2015挑战中考数学压轴题(第八版精选)
更新时间:2023-11-11 15:46:01 阅读量: 教育文库 文档下载
- 挑战中考数学压轴题电子版推荐度:
- 相关推荐
挑战中考数学压轴题集锦
骆济豪
2016年11
月
目 录
第一部分 函数图象中点的存在性问题
1.1 因动点产生的相似三角形问题 例1 2013年上海市中考第24题 例2 2012年苏州市中考第29题 例3 2012年黄冈市中考第25题 例4 2010年义乌市中考第24题 例5 2009年临沂市中考第26题 例6 2008年苏州市中考第29题
1.2 因动点产生的等腰三角形问题
例1 2013年上海市虹口区中考模拟第25题例2 2012年扬州市中考第27题 例3 2012年临沂市中考第26题 例4 2011年湖州市中考第24题 例5 2011年盐城市中考第28题 例6 2010年南通市中考第27题 例7 2009年江西省中考第25题
1.3 因动点产生的直角三角形问题 例1 2013年山西省中考第26题 例2 2012年广州市中考第24题 例3 2012年杭州市中考第22题 例4 2011年浙江省中考第23题 例5 2010年北京市中考第24题 例6 2009年嘉兴市中考第24题 例7 2008年河南省中考第23题
1.4 因动点产生的平行四边形问题
例1 2013年上海市松江区中考模拟第24题例2 2012年福州市中考第21题 例3 2012年烟台市中考第26题 例4 2011年上海市中考第24题 例5 2011年江西省中考第24题 例6 2010年山西省中考第26题 例7 2009年江西省中考第24题 1.5 因动点产生的梯形问题
例1 2012年上海市松江中考模拟第24题 例2 2012年衢州市中考第24题 例4 2011年义乌市中考第24题 例5 2010年杭州市中考第24题 例7 2009年广州市中考第25题 1.6 因动点产生的面积问题 例1 2013年苏州市中考第29题
例2 2012年菏泽市中考第21题 例3 2012年河南省中考第23题 例4 2011年南通市中考第28题 例5 2010年广州市中考第25题 例6 2010年扬州市中考第28题 例7 2009年兰州市中考第29题 1.7 因动点产生的相切问题
例1 2013年上海市杨浦区中考模拟第25题 例2 2012年河北省中考第25题 例3 2012年无锡市中考第28题 1.8 因动点产生的线段和差问题 例1 2013年天津市中考第25题 例2 2012年滨州市中考第24题 例3 2012年山西省中考第26题
第二部分 图形运动中的函数关系
问题
2.1 由比例线段产生的函数关系问题 例1 2013年宁波市中考第26题
例2 2012年上海市徐汇区中考模拟第25题 例3 2012年连云港市中考第26题 例4 2010年上海市中考第25题
2.2 由面积公式产生的函数关系问题 例1 2013年菏泽市中考第21题 例2 2012年广东省中考第22题 例3 2012年河北省中考第26题 例4 2011年淮安市中考第28题 例5 2011年山西省中考第26题 例6 2011年重庆市中考第26题
第三部分图形运动中的计算说理问
题
3.1 代数计算及通过代数计算进行说理问题 例1 2013年南京市中考第26题 例2 2013年南昌市中考第25题
3.2几何证明及通过几何计算进行说理问题 例1 2013年上海市黄浦区中考模拟第24题 例2 2013年江西省中考第24题
2
声 明
选自东师范大学出版社出版的《挑战中考数学压轴题》(含光盘)一书。该书收录当年全国各地具有代表性的中考数学压轴题, 并把它们分为4部分、24小类。该书最大的特色是用几何画板和超级画板做成电脑课件,并为每一题录制了视频讲解,让你在动态中体验压轴题的变与不变,获得清晰的解题思路,完成满分解答,拓展思维训练。
《挑战中考数学压轴题》自出版以来广受读者欢迎,被评为优秀畅销图书,成为“中考压轴题”类第一畅销图书。在上海、北京、江苏、浙江等省市的名牌初中的毕业班学生中,几乎人手一本,成为冲刺名牌高中必备用书。
由于格式问题,该书最具特色的电脑课件和视频文件在此无法一并附上,敬请原谅。
3
第一部分 函数图象中点的存在性问题
1.1 因动点产生的相似三角形问题
例1 2013年上海市中考第24题
如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连结OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
图1
动感体验
请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.
