七年级数学期末试卷检测题(WORD版含答案)

更新时间:2023-05-09 01:46:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

七年级数学期末试卷检测题(WORD版含答案)

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.

(1)请判断 AB 与 CD 的位置关系,并说明理由;

(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;

(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠

BAC 有何数量关系?写出结论,并说明理由.

【答案】(1),理由如下:

CE 平分,AE 平分,

2),理由如下:

如图,延长AE交CD于点F,则

由三角形的外角性质得:

(3),理由如下:

,即

由三角形的外角性质得:

又,即

即.

【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.

2.已知 (本题中的角均大于且小于 )

(1)如图1,在内部作,若,求

的度数;

,,,求的度数;

(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.

【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD

又∵

∠AOD+∠

BOC=160°且∠AOB=120°

(2)解:,

设,则

(3) s或15s或30s或45s

【解析】【解答】(2)解:当OI在直线OA的上方时,

有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,

∠PON= ×60°=30°,

∵∠MOI=3∠POI,

∴3t=3(30-3t)或3t=3(3t-30),

解得t= 或15;

当OI在直线AO的下方时,

∠MON ═(360°-∠AOB)═ ×240°=120°,

∵∠MOI=3∠POI,

∴180°-3t=3(60°- )或180°-3t=3( -60°),

解得t=30或45,

综上所述,满足条件的t的值为 s或15s或30s或45s

【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.

3.

如图

如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;

(2)模型构建

如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;

(3)拓展应用

8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?

请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.

【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段

(2)解:,

理由:设线段上有m个点,该线段上共有线段x条,

则x=(m-1)+(m-2)+(m-3)+…+3+2+1,

∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),

∴2x= =m(m-1),

∴x=

(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,

因此一共要进行场比赛

【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2

条;(2)根据规律得到该线段上共有m(

m-1)÷2条线段;(3)由每两位同学之间进行

一场比赛,得到要进行8×(8-1)÷2场比赛.

4.如图,点B 、C在线段AD上,CD=2AB+3.

(1)若点C是线段AD的中点,求BC-AB的值;

(2)若BC=AD,求BC-AB的值;

(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.

【答案】(1)解:设AB长为x,BC长为y,则CD=2x+3.若C是AB的中点,则AC=CD,即x+y=2x+3,得:y-x=3,即BC-AB=3

(2)解:设AB长为x,BC长为y,若BC= CD,即AB+CD=3BC,∴x+2x+3=3y,∴y=x+1,即y-x=1,∴BC-AB=1

(3)解:以A为原点,AD方向为正方向,1为单位长度建立数轴,则A:0,B:x,C:x+y,D:x+y+2x+3=3x+y+3.设P:p,由已知得:0≤p≤x+y,则AP =p,AC=x+y,DP=3x+y+3-p,∵AP+AC=DP,BP= ,∴p+x+y=3x+y+3-p,解得:2p-2x=3,∴p-x=1.5,∴BP=1.5

【解析】【分析】(1)此题可以设未知数表示题中线段的长度关系,设AB长为x,BC长为y,则AC=AB+BC=x+y,CD=2x+3 ,根据中点的定义得出 AC=CD ,从而列出方程,变形即可得出答案;

(2)设AB长为x,BC长为y ,则CD=2x+3 ,由BC= CD,得出AB+CD=3BC,从而列出方程变形即可得出答案;

(3)设AB长为x,BC长为y ,则CD=2x+3 ,以A为原点,AD方向为正方向,1为单位长度建立数轴,则A点表示的数为0,B点表示的数为x,C点表示的数为x+y,D点表示

的数为x+y+2x+3=3x+y+3.设P点表示的数为p,由已知得:0≤p≤x+y,则AP=p,AC=x+y,DP=3x+y+3-p,由AP+AC=DP,列出方程,并行得出P-X的值,再根据BP= 即可得出答案。

5.如图,∠AOB=α,∠COD=β(α>

β),OC与OB重合,OD在∠AOB外,射线OM、

ON分别是∠AOC、∠BOD的角平分线.

