《勾股定理》典型练习题
更新时间:2023-05-26 16:04:01 阅读量: 实用文档 文档下载
- 勾股定理典型例题归纳推荐度:
- 相关推荐
《勾股定理》典型练习题——分知识点归纳整理
《勾股定理》典型例题分析
一、知识要点:
1、勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理
如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理.
该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度.
②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数
满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:
(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析
考点一:利用勾股定理求面积
1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.
2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.
《勾股定理》典型练习题——分知识点归纳整理
3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是( )
A. S1- S2= S3 B. S1+ S2= S3 C. S2+S3< S1 D. S2- S3=S1
S
1
S3
4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
5、在直线l上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是
1、2、3,正放置的四个正方形的面积依次是S1、S2、
S3、S4,则S1 S2 S3 S4=_____________。
考点二:在直角三角形中,已知两边求第三边
1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是
3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.
4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A. 2倍
B. 4倍 C. 6倍 D. 8倍
《勾股定理》典型练习题——分知识点归纳整理
5、在Rt△ABC中,∠C=90°
①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;
④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
6、如果直角三角形的两直角边长分别为n2 1,2n(n>1),那么它的斜边长是( ) A、2n
B、n+1
C、n2-1
D、n2 1
7、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是( )
A. a2 b2 c2 B. a2 c2 b2 C. c2 b2 a2 D.以上都有可能 8、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( ) A、24cm2
B、36 cm2
2
C、48cm2
2
2
D、60cm2
9、已知x、y为正数,且│x-4│+(y-3)=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
A、5
考点三:应用勾股定理在等腰三角形中求底边上的高
B、25
C、7
D、15
例、如图1所示,等腰中,,是底边上的高,若,
求 ①AD的长;②ΔABC的面积.
考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题
1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A. 4,5,6 B. 2,3,4 C. 11,12,13 D. 8,15,17 2、若线段a,b,c组成直角三角形,则它们的比为( )
A、2∶3∶4 B、3∶4∶6 C、5∶12∶13 D、4∶6∶7
《勾股定理》典型练习题——分知识点归纳整理
3、下面的三角形中:
①△ABC中,∠C=∠A-∠B;
②△ABC中,∠A:∠B:∠C=1:2:3; ③△ABC中,a:b:c=3:4:5; ④△ABC中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).
A.1个 B.2个 C.3个 D.4个 4、
若三角形的三边之比为
:,则这个三角形一定是( ) 2A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.不等边三角形
5、已知a,b,c为△ABC三边,且满足(a-b)(a+b-c)=0,则它的形状为( ) A.直角三角形
B.等腰三角形
D.等腰三角形或直角三角形
2
2
2
2
2
C.等腰直角三角形
6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形
7、若△ABC的三边长a,b,c满足a2 b2 c2 200 12a 16b 20c,试判断△ABC的形状。
8、△ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为 ,此三角形为 。 例3:求
(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。 (2)已知三角形三边的比为1
:2,则其最小角为 。
《勾股定理》典型练习题——分知识点归纳整理
考点五:应用勾股定理解决楼梯上铺地毯问题
某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求
铺设红色地毯,则在AB段楼梯所铺地毯的长度应为 .
考点六、利用列方程求线段的长(方程思想)
1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?
2、一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m(如图),如果梯子的顶端沿墙下滑0.4m,那么梯子底端将向左滑动 米
3、如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)
《勾股定理》典型练习题——分知识点归纳整理
4、在一棵树10 m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处; 另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?
5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为 .
BC
6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
第6题图
7、如图18-15所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km 就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?
B
5
3
2
A
8
图18-15
《勾股定理》典型练习题——分知识点归纳整理
考点七:折叠问题
1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )
C
252275
A. B. C. D.
4343
D
A
E
B
2、如图所示,已知△ABC中,∠
C=90°,AB的垂直平分线交BC 于M,交AB于N,若AC=4,MB=2MC,求AB的长.
3、折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求CF 和EC。
D E
BC
4、如图,在长方形ABCD中,DC=5,在DC边上存在一点E,沿直线AE把△ABC折叠,使点D恰好在BC边上,设此点为F,若△ABF的面积为30,求折叠的△AED的面积
A
D
E
B
FC
《勾股定理》典型练习题——分知识点归纳整理
5、如图,矩形纸片ABCD的长AD=9㎝,宽AB=3㎝,将其折叠,使点D与点B重合,那么折叠后DE的长是多少?