请打开超级画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.点击按钮的左部和中部,可到达相似的准确位置。
思路点拨
1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.
2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM. 3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.
满分解答
(1)如图2,过点A作AH⊥y轴,垂足为H. 在Rt△AOH中,AO=2,∠AOH=30°, 所以AH=1,OH=3.所以A(?1,3).
因为抛物线与x轴交于O、B(2,0)两点, 设y=ax(x-2),代入点A(?1,3),可得
3. 图2 333223所以抛物线的表达式为y?x(x?2)?x?x.
333322333(2)由y?, x?x?(x?1)2?333333得抛物线的顶点M的坐标为(1,?. ).所以tan?BOM?33a?所以∠BOM=30°.所以∠AOM=150°.
3), 3233得tan?ABO?,AB?23,OM?.
33OA所以∠ABO=30°,?3.
OM(3)由A(?1,3)、B(2,0)、M(1,?因此当点C在点B右侧时,∠ABC=∠AOM=150°. △ABC与△AOM相似,存在两种情况:
4
BAOABA23??3时,BC???2.此时C(4,0). BCOM33BCOA②如图4,当??3时,BC?3BA?3?23?6.此时C(8,0).
BAOM①如图3,当
图3 图4
考点伸展
在本题情境下,如果△ABC与△BOM相似,求点C的坐标. 如图5,因为△BOM是30°底角的等腰三角形,∠ABO=30°,因此△ABC也是底角为30°的等腰三角形,AB=AC,根据对称性,点C的坐标为(-4,0).
图5
例2 2012年苏州市中考第29题
121bx?(b?1)x?(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位444于点B是左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
如图1,已知抛物线y?图1
动感体验
请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.
思路点拨
1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.
2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.
5
1(x?1)(x?4)1解方程2?,得x?0.此时点P与点O重合,不合题意.
4?x2综上所述,符合条件的 点P的坐标为(2,1)或(?3,?14)或(5,?2).
图2 图3 图4 (3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为y?设点D的横坐标为m(1?m?4),那么点D的坐标为(m,?以DE?(?1x?2. 21251m?m?2),点E的坐标为(m,m?2).所22212511m?m?2)?(m?2)??m2?2m. 22221122因此S?DAC?(?m?2m)?4??m?4m??(m?2)2?4.
22当m?2时,△DCA的面积最大,此时点D的坐标为(2,1).
图5 图6
考点伸展
第(3)题也可以这样解:
如图6,过D点构造矩形OAMN,那么△DCA的面积等于直角梯形CAMN的面积减去△CDN和△ADM的面积.
设点D的横坐标为(m,n)(1?m?4),那么
S?由于n??
111(2n?2)?4?m(n?2)?n(4?m)??m?2n?4. 222125m?m?2,所以S??m2?4m. 22例6 2008年苏州市中考第29题
11
图1
动感体验
请打开几何画板文件名“08苏州29”,拖动表示a的点在y轴上运动,可以体验到,当抛物线经过点E1和E3时,直线NE1、NE3和直线AB交于同一个点G,此时△POB∽△PGN.当抛物线经过点E2和E4时,直线NE2、NE4和直线AB交于同一个点G,可以体验到,这个点G在点N右侧较远处.
思路点拨
1.求等腰直角三角形OAB斜边上的高OH,解直角三角形POH求k、b的值.
2.以DN为边画正方形及对角线,可以体验到,正方形的顶点和对角线的交点中,有符合题意的点E,写出点E的坐标,代入抛物线的解析式就可以求出a.
3.当E在x轴上方时,∠GNP=45°,△POB∽△PGN,把PB?PG转化为PO?PN?14.
4.当E在x轴下方时,通过估算得到PB?PG大于102.
满分解答
323,b?. 33(2)由抛物线的解析式y?a(x?1)(x?5),得 点M的坐标为(?1,0),点N的坐标为(5,0).
(1)OH?1,k?因此MN的中点D的坐标为(2,0),DN=3.
因为△AOB是等腰直角三角形,如果△DNE与△AOB相似,那么△DNE也是等腰直角三角形. ①如图2,如果DN为直角边,那么点E的坐标为E1(2,3)或E2(2,-3). 将E1(2,3)代入y?a(x?1)(x?5),求得a??.
131245x?x?. 3331将E2(2,-3)代入y?a(x?1)(x?5),求得a?.