(1)①若α=100°,β=60°,则∠MON等于多少;

②在①的条件下∠COD绕点O逆时针旋转n°(0<n<100(且n≠60)时,求∠MON的度数;

(2)直接写出∠COD绕点O逆时针旋转n°(0<n<360)时∠MON的值(用含α、β的式子表示).

【答案】(1)解:①∵OM,ON分别是∠AOC,∠BOD的角平分线,

∴∠BOM =∠AOB,∠BON=∠BOD,

∴∠MON=(∠AOB+∠BOD),

又∵∠AOB=100°,∠COD=60°,

∴∠MON=(∠AOB+∠BOD)=

×(100°+60°)=80°.

②如图1,∵∠COD绕点O逆时针旋转n°,

∴∠BOC=n°,

∴∠BOD=60°﹣n°,∠AOC=100°﹣n°,

∵OM,ON分别是∠AOC,∠BOD的角平分线,

∴∠COM=∠AOC=50°﹣ n°,∠BON=∠BOD=30°﹣ n°,∴∠MON=∠COM+∠COB+∠BON=80°;

如图2,∵∠COD绕点O逆时针旋转n°,

∴∠BOC=n°,

∴∠BOD=n°﹣60°,∠AOC=100°﹣n°,

∵OM,ON分别是∠AOC,∠BOD的角平分线,

∴∠COM =∠AOC=50°﹣ n°,∠DON=∠BOD = n°﹣30°,

∴∠MON=∠COM+∠COD+∠DON=80°

(2)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β,

∴∠MON =(α+β)或180°﹣(α+β);

【解析】【分析】(1)①根据角平分线的定义求出∠BOM和∠CON的度数,然后相加即可得出答案;②根据旋转的性质可知∠BOC=n°,分两种情况进行讨论:如图1,∠BOD=60°﹣n°,∠AOC=100°﹣n°,根据角平分线的定义得出∠COM和∠BON的度数,然后根据∠MON=∠COM+∠COB+∠BON进行计算即可得出结论;如图2,∠BOD=n°﹣60°,∠AOC=100°﹣n°,根据角平分线的定义得出∠COM和∠BON的度数,然后根据∠MON=∠COM+∠COD+∠BON进行计算即可得出结论;(2)根据①、②的解题思路即可得到结论.

.

6.已知∠AOB和∠AOC是同一个平面内的两个角,OD是∠BOC的平分线

(2)若∠AOB= 度,∠AOC= 度,其中且

求∠AOD的度数(结果用含的代数式表示),请画出图形,直接写出答案。

【答案】(1)解:图1中∠BOC=∠AOC﹣∠AOB=70°﹣50°=20°,

∵OD是∠BOC的平分线,

∴∠BOD= ∠BOC=10°,

∴∠AOD=∠AOB+∠BOD=50°+10°=60°;

图2中∠BOC=∠AOC+∠AOB=120°,

∵OD是∠BOC的平分线,

∴∠BOD= ∠BOC=60°,

∴∠AOD=∠BOD﹣∠AOB=60°﹣50°=10°;

(2)解:根据题意可知∠AOB= 度,∠AOC= 度,其中

且,

如图1中,

∠BOC=∠AOC﹣∠AOB=n﹣m,

∵OD是∠BOC的平分线,

∴∠BOD= ∠BOC= ,

∴∠AOD=∠AOB+∠BOD= ;

如图2中,

∠BOC=∠AOC+∠AOB=m+n,

∵OD是∠BOC的平分线,

∴∠BOD= ∠BOC= ,

∴∠AOD=∠BOD﹣∠AOB= .

【解析】【分析】(1)图1中∠BOC=∠AOC﹣∠AOB=20°,则∠BOD=10°,根据

∠AOD=∠AOB+∠BOD即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD﹣∠AOB即可得解;(2)图1中∠BOC=∠AOC﹣∠AOB=n﹣m,则∠BOD=

,故∠AOD=∠AOB+∠BOD= ;图2中∠BOC=∠AOC+∠AOB=m+n,则∠BOD= ,故∠AOD=∠BOD﹣∠AOB= .

