线性代数_北京邮电大学出版社(戴斌祥_主编)习题答案(3、4、5)

更新时间:2024-07-01 00:28:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

习题 三

(A类)

1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)

2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α=(4,1,-1,1).求α.

解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=

3

11(3α1+2α2-5α3),即α= (6,12,18,24) 66=(1,2,3,4)

3.(1)× (2)× (3)√ (4)× (5)×

4. 判别下列向量组的线性相关性.

(1)α1=(2,5), α2=(-1,3);

(2) α1=(1,2), α2=(2,3), α3=(4,3);

(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);

(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.

5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设

k1?1?k2(?1??2)?k3(?1??2??3)?0,

(k1?k2?k3)?1?(k2?k3)?2?k3?3?0.

由?1,?2,?3线性无关,有

?k1?k2?k3?0,? ?k2?k3?0,?k?0.?3所以k1?k2?k3?0,即?1,?1??2,?1??2??3线性无关.

6.问a为何值时,向量组

?1?(1,2,3)',?2?(3,?1,2)',?3?(2,3,a)'

线性相关,并将?3用?1,?2线性表示.

1解:A?2111?13?7(5?a),当a=5时,?3??1??2.

7732a32

7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵. 解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关,

所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,

?10?1?10)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为??10??10

10??00?. 00??01?8. 设?1,?2,?,?s的秩为r且其中每个向量都可经?1,?2,?,?r线性表出.证明:

?1,?2,?,?r为?1,?2,?,?s的一个极大线性无关组.

【证明】若 ?1,?2,?,?r (1) 线性相关,且不妨设

?1,?2,?,?t (t

是(1)的一个极大无关组,则显然(2)是?1,?2,?,?s的一个极大无关组,这与?1,?2,?,?s的秩为r矛盾,故?1,?2,?,?r必线性无关且为?1,?2,?,?s的一个极大无关组. 9. 求向量组?1=(1,1,1,k),?2=(1,1,k,1),?3=(1,2,1,1)的秩和一个极大无关组. 【解】把?1,?2,?3按列排成矩阵A,并对其施行初等变换.

?1?1A???1??k11??111??111??11?0??0??0k?112?0101?????????k1??0k?10??0k?10??00??????11??01?k1?k??001?k??001?0?? 1??0?当k=1时,?1,?2,?3的秩为2,?1,?3为其一极大无关组. 当k≠1时,?1,?2,?3线性无关,秩为3,极大无关组为其本身.

10. 确定向量?3?(2,a,b),使向量组?1?(1,1,0),?2?(1,1,1),?3与向量组?1=(0,1,1),

?2=(1,2,1),?3=(1,0,?1)的秩相同,且?3可由?1,?2,?3线性表出.

【解】由于

?0A?(?1,?2,?3)??1???1?1B?(?1,?2,?3)??1???01211111??1??00????1????02??1??0a???b????00?;?1?1??00??

12?,1b??0a?2??2而R(A)=2,要使R(A)=R(B)=2,需a?2=0,即a=2,又

a??0112??120?,

c?(?1,?2,?3,?3)??120a???0112??????11?1b????000b?a?2??要使?3可由?1,?2,?3线性表出,需b?a+2=0,故a=2,b=0时满足题设要求,即?3=(2,2,0).

11. 求下列向量组的秩与一个极大线性无关组. (1) α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);

(2) α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);

(3) α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6). 解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B,则

11???1 4 1??1 0 ???1 4 1??1 4 1??9???5??????2 ?1 ?30 ?9 ?550 1 ????????A??9???0 1 ??B ?1 ?5 ?4??0 ?9 ?5??9??0 0 0??????0 0 0???3 ?6 ?7??0 ?18 ?10??0 0 0?????0 0 0???可知:R(Α)=R(B)=2,B的第1,2列线性无关,由于Α的列向量组与B的对应的列向

量有相同的线性组合关系,故与B对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组. (2)同理,

? 6 1 1 7??0 -11 55 7??1 2 -9 0??????? 4 0 4 10 ?8 40 10 -11 55 7??????? 1 2 -9 0???1 2 -9 0???0 -8 40 1?????????1 3 -6 ?10 5 -15 -10 5 -15 -1??????? 2 ?4 22 3??0 ?8 40 1??0 0 0 0????????1 2 -9 0? ??7?0 1 -5 -??1 2 -9 0??1 0 0 0??11??0 1 -5 0??0 1 0 0?????45???0 0 0 -???0 0 10 0???0 0 1 0??B11??????0 0 0 10 0 0 1????24??????0 0 10 ???0 0 0 0??0 0 0 0?11???0 0 0 0???可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组. (3)同理,