311245此时抛物线的解析式为y?(x?1)(x?5)?x?x?.
33331111②如果DN为斜边,那么点E的坐标为E3(3,1)或E4(3,?1).
2222112将E3(3,1)代入y?a(x?1)(x?5),求得a??.
229此时抛物线的解析式为y??(x?1)(x?5)??12
1322810(x?1)(x?5)??x2?x?. 9999112
将E4(3,?1)代入y?a(x?1)(x?5),求得a?.
229
222810此时抛物线的解析式为y?(x?1)(x?5)?x?x?.
9999此时抛物线的解析式为y??
图2 图3
对于点E为E1(2,3)和E3(3,1),直线NE是相同的,∠ENP=45°. 又∠OBP=45°,∠P=∠P,所以△POB∽△PGN. 因此PB?PG?PO?PN?2?7?14?102.
121212143. 此时点G在直线x?5的右侧,PG?3414443,所以PB?PG?3?3?14??102. 又PB?3333对于点E为E2(2,-3)和E4(3,?1),直线NE是相同的.
12考点伸展
在本题情景下,怎样计算PB的长?
如图3,作AF⊥AB交OP于F,那么△OBC≌△OAF,OF=OC=PA=
223,PF=2?3, 33332PF?(2?3)?3?1,所以PB?3?1. 2231.2 因动点产生的等腰三角形问题
例1 2013年上海市虹口区中考模拟第25题
如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点
P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
图1 备用图
13
动感体验
请打开几何画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.
请打开超级画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM与△QDN保持相似.观察△PDF,可以看到,P、F可以落在对边的垂直平分线上,不存在DF=DP的情况.
思路点拨
1.第(2)题BP=2分两种情况.
2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.
3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.
满分解答
(1)在Rt△ABC中, AB=6,AC=8,所以BC=10. 在Rt△CDE中,CD=5,所以ED?CD?tan?C?5?3154?4,EC?254. (2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是
△ABC的两条中位线,DM=4,DN=3.
由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN. 因此△PDM∽△QDN.
所以PMQN?DMDN?43.所以QN?34PM,PM?43QN.
图2 图3 图4
①如图3,当BP=2,P在BM上时,PM=1. 此时QN?34PM?34.所以CQ?CN?QN?4?34?194. ②如图4,当BP=2,P在MB的延长线上时,PM=5.
此时QN?34PM?154.所以CQ?CN?QN?4?15314?4. (3)如图5,如图2,在Rt△PDQ中,tan?QPD?QDPD?DN3DM?4.
在Rt△ABC中,tan?C?BA3CA?4.所以∠QPD=∠C.
由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ. 因此△PDF∽△CDQ.
当△PDF是等腰三角形时,△CDQ也是等腰三角形.
①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).
此时PM?43QN?43.所以BP?BM?PM?3?43?53. ②如图6,当QC=QD时,由cosC?CH5425CQ,可得CQ?2?5?8.
所以QN=CN-CQ=4?258?78(如图2所示)
. 此时PM?43QN?76.所以BP?BM?PM?3?7256?6.
③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).
14
图5 图6
考点伸展
如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解BP?25. 6
例2 2012年扬州市中考第27题
如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA的垂直平分线上,但是有1次M、A、C三点共线.
思路点拨
1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小. 2.第(3)题分三种情况列方程讨论等腰三角形的存在性.
满分解答
(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3), 代入点C(0 ,3),得-3a=3.解得a=-1.
所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3. (2)如图2,抛物线的对称轴是直线x=1.
当点P落在线段BC上时,PA+PC最小,△PAC的周长最小. 设抛物线的对称轴与x轴的交点为H. BHPH由,BO=CO,得PH=BH=2. ?BOCO所以点P的坐标为(1, 2).
图2
(3)点M的坐标为(1, 1)、(1,6)、(1,?6)或(1,0).
考点伸展
第(3)题的解题过程是这样的: 设点M的坐标为(1,m).
在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.
①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.
15
此时点M的坐标为(1, 1).
②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得m??6. 此时点M的坐标为(1,6)或(1,?6).
③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6. 当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).
图3 图4 图5
例3 2012年临沂市中考第26题
如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标;
(2)求经过A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.
图1
动感体验
请打开几何画板文件名“12临沂26”,拖动点P在抛物线的对称轴上运动,可以体验到,⊙O和⊙B以及OB的垂直平分线与抛物线的对称轴有一个共同的交点,当点P运动到⊙O与对称轴的另一个交点时,B、O、P三点共线.
