱,无直流成分,则s(t)?m(t)cos(2?fct)就是一般的抑制载波调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。如果调制信号m(t)有直流成分,则s(t)?m(t)cos(2?fct)就是一般的双边带调幅信号。其频谱图是关于载波频率fc对称的2个边带(上下边带),并包含载频成分。

(3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

(4)调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。

4.信号产生函数mstg清单 function st=mstg

%产生信号序列向量st,并显示st的时域波形和频谱

%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600 N=1600 %N为信号st的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间 t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;

fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz, fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz fc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hz fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz fc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz, fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号 xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号 xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号 st=xt1+xt2+xt3; %三路调幅信号相加 fxt=fft(st,N); %计算信号st的频谱

%====以下为绘图部分,绘制st的时域波形和幅频特性曲线====================

subplot(3,1,1)

plot(t,st);grid;xlabel('t/s');ylabel('s(t)');

axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形') subplot(3,1,2)

stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);

xlabel('f/Hz');ylabel('幅度')

5.实验程序框图如图10.4.2所示,供读者参考。

调用函数mstg产生st,自动绘图 显示st的时域波形和幅频特性曲线 调用ellipord和ellip分别设计三个椭圆滤波器,并绘图显示其幅频响应特性曲线。 调用filter,用三个滤波器分别对信号st进行滤波,分离出三路不同载波频率的调幅信号y1(n)、y2(n)和y3(n) 绘图显示y1(n)、y2(n)和y3(n)的时域波形和幅频特性曲线 End

图10.4.2 实验4程序框图

6.思考题

(1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。 (2)信号产生函数mstg中采样点数N=800,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg中采样点数N的值,观察频谱图验证您的判断是否正确。

(3)修改信号产生函数mstg,给每路调幅信号加入载波成分,产生调幅(AM)信号,重复本实验,观察AM信号与抑制载波调幅信号的时域波形及其频谱的差别。

提示:AM信号表示式:s(t)?[1?cos(2?f0t)]cos(2?fct)。 7.实验报告要求

(1)简述实验目的及原理。

(2)画出实验主程序框图,打印程序清单。 (3)绘制三个分离滤波器的损耗函数曲线。

(4)绘制经过滤波分理出的三路调幅信号的时域波形。 (5)简要回答思考题。

10.4.2 滤波器参数及实验程序清单

1、滤波器参数选取 观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz、500Hz、1000Hz。带宽(也可以由信号产生函数mstg清单看出)分别为50Hz、100Hz、200Hz。所以,分离混合信号st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:

对载波频率为250Hz的条幅信号,可以用低通滤波器分离,其指标为

带截止频率

fp?280Hz,通带最大衰减?p?0.1dBdB;

?450Hz,阻带最小衰减?s?60dBdB,

阻带截止频率fs对载波频率为500Hz的条幅信号,可以用带通滤波器分离,其指标为 带截止频率

fpl?440Hz,fpu?560Hz,通带最大衰减?p?0.1dBdB;

?275Hz,fsu?900Hz,Hz,阻带最小衰减?s?60dBdB,

阻带截止频率fsl对载波频率为1000Hz的条幅信号,可以用高通滤波器分离,其指标为 带截止频率

fp?890Hz,通带最大衰减?p?0.1dBdB;

?550Hz,阻带最小衰减?s?60dBdB,

阻带截止频率fs说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波

器过渡带宽尽可能宽。

(2)与信号产生函数mstg相同,采样频率Fs=10kHz。 (3)为了滤波器阶数最低,选用椭圆滤波器。

按照图10.4.2 所示的程序框图编写的实验程序为exp4.m。 2、实验程序清单

%实验4程序exp4.m

% IIR数字滤波器设计及软件实现 clear all;close all

Fs=10000;T=1/Fs; %采样频率

%调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;

%低通滤波器设计与实现========================================= fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; ?指标(低通滤波器的通、阻带边界频) [N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp [B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y1t=filter(B,A,st); %滤波器软件实现 % 低通滤波器设计与实现绘图部分 figure(2);subplot(3,1,1);

myplot(B,A); %调用绘图函数myplot绘制损耗函数曲线 yt='y_1(t)';

subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot绘制滤波器输出波形

%带通滤波器设计与实现==================================================== fpl=440;fpu=560;fsl=275;fsu=900;

wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp [B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A y2t=filter(B,A,st); %滤波器软件实现 % 带通滤波器设计与实现绘图部分(省略)

%高通滤波器设计与实现================================================ fp=890;fs=600;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; ?指标(低通滤波器的通、阻带边界频) [N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A y3t=filter(B,A,st); %滤波器软件实现 % 高低通滤波器设计与实现绘图部分(省略)

? %myplot;计算时域离散系统损耗函数并绘制曲线图。 ? function myplot(B,A)

? %B为系统函数分子多项式系数向量 ? %A为系统函数分母多项式系数向量 ? [H,w]=freqz(B,A,1000); ? m=abs(H);

? plot(w/pi,20*log10(m/max(m)));grid on; ? title('低通滤波损耗函数曲线'); ? xlabel('w');ylabel('幅度'); ? axis([0,1,-80,5]); ?

? function tplot(y1t,T,yt) ? %时域序列连续曲线绘图函数

? %y1t:信号数据序列,yt:绘图信号的纵坐标名称(字符串) ? %T为采样间隔 ? N=1600; ? t=0:T:(N-1)*T;

? plot(t,y1t);title('低通滤波后的波形'); ? xlabel('t/s');ylabel(yt);

10.4.3 实验程序运行结果

实验4程序exp4.m运行结果如图104.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。

(a) 低通滤波器损耗函数及其分离出的调幅信号y1(t)

(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)

(c)高通滤波器损耗函数及其分离出的调幅信号y3(t)

图104. 实验4程序exp4.m运行结果

10.4.4 简要回答思考题

思考题(1)已经在10.4.2节解答。思考题(3)很简单,请读者按照该题的提示修改程序,运行观察。

思考题(3) 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,

本题的一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间Tp=NT是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。

分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

本文来源:https://www.bwwdw.com/article/tuop.html

Top