?1 0 3 1 2??1 0 3 1 2??1 0 3 1 2??1 0 3 1 2?????????-1 3 0 -1 10 3 3 0 30 1 1 0 10 1 1 0 1??????????, A???2 1 7 2 5??0 1 1 0 1??0 0 0 -4 -4??0 0 0 1 1?????????4 2 14 0 60 2 2 -4 -20 0 0 0 00 0 0 0????????可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.

12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示. (1) α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);

(2) α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7). 解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.

3???1 -1 5 -1??1 0 1??1 -1 5 -1??1 -1 5 -1??2??7???????1 1 -2 3??0 2 -7 4?7?0 1 - 2?A?????2???0 1 - 2??B,

?3 -1 8 1??0 2 -7 4??2??0 0 0 0??????0 0 0 0???1 3 -9 7??0 4 -14 8 ??0 0 0 0?????0 0 0 0???可知,α1,α2为向量组的一个极大无关组.

?x1?x2?5?x?x??237?12设α3=x1α1+x2α2,即?解得,x1?,x2??

22?3x1?x2?8??x1?3x2??9

?x1?x2??1?x?x?3?12设α4=x3α1+x4α2,即?解得,x1?1,x2?2

?3x1?x2?1??x1?3x2?737所以a3?a1?a2,a4?a1?2a2.

22?1 1 1 4 -3??1 1 1 4 -3??1 0 2 1 -2???????1 -1 3 -2 -10 -2 2 -6 20 1 -1 3 -1????????B (2)同理, A???2 1 3 5 -5??0 -1 1 -3 1??0 0 0 0 0???????3 1 5 6 -70 -2 2 -6 20 0 0 0 0??????可知, α1、α2可作为Α的一个极大线性无关组,令α3=x1α1+x2α可得:?2

?x1?x2?1即x1=2,x2=-1,令α4=x3α1+x4α2,

?x1?x2?3可得:??x1?x2?4即x1=1,x2=3,令α5=x5α1+x6α2,

x?x??2?122

?x1?x2??3可得:?即x1=-2,x2=-1,所以α3=2α1-α

x?x??1?12α4=α1+3α2,α5=-2α1-α

2

13. 设向量组?1,?2,?,?m与?1,?2,?,?s秩相同且?1,?2,?,?m能经?1,?2,?,?s线性表出.证明?1,?2,?,?m与?1,?2,?,?s等价.

【解】设向量组

?1,?2,?,?m (1)

与向量组

?1,?2,?,?s (2)

的极大线性无关组分别为

?1,?2,?,?r (3)

?1,?2,?,?r (4)

由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

?i??aij?jj?1r(i?1,2,?,r).

因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出?j(j?1,2,?,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.

14. 设向量组α1,α2,…,αs的秩为r1,向量组β1,β2,…,βt的秩为r2,向量组α1,α2,…,αs,β1,β2,…,βt的秩为r3,试证:

max{r1,r2}≤r3≤r1+r2. 证明:设α

s1,…,

?S为α1,α2,…,αs的一个极大线性无关组, βt1,βt2,…,?t为β1,

r1r2β2,…,βt的一个极大线性无关组. μ1,…,?r3为α1, α2,…,αs,β1,β2,…,βt的一个极大线性无关组,则α

s1,

…,?Sr1和βt1,…,β

tr2

可分别由μ1,…,?r3线性表示,所

s1,

以,r1≤r3,r2≤r3即max{r1,r2}≤r3,又μ1,…,?r3可由α

…,αsr1,βt1,…,βtr2线性

表示及线性无关性可知:r3≤r1+r2.

15. 已知向量组α1=(1,a,a,a)′,α2=(a,1,a,a)′,α3=(a,a,1,a)′,α4=(a,a,a,1)′的秩为3,试确定a的值.