7.学习千万条,思考第一条。请你用本学期所学知识探究以下问题:

(1)已知点为直线上一点,将直角三角板的直角顶点放在点处,并在

内部作射线.

①如图1,三角板的一边

与射线重合,且,若以点为观察中心,

射线表示正北方向,求射线表示的方向;

②如图2,将三角板放置到如图位置,使恰好平分,且,求

的度数.

(2)已知点不在同一条直线上,,平分,

平分,用含的式子表示的大小.

【答案】(1)解:①∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,

∴射线OC表示的方向为北偏东60°

②∵∠BON=2∠NOC,OC平分∠MOB,

∴∠MOC=∠BOC=3∠NOC,

∵∠MOC+∠NOC=∠MON=90°,

∴3∠NOC+∠NOC=90°,

∴4∠NOC=90°,

∴∠BON=2∠NOC=45°,

∴∠AOM=180°﹣∠MON﹣∠BON

=180°﹣90°﹣45°

=45°

(2)解:①如图1:

∵∠AOB=α,∠BOC=β

∴∠AOC=∠AOB+∠BOC=90°+30°=120°

∵OM平分∠AOB,ON平分∠BOC,

∴∠AOM=∠BOM=∠AOB =α,∠CON=∠BON=∠COB =β,

∴∠MON=∠BOM+∠CON=;

②如图2

∠MON=∠BOM﹣∠BON=;

③如图3

∴∠MON为或或.

【解析】【分析】(1)①根据∠MOC=∠AOC-∠AOM代入数据计算,即得出射线OC表示的方向;②根据角的倍分关系以及角平分线的定义即可求解;(2)分射线OC在∠AOB 内部和外部两种情况讨论即可.

8.如图①,点为直线上一点,过点作射线,使,将一直角三角

在直线的上方.

板的直角顶点放在点处,一边在射线上,另一边

(2)将图①中的三角板绕点按逆时针方向旋转,使得在的内部,如图②,若

,求的度数;

(3)将图①中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,当直线恰好平分锐角时,旋转的时间是________秒.(直接写出结果)

【答案】(1)30

(2)解:设∠BON=α,

∵∠BOC=60°,

∴∠NOC=60°-α,

∵∠MON=90°,

∴∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,

∠MOA=180°-∠MON-∠BON=180°-90°-α=90°-α,

∵∠NOC= ∠MOA,

∴60°-α= (90°-α),

解得:α=54°,

即∠BON=54°;

(3)3或21

【解析】【解答】(1)∵将一直角三角板的直角顶点放在点O处,一边ON在射线OB

上,另一边OM在直线AB的上方,

∴∠MON=90°,

∴∠COM=∠MON-∠BOC=90°-60°=30°,(3)∵直线ON平分∠BOC,∠BOC=60°,

∴∠BON=30°或∠BON=210°,

∵三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,

∴直线ON平分∠BOC时,旋转的时间是3或21秒,

故答案为:3或21.

【分析】(1)由题意得出∠MON=90°,得出∠COM=∠MON-∠BOC=90°-60°=30°;(2)设∠BON=α,则∠NOC=60°-α,∠MOC=∠MON-∠NOC=90°-60°+α=30°+α,∠MOA=180°-

∠MON-∠BON=180°-90°-α=90°-α,由题意得出60°-α= (90°-α),解得α=54°即可;(3)求出∠BON=30°或∠BON=210°,即可得出答案.

9.如图,以直线AB上一点O为端点作射线OC,使∠

AOC=65°,将一个直角三角形的直

角顶点放在点O处.(注:∠DOE=90°)

(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=________;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;

(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.

【答案】(1)25°

(2)解:如图②,∵OC平分∠EOA,∠AOC=65°,∴∠EOA=2∠AOC=130°,∵∠DOE=90°,∴∠AOD=∠AOE-∠DOE=40°,∵∠BOC=65°,∴∠COD=∠AOC-∠AOD=25°(3)解:根据图形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°

【解析】【解答】(1)如图①,∠COE=∠DOE-∠AOC=90°-65°=25°;

【分析】(1)根据图形得出∠COE=∠DOE-∠AOC,代入求出即可;(2)根据角平分线定义求出∠EOA=2∠AOC=130°,代入∠EOC=∠BOA-∠AOC,求出∠EOC,代入∠COD=∠DOE-∠EOC求出即可;(3)根据图形得出∠AOD+∠COD=∠AOC=65°,∠COE+∠COD=∠DOE=90°,相减即可求出答案.

