五年级奥数第20讲 多边形的面积
更新时间:2024-03-22 11:39:01 阅读量: 综合文库 文档下载
- 五菱宏光推荐度:
- 相关推荐
第20讲 多边形的面积
我们已经学习过三角形、正方形、长方形、平行四边形、梯形以及圆、扇形等基本图形的面积计算,图形及计算公式如下:
正方形面积=边长×边长=a2, 长方形面积=长×宽=ab, 平行四边形面积=底×高=ah,
圆面积=半径×半径×π=πr,
扇形面积=半径×半径×π×圆心角的度数÷360°
2
在实际问题中,我们遇到的往往不是基本图形,而是由基本图形组合、拼凑成的组合图形,它们的面积不能直接用公式计算。在本讲和后面的两讲中,我们将学习如何计算它们的面积。
例1 小两个正方形组成下图所示的组合图形。已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。
分析与解:组合图形的周长并不等于两个正方形的周长之和,因为CG部分重合了。用组合图形的周长减去DG,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于(52-4)÷3=16(厘米)。
又由两个正方形的边长之差是4厘米,可求出
大正方形边长=(16+4)÷2=10(厘米), 小正方形边长=(16-4)÷2=6(厘米)。
两个正方形的面积之和减去三角形ABD与三角形BEF的面积,就得到阴影部分的面积。 10+6-(10×10÷2)-(10+6)×6÷2=38(厘米)。
例2如左下图所示,四边形ABCD与DEFG都是平行四边形,证明它们的面积相等。
2
2
2
分析与证明:这道题两个平行四边形的关系不太明了,似乎无从下手。我们添加一条辅助线,即连结CE(见右上图),这时通过三角形DCE,就把两个平行四边形联系起来了。在平行四边形ABCD中,三角形DCE的底是DC,高与平行四边形ABCD边DC上的高相等,所以平行四边形ABCD的面积是三角形DCE的两倍;同理,在平行四边形DEFG中,三角形DCE的底是DE,高与平行四边形DEFG边DE上的高相等,所以平行四边形DEFG的面积也是三角形DCE的两倍。
两个平行四边形的面积都是三角形DCE的两倍,所以它们的面积相等。
例3如左下图所示,一个腰长是20厘米的等腰三角形的面积是140厘米2,在底边上任意取一点,这个点到两腰的垂线段的长分别是a厘米和b厘米。求a+b的长。
分析与解:a,b与三角形面积的关系一下子不容易看出来。连结等腰三角形的顶点和底边上所取的点,把等腰三角形分为两个小三角形,它们的底都是20厘米,高分别为a厘米和b厘米(见右上图)。大三角形的面积与a,b的关系就显露出来了。根据三角形的面积公式,两个小三角形的面积分别为 20×a÷2和20×b÷2。
因为这两个小三角形的面积之和等于原等腰三角形的面积,所以有 20×a÷2+20×b÷2=140, 10×(a+b)=140, a+b=14(厘米)。
在例2、例3中,通过添加辅助线,使图形间的关系更清晰,从而使问题得解。下面再看一例。
例4如左下图所示,三角形ABC的面积是10厘米,将AB,BC,CA分别延长一倍到D,E,F,两两连结D,E,F,得到一个新的三角形DEF。求三角形DEF的面积。
2
分析与解:想办法沟通三角形ABC与三角形DEF的联系。连结FB(见右上图)。 因为CA=AF,所以三角形ABC与三角ABF等底等高,面积相等。因为AB=BD,所以三角形ABF与三角形BDF等底等高,面积相等。由此得出,三角形ADF的面积是10+10=20(厘米2)。
同理可知,三角形BDE与三角形CEF的面积都等于20厘米2。 所以三角形DEF的面积等于20×3+10=70(厘米2)。
例5一个正方形,将它的一边截去15厘米,另一边截去10厘米,剩下的长方形比原来正方形的面积减少1725厘米2,求剩下的长方形的面积。