解:以向量组为列向量,组成矩阵A,用行初等变换化为最简形式:

?1 a a a??1 a a a??1?3a a a a???????a 1 a aa-1 1?a 0 00 1-a 0 0???????? ?a a 1 a??a-1 0 1-a 0??0 0 1-a 0???????a a a 1a-1 0 0 1-a0 0 0 1-a??????由秩A=3.可知a≠1,从而1+3a=0,即a=-

1. 3

16. 求下列矩阵的行向量组的一个极大线性无关组.

?25?75(1)??75??2543??1?09453132??; (2)??29454134???322048??13117121?215?1??. 03?13??104?1?2??1????2【解】(1) 矩阵的行向量组??的一个极大无关组为?1,?2,?3;

??3?????4?

??1????2(2) 矩阵的行向量组??的一个极大无关组为?1,?2,?4.

??3?????4?17. 集合V1={(x1,x2,?,xn)|x1,x2,?,xn∈R且x1?x2???xn=0}是否构成向量空间?为什么?

【解】由(0,0,…,0)∈V1知V1非空,设??(x1,x2,?,xn)?V1,??(y1,y2,?,yn)?V2,k?R)则

????(x1?y1,x2?y2,?,xn?yn)

k??(kx1,kx2,?,kxn).因为

(x1?y1)?(x2?y2)???(xn?yn)?(x1?x2???xn)?(y1?y2???yn)?0, kx1?kx2???kxn?k(x1?x2???xn)?0,所以????V1,k??V1,故V1是向量空间.

18. 试证:由?1?(1,1,0),?2?(1,0,1),?3?(0,1,1),生成的向量空间恰为R3. 【证明】把?1,?2,?3排成矩阵A=(?1,?2,?3),则

110A?101??2?0,

011所以?1,?2,?3线性无关,故?1,?2,?3是R3的一个基,因而?1,?2,?3生成的向量空间恰为R3.

?2?(1,1,1,2),?3?19. 求由向量?1?(1,2,1,0),生的向量空间的一组基及其维数.

【解】因为矩阵

(3,4,3,4),?4?(1,1,2,1),?5?(4,5,6,4)所

A?(?1,?2,?3,?4,?5)?1?2???1??01314??11314??11314??0?1?2?1?3??0?1?2?1?3?

1415????????,1326??00012??00012??????2414??02414??00000?∴?1,?2,?4是一组基,其维数是3维的.

20. 设?1?(1,1,0,0),?2?(1,0,1,1),?1?(2,?1,3,3),?2?(0,1,?1,?1),证明:

L(?1,?2)?L(?1,?2).

【解】因为矩阵

A?(?1,?2,?1,?2)?1?1???0??010??112?0?1?30?11????13?1??000??13?1??00020? 1??,0??0?由此知向量组?1,?2与向量组?1,?2的秩都是2,并且向量组?1,?2可由向量组?1,?2线性表出.由习题15知这两向量组等价,从而?1,?2也可由?1,?2线性表出.所以

L(?1,?2)?L(?1,?2).

21. 在R3中求一个向量?,使它在下面两个基

(1)?1?(1,0,1),?2?(?1,0,0)?3?(0,1,1)(2)?1?(0,?1,1),?2?(1,?1,0)?3?(1,0,1)下有相同的坐标.

【解】设?在两组基下的坐标均为(x1,x2,x3),即

?x1??x1???(?,?,?)?x?,??(?1,?2,?3)?x2123?2??????x3???x3??

?1?10??x1??011??x1??001??x????1?10??x????2????2???101????101????x3????x3??即

?1?2?1??x1??111??x??0, ???2???000????x3??求该齐次线性方程组得通解

x1?k,x2?2k,x3??3k (k为任意实数)

??x1?1?x2?2?x3?3?(k,2k,?3k).

22. 验证?1?(1,?1,0),?2?(2,1,3),?3?(3,1,2)为R3的一个基,并把?1?(5,0,7),

?2?(?9,?8,?13)用这个基线性表示.

【解】设

A?(?1,?2,?3),B?(?1,?2),

又设

?1?x11?1?x21?2?x31?3,?2?x12?1?x22?2?x32?3,

?x11(?1,?2)?(?1,?2,?3)??x21??x31记作 B=AX.

x12?x22??, x32???1235(A?B)???1110???0327?1235?0327???002?2?9??12r2?r1?????03?8?????13???03?9??1作初等行变换???????0?13?????4???0354527001001?9?r2?r3?????17??r2?r3?13??