10.如图,∠AOB=90°

,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.

(1)求∠MON的度数;

(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;

(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;

(4)从(1)、(2)、(3)的结果中,你能看出什么规律?

【答案】(1)解:∠AOB=90°,∠BOC=30°,

∴∠AOC=90°+30=120°.

由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.

∵∠MON=∠MOC ﹣∠CON,

∴∠MON=60°﹣15°=45°

(2)解:∠AOB=α,∠BOC=30°,

∴∠AOC=α+30°.

由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON= ∠BOC=15°.

∵∠MON=∠MOC﹣∠CON ,

∴∠MON= α+15°﹣15°= α

(3)解:∠AOB=90°,∠BOC=β,

∴∠AOC=β+90°.

由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC= β.

∵∠MON=∠MOC﹣∠CON,

∴∠MON= β+45°﹣β=45°

(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC ,与∠BOC的大小无关

【解析】【分析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,∠CON=15°,最后根据∠MON=∠MOC ﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由

角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解

即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.

11.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.

(1)说明:DC∥AB;

(2)求∠PFH的度数.

【答案】(1)证明:∵DC∥FP,

∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,

∴DC∥AB

(2)解:∵DC∥FP,DC∥AB,∠DEF=30°,

∴∠DEF=∠EFP=30°,AB∥FP,

又∵∠AGF=80°,

∴∠AGF=∠GFP=80°,

∴∠GFE=∠GFP+∠EFP=80°+30°=110°,

又∵FH平分∠EFG,

∴∠GFH= ∠GFE=55°,

∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°

【解析】【分析】(1)根据二直线平行,同位角相等得出,又∠1=∠2,故∠1=∠3,根据同位角相等,两直线平行得出DC∥AB;

(2)根据平行于同一直线的两条直线互相平行得出AB∥FP,根据二直线平行,内错角相等得出,,根据角的和差,由

算出∠GFE的度数,根据角平分线的定义得出∠GFH的度数,最后根据即可算出答案。

12.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分

别平分∠ACP和∠DCP交射线AB于点E、F

(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;

(3)当∠AEC=∠ACF时,求∠APC的度数.

【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°

∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF

∴∠ECF= ∠ACD=70°

(2)解:不变.数量关系为:∠APC=2∠AFC.

∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP

∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC

(3)解:∵AB∥CD ,∴∠AEC=∠ECD

当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF

∴∠PCD=∠ACD=70°

∴∠APC=∠PCD=70°

【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD ,根据

∠ECF=70°,∠ACD=140°,可求得∠

APC的度数.

13

.课题学习:平行线的“等角转化功能.

(1)问题情景:如图1,已知点是外一点,连接、,求

的度数.

天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点作,∴ ________, ________.

又∵,∴ .

解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.

(2)问题迁移:如图2,,求的度数.

(3)方法运用:如图3,,点在的右侧,,点在的左侧,,平分,平分,、所在的直线交于点,点在与两条平行线之间,求的度数.

【答案】(1)∠EAB;∠DAC

(2)解:过C作CF∥AB,

∵AB∥DE,∴CF∥DE∥AB,

∴∠D=∠FCD,∠B=∠BCF,

∵∠BCF+∠BCD+∠DCF=360°,

∴∠B+∠BCD+∠D=360°,

(3)解:如图3,过点E作EF ∥AB,

∵AB∥CD,∴AB∥CD∥

EF,

∴∠ABE=∠BEF,∠CDE=∠DEF,

∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,

∴∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°

∴∠BED=∠BEF+∠DEF=30°+35°=65°.

【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;

【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)

如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE= ∠ABC=30°,∠CDE= ∠ADC=35°,故∠BED=∠BEF+∠DEF.