分析与解:根据已知条件画出下页左上图,其中甲、乙、丙为截去的部分。
由左上图知,丙是长15厘米、宽10厘米的矩形,面积为15×10=150(厘米2)。 因为甲、丙形成的矩形的长等于原正方形的边长,乙、丙形成的矩形的长也等于原正方形的边长,所以可将两者拼成右上图的矩形。右上图矩形的宽等于10+15=25(厘米),长等于原正方形的边长,面积等于 (甲+丙)+(乙+丙) = 甲+乙+丙)+丙 = 1725+150 = 1875(厘米2)。
所以原正方形的的边长等于1875÷25=75(厘米)。剩下的长方形的面积等于75×75-1725=3900(厘米2)。
例6有红、黄、绿三块同样大小的正方形纸片,放在一个正方形盒的底部,它们之间互相叠合(见右图)。已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10,求正方形盒子底部的面积。
分析与解:把黄色正方形纸片向左移动并靠紧盒子的左边。由于三个正方形纸片面积相等,所以原题图可以转化成下页右上图。此时露出的黄、绿两部分的面积相等,都等于
(14+10)÷2=12。 因为绿:红=A∶黄,所以 绿×黄=红×A,
A=绿×黄÷红 =12×12÷20=7.2。
正方形盒子底部的面积是红+黄+绿+A=20+12+12+7.2=51.2。
练习20
1.等腰直角三角形的面积是20厘米2,在其中做一个最大的正方形,求这个正方形的面积。
2.如左下图所示,平行四边形ABCD的周长是75厘米,以BC为底的高是14厘米,以CD为底的高是16厘米。求平行四边形ABCD的面积。
3.如右上图所示,在一个正方形水池的周围,环绕着一条宽2米的小路,小路的面积是80米2,正方形水池的面积是多少平方米?
4.如右图所示,一个长方形被一线段分成三角形和梯形两部分,它们的面积差是28厘米2
,梯形的上底长是多少厘米?
5.如下图,在三角形ABC中,BD=DF=FC,BE=EA。若三角形EDF的面积是1,则三角形ABC的面积是多少?
6.一个长方形的周长是28厘米,如果它的长、宽都分别增加3厘米,那么得到的新长方形比原长方形的面积增加了多少平方厘米?
7.如下图所示,四边形ABCD的面积是1,将BA,CB,DC,AD分别延长一倍到E,F,G,H,连结E,F,G,H。问:得到的新四边形EFGH的面积是多少?
正在阅读:
五年级奥数第20讲 多边形的面积03-22
第4课文艺复兴与宗教改革08-07
我眼中的妈妈作文600字07-02
美丽的须江公园作文450字07-13
关于印发《宁波市建设工程施工阶段项目监理机构人员配备暂行办法》的通知-附件09-09
09届高考历史质量监控考试试题03-31
无锡市机电产品经销商名录6592家03-12
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 多边形
- 奥数
- 面积
- 年级
- 语文s版五上6重难点样张(含测评)
- 基于Dreamweaver的网页设计毕业论文
- 2009年安全师考试安全生产法律知识复习资料
- 沪教版九年级化学期中测试卷(附答案)
- 安徽省幼儿园教育教师专业技术资格实用标准条件
- 加油站应急预案(最新模板)
- 探究电阻上的电流跟两端电压的关系
- 2018-2024年中国肉鸡加工行业深度调研报告(目录)
- 道路大修施工组织设计
- 单片机课程设计题目(更新版) - 图文
- 推土机毕业论文 - 图文
- 曲线顶管管幕管间相互影响研究 - 李志宏 - 图文
- 重组与破产清算会计
- 地摊生意人必须要知道的8条经验
- 低压电气设计与施工
- 华理旅游专业会计学补考复习题
- 第三章 计算机控制点火系统结构与工作原理
- 4AM2U3 I have a friend 教案
- 辩论观点:中国的外交需要韬光养晦
- 县食品药品监督管理局领导班子述职报告