23?3?3???1?2??因有A?E,故?1,?2,?3为R3的一个基,且

?23?(?1,?2)?(?1,?2,?3)?3?3?,

?????1?2??即

?1?2?1?3?2??3,?2?3?1?3?2?2?3.

(B类)

1.A

2.B 3.C 4.D

5.a=2,b=4 6.abc≠0

7.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问: (1) α1能否由α2,α3线性表示?证明你的结论. (2) α4能否由α1,α2,α3线性表示?证明你的结论.

解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3,

α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.

(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.

8.若α1,α2,…,αn,αn+1线性相关,但其中任意n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,kn,kn+1,使

k1α1+k2α2+…+kn+1αn+1=0.

证明:因为α1,α2,…,αn,αn+1线性相关,所以存在不全为零的k1,k2,…,kn,kn+1使k1α1+k2α2+…+kn+1αn+1=0

若k1=0,则k2α2+…+kn+1αn+1=0,由任意n个向量都性线无关,则k2=…=kn+1=0,矛盾.从k1≠0,同理可知ki≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,kn,kn+1,使k1a1+k2a2+…+kn+1an+1=0.

9. 设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关. 证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关. 习题四

(A类)

1. 用消元法解下列方程组.

?x1?4x2?2x3?3x4?6,?x1?2x2?2x3?2,?2x?2x?4x?2,??124(1) ? (2) ?2x1?5x2?2x3?4,

?x?2x?4x?6;?3x1?2x2?2x3?3x4?1,23?1?x?2x?3x?3x?8;234?1【解】(1)

?1?2(A?b)??4?2206??14?111r2?42?2?????3?206?r4?r121?r2?r1?????r?3r3得

所以

(2)

解②?①×2得 ③?① 得 得同解方程组

??322?31??322?31?32?123?38????123?38????14?236??0?32?1?5?(?1)?r2?r3??0?12?9?2????????0?25?62????14?236?4?23?01?2??16?921?292?r4?r3??0?32?1?5??????r3?3r20r4?2r2???00?4261???????0?25?62????001126????14?236???236??01?292??1401?292???001126?????r4?4r3???001126??,?00?4261????0007425????x1?4x2?2x3?3x4?6?? x2?2x3?9x4?2 x12x ?3?4?6?? 74x4?25??x1871??,?74?x?211?2,?74 ??x3?144?74,??x254?74.?① ?x1?2x2?2x3?2?2x1?5x2?2x3?4 ?② ?x1?2x2?4x3?6③ x2?2x3=0

2x3=4 ?x1?④ ?2x2?2x3?2? x2?2x3?0?? 2x3?4

⑤ ⑥ 由⑥得 x3=2, 由⑤得 x2=2x3=4,

由④得 x1=2?2x3 ?2x2 = ?10, 得 (x1,x2,x3)T=(?10,4,2)T. 2. 求下列齐次线性方程组的基础解系.

? x1?3x2?2x3?0,?(1) ? x1?5x2? x3?0, (2)

?3x?5x?8x?0;23?1? x1? x2?5x3? x4?0,? x? x?2x?3x?0,?1234 ??3x1? x2?8x3? x4?0,?? x1?3x2?9x3?7x4?0;? x1?2x2?2x3?2x4? x5?0,?? x1?2x2? x3?3x4?2x5?0, ?2x?4x?7x? x? x?0.2345?1? x1? x2?2x3?2x4?7x5?0,?(3) ?2x1?3x2?4x3?5x4 ?0, (4)

?3x?5x?6x?8x ?0;234?1【解】(1)

?x1?3x2?2x3?0,??x1?5x2?x3?0, ?3x?5x?8x?0.23?1?132??132??132?r3?2r2r2?r1?02?1?????02?1?

A??151??????r?3r??31????????358???0?42???000??得同解方程组

7?x??2x?3x??x3,32?12?x1?3x2?2x3?0???1 ?x?x,23?2x2?x3?0?2?x3?x3,?得基础解系为

T?7???2(2) 系数矩阵为

1?1?. 2?

?1?1A???3??1?1?0??0??0?11?13?12005?28?95?700?1??1?15?1??02?74?3?r3?r2r?r21???????????r4?2r23?3r1??1?r02?74r4?r1???7??04?148?