请打开超级画板文件名“12临沂26”,拖动点P,发现存在点P,使得以点P、O、B为顶点的三角形是等腰三角形
思路点拨
1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.
2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.
满分解答
(1)如图2,过点B作BC⊥y轴,垂足为C.
在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,OC?23. 所以点B的坐标为(?2,?23).
(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),
16
代入点B(?2,?23),?23??2a?(?6).解得a??3. 633223所以抛物线的解析式为y??x(x?4)??x?x.
663(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y).
①当OP=OB=4时,OP2=16.所以4+y2=16.解得y??23.
当P在(2,23)时,B、O、P三点共线(如图2).
②当BP=BO=4时,BP2=16.所以42?(y?23)2?16.解得y1?y2??23. ③当PB=PO时,PB2=PO2.所以42?(y?23)2?22?y2.解得y??23. 综合①、②、③,点P的坐标为(2,?23),如图2所示.
图2 图3
考点伸展
如图3,在本题中,设抛物线的顶点为D,那么△DOA与△OAB是两个相似的等腰三角形.
332323,得抛物线的顶点为D(2,x(x?4)??(x?2)2?).
663323因此tan?DOA?.所以∠DOA=30°,∠ODA=120°.
3由y??
例4 2011年盐城市中考第28题
如图1,已知一次函数y=-x+7与正比例函数y?4x的图象交于点A,且与x轴交于点B. 3(1)求点A和点B的坐标; (2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动以每秒1个单位长的速度,沿O—C—A的路线向点A运动;出发,以相同速度向左平移,在平移过程中,直线l交x轴或线段AO于点Q.当点P到达点A时,点P和直线l都过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积②是否存在以A、P、Q为顶点的三角形是等腰三角形?若不存在,请说明理由.
点P从点O出发,同时直线l从点B于点R,交线段BA停止运动.在运动为8?
若存在,求t的值;
图1
动感体验
请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图象中可以看到,△APR的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.
思路点拨
1.把图1复制若干个,在每一个图形中解决一个问题.
2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.
3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.
17
满分解答
?y??x?7,?x?3, 所以点A的坐标是(3,4). (1)解方程组? 得?4?y?x,?y?4.?3?令y??x?7?0,得x?7.所以点B的坐标是(7,0).
(2)①如图2,当P在OC上运动时,0≤t<4.由S△APR?S?S△梯形CORAACP△?SPOR?8,得
111.如图3,当Pt2?8t?12?0.解得t=2或t=6(舍去)(3+7?t)?4??4?(4t?)?t?(7t?.整理,得)?8222在CA上运动时,△APR的最大面积为6.
因此,当t=2时,以A、P、R为顶点的三角形的面积为8.
图2 图3 图4
②我们先讨论P在OC上运动时的情形,0≤t<4.
如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,AB?42,所以OB>AB.因此∠OAB>∠AOB>∠B.
如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.
因此∠AQP=45°保持不变,∠PAQ越来越大,所以只存在∠APQ=∠AQP的情况. 此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1. 我们再来讨论P在CA上运动时的情形,4≤t<7.
35520在△APQ中, cos?A?为定值,AP?7?t,AQ?OA?OQ?OA?OR?t?.
533352041如图5,当AP=AQ时,解方程7?t?t?,得t?.
338如图6,当QP=QA时,点Q在PA的垂直平分线上,AP=2(OR-OP).解方程7?t?2[(7?t)?(t?4)],得t?5.
1AQ52032262如7,当PA=PQ时,那么cos?A?.因此AQ?2AP?cos?A.解方程t?得t?. ?2(7?t)?,
33543AP41226综上所述,t=1或或5或时,△APQ是等腰三角形.
843
图5 图6 图7
考点伸展
当P在CA上,QP=QA时,也可以用AP?2AQ?cos?A来求解.
例5 2010年南通市中考第27题
如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连
18
结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
12(3)若y?,要使△DEF为等腰三角形,m的值应为多少?
m图1
动感体验
请打开几何画板文件名“10南通27”,拖动点E在BC上运动,观察y随x变化的函数图象,可以体验到,y是x的二次函数,抛物线的开口向下.对照图形和图象,可以看到,当E是BC的中点时,y取得最大值.双击按钮“m=8”,拖动E到BC的中点,可以体验到,点F是AB的四等分点.