14.如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD=∠CAE,AF平分∠BAE.

(1)∠CAF=________°;

(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;

(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD度数;若不存在,说明理由.

【答案】(1)65

(2)解:若平行移动CD,那么∠ACB与∠AEB度数的比值不发生变化.

∵AD∥BC,

∴∠DAC=∠ACB

∵∠CAD=∠CAE

∴∠ACB=∠CAE

∴∠AEB=∠CAE+∠ACB=2∠ACB

即∠ACB:∠AEB=1:2

所以,∠ACB与∠AEB度数的比值是:1:2

(3)解:存在

∵AD∥BC,

∴∠B+∠BAD=180°,

∵∠B=∠D

∴∠D+∠BAD=180°

∴AB∥CD

∴∠AFB=∠DAF=∠DAC+∠CAF

∠ACD=∠CAB=∠BAF+∠CAF

∵∠AFB=∠ACD

∴∠DAC+∠CAF=∠BAF+∠CAF

∴∠DAC=∠BAF

∴∠DAC=∠BAF=∠CAE=∠EAF= ∠BAD= ×130°=32.5°

∴∠ACD= ∠CAB=∠BAF+∠CAF =3∠DAC=3×32.5°=97.5°

【解析】【解答】解:(1)∵AF平分∠BAE,

∴∠BAF=∠EAF= ∠BAE,

∵∠CAD=∠CAE

∴∠CAD =∠CAE= ∠DAE

∴∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD

∵AD∥BC,∠B=∠D=50°,

∴∠BAD=180-∠B=130°,

∴∠CAF=65°

【分析】(1)根据角平分线的性质可得∠CAF=∠EAF+∠CAE= ∠BAE+ ∠DAE= ∠BAD,再根据平行线的性质得∠BAD =180-∠B,从而得出答案;(2)根据平行线的性质得∠DAC=∠ACB,再由∠CAD=∠CAE,可知∠ACB=∠CAE,从而可得∠AEB =2∠ACB,即可得出答案;(3)根据平行线的性质得∠AFB=∠DAF=∠DAC+∠CAF,∠ACD=∠CAB=∠BAF+∠CAF,再由平行线的性质可得∠BAD=130°,即可求出答案

15.学习千万条,思考第一条。请你用本学期所学知识探究以下问题:

(1)已知点为直线上一点,将直角三角板的直角顶点放在点处,并在

内部作射线.

①如图1,三角板的一边与射线重合,且,若以点为观察中心,射线表示正北方向,求射线表示的方向;

②如图2,将三角板放置到如图位置,使恰好平分,且

,求的度数.

(2)已知点不在同一条直线上,,平分,平分,用含的式子表示的大小.

【答案】(1)解:①∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,

∴射线OC表示的方向为北偏东60°

②∵∠BON=2∠NOC,OC平分∠MOB,

∴∠MOC=∠BOC=3∠NOC,

∵∠MOC+∠NOC=∠MON=90°,

∴3∠NOC+∠NOC=90°,

∴4∠NOC=90°,

∴∠BON=2∠NOC=45°,

∴∠AOM=180°﹣∠MON﹣∠BON

=180°﹣90°﹣45°

=45°

(2)解:①如图1:

∵∠AOB=α,∠BOC=β

∴∠AOC=∠AOB+∠BOC=90°+30°=120°

∵OM平分∠AOB,ON平分∠BOC,

∴∠AOM=∠BOM=∠AOB=α,∠CON=∠BON=∠COB=

β,

∴∠MON=∠BOM+∠CON=;

②如图2

∠MON=∠BOM﹣∠BON=;

③如图3,

∠MON=∠BON﹣∠BOM=.…

∴∠MON 为或或.

【解析】【分析】(1)①根据∠MOC=∠AOC-∠AOM代入数据计算,即得出射线OC表示的方向;②根据角的倍分关系以及角平分线的定义即可求解;(2)分射线OC在∠AOB 内部和外部两种情况讨论即可.

本文来源:https://www.bwwdw.com/article/tlte.html

Top