?1?4??r(A)?2.0??0?∴ 其基础解系含有4?R(A)?2个解向量.

3?x1???x3?x??2?2?x1?x2?5x3?x4?0???7?????x3?2???2x2?7x3?4x4?0?x3??x3???x?4???基础解系为

??3??x4???2???1??????2?7????2x4?x3?x4?? ??2??0???1???????1??x4??0????3???2????7?,?2??1?????0??

(3)

??1???2???. ?0????1??1122A??2345???3568?112r3?2r2?????010???000得同解方程组

7??11227?r2?2r1?0101?14?????0??r3?3r1???0???0202?21??

27?1?14??07???x1?x2?2x3?2x4?7x5?0,?x2?x4?14x5?0, ??7x5?0?x5?0.?取?

?x3??1??0????0?,?1?得基础解系为 x?4?????

(?2,0,1,0,0)T,(?1,?1,0,1,0).

(4) 方程的系数矩阵为

?12?2A??12?1???24?7?12r3?3r2?????00???002?1??12?22?1?r2?r1?0011?1?????3?2??r3?2r1???11???00?3?33??

?22?1?R(A)?2,11?1??000???x2??0??1??0??x???0?,?0?,?1?, ?4?????????1????0????0???x5???∴ 基础解系所含解向量为n?R(A)=5?2=3个

?x2???取x4为自由未知量 ????x5???3???2???4??0??1??0???????得基础解系 ?1?,?0?,??1?.

???????0??0??1???1????0????0??3. 解下列非齐次线性方程组.

?x1?x2?2x3?1,?2x1?x2?x3?x4?1,?2x?x?2x?4,??123(1) ? (2) ?4x1?2x2?2x3?x4?2,

?2x?x?x?x?1;?x1?2x2?3,1234???4x1?x2?4x3?2;?x1?x2?x3?x4?x5?7,x?2x?x?x?1,?1234?3x?2x?x?x?3x??2,??12345(3) ?x1?2x2?x3?x4??1, (4) ?

?x?2x?x?x?5;?x2?2x3?2x4?6x5?23,234?1??5x1?4x2?3x3?3x4?x5?12.【解】

(1) 方程组的增广矩阵为

?11?2?1(A?b)???1?2??41?11?0?3??00??00

21??11?0?324?r?2r21??????r3?r103?r4?4r1?0?3??42??0?321??1?01?r4?r3?22?2????????000????2?4??02?2?2?41?3001?2?r3?r2?????r4?r22???2?

21??22??12??00?

得同解方程组

x3?2,??x1?x2?2x3?1?2?2x3???3x?2x?2?x???2, ??223?3??x?23???x1?1?x2?2x3??1.(2) 方程组的增广矩阵为

?21?111??21?111?r3?r1?000?10?

(A?b)??42?212???????r2?2r1?????21?1?11???000?20??得同解方程组

?2x1?x2?x3?x4?1,??x4?0 ?x4?0,???2x4?0,?即

?2x1?x2?x3?1, ?x?0.?4令x1?x3?0得非齐次线性方程组的特解

xT=(0,1,0,0)T.

又分别取

?x2??1??0??x???0?,?1? ?3?????得其导出组的基础解系为

TT1??1???,1,0,0?;??2?∴ 方程组的解为

1??2???,0,1,0?,

?2??1??1???0??2??2??1?????x????k1?1??k2?0?.?0??0??1????????0?0??????0??k1,k2?R

1??1?2111??1?211??r2?r1??000?2?2?

(3) 1?21?1?1?????r3?r1????4??1?2115???0000?R(A)?R(A)∴ 方程组无解.

(4) 方程组的增广矩阵为

?1?3(A?b)???0??5?1?0r3?r2?????r4?r2?0??0分别令

11112210010016100211?3433?1?1?2?27?7??11111?0?1?2?2?6?23??2?r3?3r1???????r4?5r1?0122623?23????12?0?1?2?2?6?23??

17??6?23??,00??00??x3??0??1??0??x???0?,?0?,?1? ?4?????????1????0????0???x5???得其导出组??x1?x2?x3?x4?x5?0的解为

?x?2x?2x?6x?0345?2?5??1??1???6???2???2???????k1?0??k2?1??k3?0???????00?????1?????1???0???0??令x3?x4?x5?0,

得非齐次线性方程组的特解为:xT=(?16,23,0,0,0)T,

∴ 方程组的解为

k1,k2,k3?R.