拖动点A可以改变m的值,再拖动图象中标签为“y随x” 的点到射线y=x上,从图形中可以看到,此时△DCE≌△EBF.
思路点拨
1.证明△DCE∽△EBF,根据相似三角形的对应边成比例可以得到y关于x的函数关系式. 2.第(2)题的本质是先代入,再配方求二次函数的最值.
3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF为等腰三角形,那么得到x=y;一段是计算,化简消去m,得到关于x的一元二次方程,解出x的值;第三段是把前两段结合,代入求出对应的m的值.
满分解答
(1)因为∠EDC与∠FEB都是∠DEC的余角,所以∠EDC=∠FEB.又因为∠C=∠B=90°,所以△DCE∽△EBF.因此
DCEB128m8?x?,即?.整理,得y关于x的函数关系为y??x?x. CEBFmmxy1212(2)如图2,当m=8时,y??x?x??(x?4)?2.因此当x=4时,y取得最大值为2.
88121812??x2?x.整理,得x2?8x?12?0.解得x=2或x=6.要使△DEF为等(3) 若y?,那么
mmmm12,m腰三角形,只存在ED=EF的情况.因为△DCE∽△EBF,所以CE=BF,即x=y.将x=y =2代入y?得m=6(如图3);将x=y =6代入y?12,得m=2(如图4). m
图2 图3 图4
考点伸展
本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到y??1281116x?x??(x2?8x)??(x?4)2?, mmmmm19
那么不论m为何值,当x=4时,y都取得最大值.对应的几何意义是,不论AB边为多长,当E是BC的中点时,BF都取得最大值.第(2)题m=8是第(1)题一般性结论的一个特殊性.
再如,不论m为小于8的任何值,△DEF都可以成为等腰三角形,这是因为方程
x??
128x?x总有一个根x?8?m的.第(3)题是这个一般性结论的一个特殊性. mm例 6 2009年江西省中考第25题
如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.
图1 图2 图3
动感体验
请打开几何画板文件名“09江西25”,拖动点P在EF上运动,可以体验到,当N在AD上时,△PMN的形状不发生改变,四边形EGMP是矩形,四边形BMQE、四边形ABMN是平行四边形,PH与NM互相平分.
当N在DC上时,△PMN的形状发生变化,但是△CMN恒为等边三角形,分别双击按钮“PM=PN”、“MP=MN”和“NP=NM”,可以显示△PMN为等腰三角形.
思路点拨
1.先解读这个题目的背景图,等腰梯形ABCD的中位线EF=4,这是x的变化范围.平行线间的距离处处相等,AD与EF、EF与BC间的距离相等.
2.当点N在线段AD上时,△PMN中PM和MN的长保持不变是显然的,求证PN的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.
3.分三种情况讨论等腰三角形PMN,三种情况各具特殊性,灵活运用几何性质解题.
满分解答
(1)如图4,过点E作EG⊥BC于G.
1AB?2,∠B=60°, 2所以BG?BE?cos60??1,EG?BE?sin60??3.
在Rt△BEG中,BE?所以点E到BC的距离为3.
(2)因为AD//EF//BC,E是AB的中点,所以F是DC的中点. 因此EF是梯形ABCD的中位线,EF=4.
①如图4,当点N在线段AD上时,△PMN的形状不是否发生改变. 过点N作NH⊥EF于H,设PH与NM交于点Q.
在矩形EGMP中,EP=GM=x,PM=EG=3. 在平行四边形BMQE中,BM=EQ=1+x. 所以BG=PQ=1.
因为PM与NH平行且相等,所以PH与NM互相平分,PH=2PQ=2. 在Rt△PNH中,NH=3,PH=2,所以PN=7. 在平行四边形ABMN中,MN=AB=4.
20
因此△PMN的周长为3+7+4.
图4 图5
②当点N在线段DC上时,△CMN恒为等边三角形.
如图5,当PM=PN时,△PMC与△PNC关于直线PC对称,点P在∠DCB的平分线上. 在Rt△PCM中,PM=3,∠PCM=30°,所以MC=3. 此时M、P分别为BC、EF的中点,x=2.
如图6,当MP=MN时,MP=MN=MC=3,x=GM=GC-MC=5-3. 如图7,当NP=NM时,∠NMP=∠NPM=30°,所以∠PNM=120°. 又因为∠FNM=120°,所以P与F重合. 此时x=4.