6、如图,在长方形ABCD中,将 ABC沿AC对折至 AEC位置,CE与AD交于点F。 (1)试说明:AF=FC;(2)如果AB=3,BC=4,求AF的长
7、如图2所示,将长方形ABCD沿直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm,AB=8cm,则图中阴影部分面积为_______.
8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB= 3,BC=7,重合部分△EBD的面积为________.
《勾股定理》典型练习题——分知识点归纳整理
9、如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,求证:DE:DM:EM=3:4:5。
10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合, 则折叠后痕迹EF的长为( )
A.3.74 B.3.75 C.3.76 D.3.77
2-5
11、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:
①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.
②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.
《勾股定理》典型练习题——分知识点归纳整理
12、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
13、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?
考点八:应用勾股定理解决勾股树问题
1、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中
2、最大的正方形的边长为5,则正方形A,B,C,D的面积的和为
2
、已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE, ,依此类推,第
n个等腰直角三角形的斜边长是 .
EDC
B
F
G
《勾股定理》典型练习题——分知识点归纳整理
考点九、图形问题
1、如图1,求该四边形的面积
2、如图2,已知,在△ABC中,∠A = 45°,AC 2,AB 3+1,则边BC的长为 .
3、某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 .
4、将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围 。
5、如图,铁路上A、B两点相距25km,C、D为两村庄,DA 垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?
《勾股定理》典型练习题——分知识点归纳整理
考点十:其他图形与直角三角形
如图是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
考点十一:与展开图有关的计算
1、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.
2、如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行 cm B
3、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.
A
《勾股定理》典型练习题——分知识点归纳整理
1、一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距________海里.
2、如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上。该货船航行30分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。
3、如图,某沿海开放城市A接到台风警报,在该市正南方向260km的
A
C
B处有一台风中心,沿BC方向以15km/h的速度向D移动,已知城市A到BC的距离AD=100km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
B
D
《勾股定理》典型练习题——分知识点归纳整理
1、如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )
A.0 B.1 C.2 D.3
2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上答案都不对 3、如图,小方格都是边长为1的正方形,则四边形ABCD的面积是 ( ) A. 25 B. 12.5 C. 9 D. 8.5
A
C
C
C
B
(图1) (图2) (图3)
4、如图,正方形网格中的每个小正方形边长都是
1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:
①使三角形的三边长分别为3
; ②使三角形为钝角三角形且面积为4(在图乙中画一个即可).
甲
乙
正在阅读:
《勾股定理》典型练习题05-26
理性与浪漫的交织 - 荷兰建筑一10-20
水源热泵施工方案04-16
寒假旅游作文400字04-01
中国人权问题之现状与前景 纪念《世界人权宣言》发表五十周年06-19
事业单位年度考核个人工作总结10篇03-25
2019中学化学新课程教学工作总结精品教育 doc03-19
2014年全国优秀教师名单07-01
建省厦门市思明区中考数学一模试卷01-31
《理论力学》试卷集02-28
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 勾股定理
- 练习题
- 典型
- 高2021届高2018级高三化学一轮复习专项训练学案(二十四)原子结构 化学键
- 2015年净化装置大修后开工方案150528
- 最新国家开放大学电大《政治学原理》网络核心课形考网考作业及答案
- 纪录片创作的平民化——以《舌尖上的中国》为例
- 12级应用化学团日活动总结
- 《英语听说课程》教学大纲
- 京瓷公司_阿米巴_经营分析
- HBT80C电动混凝土输送泵控制系统设计
- 《抛物线及其标准方程》教学设计
- 2013江苏省公务员考试《公共基础知识》B类真题答案及解析
- 2012年1月份生产经营计划
- Unit 2 单元复习课
- 第七章 小波分析、分析工具及应用发展
- 城市发展与城市化学案的答案
- MAPGIS软件属性在资源量估算图中的应用
- 广州批发市场总汇
- 中国古代诗词英文翻译
- 法律知识对策谈谈关于我国农村金融组织体系的现状、存在问题及
- 中考英语听力天天练方法
- 国内外危险化学品安全管理体系探讨