??16??5??1??1??23???6???2???2?????????x??0??k1?0??k2?1??k3?0?

????????000???????1??????0???1???0???0??其中k1,k2,k3为任意常数.

4. 某工厂有三个车间,各车间相互提供产品(或劳务),今年各车间出厂产量及对其它车间

的消耗如下表所示. 车间 消耗系数 车间 1

1 2 3 出厂产量 (万元) 22 总产量 (万元) x1 0.1 0.2 0.45

2 3 0.2 0.5 0.2 0 0.3 0.12 0 55.6 x2 x3 表中第一列消耗系数0.1,0.2,0.5表示第一车间生产1万元的产品需分别消耗第一,二,三车间0.1万元,0.2万元,0.5万元的产品;第二列,第三列类同,求今年各车间的总产量.

解:根据表中数据列方程组有

?x1? 0.1x1?0.2x2? 0.45x3?22,??x2? 0.2x1?0.2x2?0.3x3?0, ?x3?0.5x1?0.12x3?55.6,??0.9x1?0.2x2? 0.45x3?22,?即 ? 0.2x1?0.8x2?0.3x3?0,

?0.5x?0.88x??55.6,13??x1?100,?解之 ?x2?70,

?x?120;?35. ?取何值时,方程组

??x1?x2?x3?1,??x1??x2?x3??, ?x?x??x??2,3?12(1)有惟一解,(2)无解,(3)有无穷多解,并求解.

【解】方程组的系数矩阵和增广矩阵为

??A??1???11?11?;1???????B??1???12111?1?1?,??? ?2??|A|=(??1)(??2).

(1) 当?≠1且?≠?2时,|A|≠0,R(A)=R(B)=3.

∴ 方程组有惟一解

???11(??1)2x1?,x2?,x3?.

??2??2(??2)(2) 当?=?2时,

??2B??1???1?1?0???01??1?21?2?r3?r1r2?r1??????2111??????21?2?r???2?2r1?1?24???11?24??

?21?2??1?21?2???0?33?3?,?33?3????3?36????0003??11

R(A)≠R(B),∴ 方程组无解. (3) 当?=1时

?1111??1111?r2?r1?0000?

B??1111?????r?r??31?????1111???0000??R(A)=R(B)<3,方程组有无穷解.

得同解方程组

?x1??x2?x3?1,?x2?x2, ??x3?x3.?∴ 得通解为

?x1???1???1??1??x??k?1??k?0???0?, k,k?R.

12?2?1??2????????0???1????0???x3??6. 齐次方程组

??x?y?z?0,??x??y?z?0, ?2x?y?z?0?当?取何值时,才可能有非零解?并求解. 【解】方程组的系数矩阵为

??A??1???21???1?? ?11??1|A|=(??4)(??1)

当|A|=0即?=4或?=?1时,方程组有非零解.

(i) 当?=4时,

?411??14r2?r1A??14?1??????41??????2?11???2?1?141r2??0?35???1?r3?3??0?3得同解方程组

?1??1r2?4r1?0????1?r?2r?31??1???0?1??1r3?r2?????01????1???0?1??155???93??

4?1??31??00??4

?1???3??x1????x1?4x2?x3?0????x?k?1?.k?R ??3x?x?0??2?23???x??3??3????1?(ii) 当?=?1时,

??111??1?1?1??1?1?1?r2?r1r2?r1?000?

A??1?1?1???????111?????????r3?2r1??????2?11???2?11???013??得

?x1??2x3,?x1?x2?x3?0???x2??3x3, ??x2?3x3?0?x?x3?3∴ (x1,x2,x3)T=k·(?2,?3,1)T.k∈R

7. 当a,b取何值时,下列线性方程组无解,有惟一解或无穷多解?在有解时,求出其解.

?x1?2x2?3x3?x4?1?x1?x2?x3?x4?0?x?x?2x?3x?1?x?2x?2x?1?12?34234(1) ? (2) ?