综上所述,当x=2或4或5-3时,△PMN为等腰三角形.
图6 图7 图8
第(2)②题求等腰三角形PMN可以这样解:
考点伸展
如图8,以B为原点,直线BC为x轴建立坐标系,设点M的坐标为(m,0),那么点P的坐标为(m,3),MN=MC=6-m,点N的坐标为(
m?63(6?m),). 2222由两点间的距离公式,得PN?m?9m?21.
2当PM=PN时,m?9m?21?9,解得m?3或m?6.此时x?2. 当MP=MN时,6?m?3,解得m?6?3,此时x?5?3. 当NP=NM时,m2?9m?21?(6?m)2,解得m?5,此时x?4.
1.3 因动点产生的直角三角形问题
例1 2013年山西省中考第26题
如图1,抛物线y?123,与y轴交于点C,连结BC,x?x?4与x轴交于A、B两点(点B在点A的右侧)
42以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x
轴的垂线l交抛物线于点Q.
(1)求点A、B、C的坐标;
(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.
21
图1
动感体验
请打开几何画板文件名“13山西26”,拖动点P在线段OB上运动,可以体验到,当P运动到OB的中点时,四边形CQMD和四边形CQBM都是平行四边形.拖动点P在线段EB上运动,可以体验到,∠DBQ和∠BDQ可以成为直角.
请打开超级画板文件名“13山西26”,拖动点P在线段OB上运动,可以体验到,当P运动到OB的中点时,四边形CQMD和四边形CQBM都是平行四边形.拖动点P在线段EB上运动,可以体验到,∠DBQ和∠BDQ可以成为直角.
思路点拨
1.第(2)题先用含m的式子表示线段MQ的长,再根据MQ=DC列方程.
2.第(2)题要判断四边形CQBM的形状,最直接的方法就是根据求得的m的值画一个准确的示意图,先得到结论.
3.第(3)题△BDQ为直角三角形要分两种情况求解,一般过直角顶点作坐标轴的垂线可以构造相似三角形.
满分解答
1231x?x?4?(x?2)(x?8),得A(-2,0),B(8,0),C(0,-4). 4241(2)直线DB的解析式为y??x?4.
2113由点P的坐标为(m, 0),可得M(m,?m?4),Q(m,m2?m?4).
2421131所以MQ=(?m?4)?(m2?m?4)??m2?m?8.
2424(1)由y?当MQ=DC=8时,四边形CQMD是平行四边形. 解方程?12. m?m?8?8,得m=4,或m=0(舍去)
4此时点P是OB的中点,N是BC的中点,N(4,-2),Q(4,-6). 所以MN=NQ=4.所以BC与MQ互相平分. 所以四边形CQBM是平行四边形.
图2 图3
(3)存在两个符合题意的点Q,分别是(-2,0),(6,-4).
考点伸展
第(3)题可以这样解:设点Q的坐标为(x,(x?2)(x?8)).
1422
1?(x?2)(x?8)QGBH114①如图3,当∠DBQ=90°时, ??.所以?.
GBHD28?x2解得x=6.此时Q(6,-4).
14?(x?2)(x?8)QGDH4②如图4,当∠BDQ=90°时, ??2.所以?2.
GDHB?x解得x=-2.此时Q(-2,0).
图3 图4
例1 2012年广州市中考第24题
33如图1,抛物线y??x2?x?3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
84(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标; (3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,....
求直线l的解析式.
图1
动感体验
请打开几何画板文件名“12广州24”,拖动点M在以AB为直径的圆上运动,可以体验到,当直线与圆相切时,符合∠AMB=90°的点M只有1个.
请打开超级画板文件名“12广州24”,拖动点M在以AB为直径的圆上运动,可以体验到,当直线与圆相切时,符合∠AMB=90°的点M只有1个.
思路点拨
1.根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D有两个.
2.当直线l与以AB为直径的圆相交时,符合∠AMB=90°的点M有2个;当直线l与圆相切时,符合∠AMB=90°的点M只有1个.
3.灵活应用相似比解题比较简便.
满分解答
333(1)由y??x2?x?3??(x?4)(x?2),
848得抛物线与x轴的交点坐标为A(-4, 0)、B(2, 0).对称轴是直线x=-1.
(2)△ACD与△ACB有公共的底边AC,当△ACD的面积等于△ACB的面积时,点B、D到直线AC的距离相等.