?3x1?x2?x3?2x4?a??x2?(a?3)x3?2x4?b???2x1?3x2?x3?bx4??6?3x1?2x2?x3?ax4??1【解】方程组的增广矩阵为

(1)

?12?11(A?b)???3?1??23?12?0?1??00??0032?1?13?1?3?61??1?0r2?r131?r?3r31??????r4?2r1?0?2a???b?6??0?11??1?040???????0?27a?3???b?2?8??0?12?1?12003?1?73?30?7?10?1?11?40?r3?7r2?????1a?3?r4?r2?b?2?8?

?11?40??.?27a?3??b?52?2a?2??1(i) 当b≠?52时,方程组有惟一解

a4(a?1)a?326(a?1)?,x2??,3b?523b?52

a?318(a?1)2(a?1)x3???,x4??.3b?52b?52x1?(ii) 当b=?52,a≠?1时,方程组无解.

(iii) 当b=?52,a=?1时,方程组有无穷解. 得同解方程组

?x1?2x2?3x3?x4?1???x2?x3?4x4?0 (*) ??3x?27x??434??x1?2x2?3x3?x4?0?其导出组??x2?x3?4x4?0的解为

??3x?27x?034??x1?2x4,?x?13x?24??x3??9x4,??x4?x4.非齐次线性方程组(*)的特解为

?x1??2??x??13??2??k??.k?R ?x3???9?????x?1??4??5??3??x1????x??35?2取x4=1, ????3?.

?x3???23??????x4??3??1???∴ 原方程组的解为

?5??3??2????13??35?x??3??k??.??9???23??????1??3??1??? (2)

k?R

?1?0(A?b)???0??3?1?0??0??0?1?0??0??011?12110?111000?221?r3?r2?????r4?3r1(a?3)?2b??1a?1?110?221?r4?r2?????

a?10b?1???2a?3?1?110?221??.a?10b?1??0a?10?11(i) 当a?1≠0时,R(A)=R(A)=4,方程组有惟一解.

?b?a?2??a?1?x?1???a?2b?3?x????2???a?1?. ?x3???b?1?????x4??a?1???0??(ii) 当a?1=0时,b≠?1时,方程组R(A)=2

(iii) 当a=1,b= ?1时,方程组有无穷解. 得同解方程组

?x1?x2?x3?x4?0, ?x?2x?2x?1.34?2取

?x1?x3?x4?1,?x??2x?2x?1,?234 ?x?x,33??x4?x4,?∴ 得方程组的解为

?x1??1??1???1??x???2???2??1?2???k???k?????.?x3?1?1?2?0??0?????????x0???1??0??4??112???8. 设A?224,求一秩为2的3阶方阵B使AB=0. ????336??【解】设B=(b1 b2 b3),其中bi(i=1,2,3)为列向量,

k1,k2?R

AB?0?A(b1?Abi?0?b1为Ax=0的解.

b2b3)?0

(i?1,2,3)b3b2?112??x1?????求224x2=0的解.由 ??????336????x3???112??112?r2?2r1?000?

A??224???????r3?3r1?????336???000??得同解方程组

?x1??x2?2x3,? ?x2?x2,?x?x,33?∴ 其解为

?x1???1???2??x??k?1??k?0?.?2?1??2??????0???1???x3??取

k1,k2?R

??1???2??0?b1??1?;b2??0?;b3??0?,

??????????0???1???0??则

??1?20?B??100?

????010??

9.已知?1,?2,?3是三元非齐次线性方程组Ax=b的解,且R(A)=1及

?1??1??1??,?????1?,?????1?,

?1??2??03??2??13??????0???0???1??求方程组Ax=b的通解.

【解】Ax=b为三元非齐次线性方程组

R(A)=1?Ax=0的基础解系中含有3?R(A)=3?1=2个解向量.

?1?1??0?????1?,?1??3?(?1??2)?(?2??3)??0?1??????0????0??

?1?1??0????0?,?1??2?(?1??3)?(?2??3)??1?1??????1?0????1??由?1,?2,?3为Ax=b的解??1??3,?1??2为Ax=0的解,

且(?1??3),(?1??2)线性无关??1??3,?1??2为Ax=0的基础解系. 又

?1?1?(?1??2)?(?2??3)?(?1??3)?2?1??1??1??1??2? 1??1??1?????0?1?1??0?,2??2??2????????0???0???1???1??2?∴ 方程组Ax=b的解为

x??1?k1(?1??3)?k2(?1??2)?1??2??0??0?????0??k1??1??k2?0?.?????1???0?1????????2???2??3?????(1) ξ1=1,ξ2=0; ???????0???1??

k1,k2?R10. 求出一个齐次线性方程组,使它的基础解系由下列向量组成.