过点B作AC的平行线交抛物线的对称轴于点D,在AC的另一侧有对应的点D′. 设抛物线的对称轴与x轴的交点为G,与AC交于点H.
23
DGCO3??. BGAO4399所以DG?BG?,点D的坐标为(1,?).
444因为AC//BD,AG=BG,所以HG=DG.
2727而D′H=DH,所以D′G=3DG?.所以D′的坐标为(1,).
44由BD//AC,得∠DBG=∠CAO.所以
图2 图3
(3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M.
以AB为直径的⊙G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M了. 联结GM,那么GM⊥l.
在Rt△EGM中,GM=3,GE=5,所以EM=4.
MA3在Rt△EM1A中,AE=8,tan?M1EA?1?,所以M1A=6.
AE43所以点M1的坐标为(-4, 6),过M1、E的直线l为y??x?3.
43根据对称性,直线l还可以是y?x?3.
4
考点伸展
第(3)题中的直线l恰好经过点C,因此可以过点C、E求直线l的解析式. 在Rt△EGM中,GM=3,GE=5,所以EM=4. 在Rt△ECO中,CO=3,EO=4,所以CE=5.
因此三角形△EGM≌△ECO,∠GEM=∠CEO.所以直线CM过点C.
例3 2012年杭州市中考第22题
在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k). (1)当k=-2时,求反比例函数的解析式;
(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.
动感体验
请打开几何画板文件名“12杭州22”,拖动表示实数k的点在y轴上运动,可以体验到,当k<0并且在抛物线的对称轴左侧,反比例函数与二次函数都是y随x增大而增大.观察抛物线的顶点Q与⊙O的位置关系,可以体验到,点Q有两次可以落在圆上.
请打开超级画板文件名“12杭州22”,拖动表示实数k的点在y轴上运动,可以体验到,当k<0并且在抛物线的对称轴左侧,反比例函数与二次函数都是y随x增大而增大.观察抛物线的顶点Q与⊙O的位置关系,可以体验到,点Q有两次可以落在圆上.
思路点拨
k.题目中的k都是一致的. x2.由点A(1,k)或点B(-1,-k)的坐标还可以知道,A、B关于原点O对称,以AB为直径的圆的圆心就是O. 3.根据直径所对的圆周角是直角,当Q落在⊙O上是,△ABQ是以AB为直径的直角三角形.
1.由点A(1,k)或点B(-1,-k)的坐标可以知道,反比例函数的解析式就是y?24
满分解答
(1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是y?当k=-2时,反比例函数的解析式是y??(2)在反比例函数y?
k. x
2. x那么k<0. 增大而增大.
线
k
中,如果y随x增大而增大,x
当k<0时,抛物线的开口向下,在对称轴左侧,y随x
15抛物线y=k(x2+x+1)=k(x?)2?k的对称轴是直
241x??. 图1
21所以当k<0且x??时,反比例函数与二次函数都是y随x增大而增大.
215(3)抛物线的顶点Q的坐标是(?,?k),A、B关于原点O中心对称,
24当OQ=OA=OB时,△ABQ是以AB为直径的直角三角形.
15由OQ2=OA2,得(?)2?(?k)2?12?k2.
2422解得k1?,k2??. 3(如图2)3(如图3)
33图2 图3
考点伸展
如图4,已知经过原点O的两条直线AB与CD分别与双曲线y?k(k>0)交于A、B和C、D,那么ABx与CD互相平分,所以四边形ACBD是平行四边形.
问平行四边形ABCD能否成为矩形?能否成为正方形?
如图5,当A、C关于直线y=x对称时,AB与CD互相平分且相等,四边形ABCD是矩形.
因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以OA与OC无法垂直,因此四边形ABCD不能成为正方形.
图4 图5
25
正在阅读:
2015挑战中考数学压轴题(第八版精选)11-11
2019年高考生物二轮复习专题十现代生物科技专题考点30胚胎工程生05-18
父母与孩子的感人故事02-19
通江野生银耳培育实验方案05-15
热控单体调试方案终改解读10-24
先进个人事迹材料范文精选五篇07-31
《清稗类钞》着述类 性理类 经术类05-19
2018年高考政治专题复习:与供给侧改革有关的设问整理10-25
以课标为依据,活教英语单词03-23
(法律法规课件)XXXX法律常识练习题05-01
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 压轴
- 中考
- 挑战
- 数学
- 精选
- 2015