?1??2??1???2???3???2???????(2) ξ1=?0?,ξ2=?2?,ξ3=?1?.

??????35?????2??????1????3????2??【解】

??2??3???ξ=?0?设齐次线性方程组为Ax=0

(1) ξ1=1??2?????0???1??由?1,?2为Ax=0的基础解系,可知

??2??3??x1??x1???2k1?3k2????x????

x?k1?1??k2?0???xk221?????????????k2?0???1??????x3????x3???令 k1=x2 , k2=x3

?Ax=0即为x1+2x2?3x3=0.

?121???2?3?2???(2) A(?1?2?3)=0?A的行向量为方程组为(x1x2x3x4x5)?021??0的解.

??352?????1?3?2??x1?2x2?3x4?x5?0??即?2x1?3x2?2x3?5x4?3x5?0的解为 ?x?2x?x?2x?2x?02345?1?1?203?1??1?203?1?r3?r1?2?325?3?????012?1?1?

?r?2r??21?????1?212?2???001?1?1??得基础解系为?1=(?5 ?1 1 1 0)T ?2=(?1 ?1 1 0 1)T

A=?方程为

??5?1110? ???1?1101???5x1?x2?x3?x4?0, ??x?x?x?x?0.?1235

?x1?x2?a1?x?x?a2325??11. 证明:线性方程组?x3?x4?a3有解的充要条件是?ai?0.

i?1?x?x?a4?45??x5?x1?a5【解】

?1?0?A??0??0???1?1?0??0??0??0?1?0??0??0??0?1?0??0??0??0??11000?1100?1?11000?110000?11000?11000?110?10?110000?11000?11000?11000?110000?11000?11000?11000?11a1?a2??r2?r1a3??????a4?a5??a1?a2??r5?r2a3??????a4?a1?a5??a1??a2????a3??a4?a1?a2?a5??a1?a2?? a3??a4?5?ai??i?1?方程组有解的充要条件,即R(A)=4=R(A)

??ai?0得证.

i?1512. 设?是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,?,ξn?r是对应的齐次线性方程组的一个基础解系.证明

(1)?,ξ1,?,ξn?r线性无关; (2)?,?+ξ1,?,?+ξn?r线性无关. 【 证明】

*****

(1) ?,ξ1,?,ξn?r线性无关?

*k?*?k1ξ1???kn?rξn?r?0成立,

当且仅当ki=0(i=1,2,…,n?r),k=0

A(k?*?k1ξ1???kn?rξn?r)?0?kA??k1Aξ1???kn?rAξn?r?0∵ξ1,ξ2,?,ξn?r为Ax=0的基础解系

*

?A?i?0(i?1,2,?,n?r)

?kA?*?0由于A?*?b?0

?k?b?0?k?0..

由于ξ1,ξ2,?,ξn?r为线性无关

k1ξ1?ξ2?k2???kn?r?ξn?r?0?ki?0∴?,ξ1,ξ2,?,ξn?1线性无关. (2) 证?,?+ξ1,?,?+ξn?r线性无关.

****(i?1,2,?,n?r)

?k?*?k1(?*?ξ1)???kn?r(?*?ξn?r)?0成立

当且仅当ki=0(i=1,2,…,n?r),且k=0

k?*?k1(?*?ξ1)???kn?r(?*?ξn?r)?0

(k?k1???kn?r)?*?k1ξ1???kn?rξn?r?0

由(1)可知,?,ξ1,?,ξn?1线性无关. 即有ki=0(i=1,2,…,n?r),且

*k?k1?kn?r?0?k?0

∴?,?+ξ1,?,?+ξn?r线性无关.

(B类)

1.B 2. C 3. D 4. C 5. t=?3

***

6. R(A)=2;2;2

7. 设η1,η2,…,ηs是非齐次线性方程组Ax=b的一组解向量,如果c1η1+c2η2+…+csηs也是该方程组的一个解向量,则c1+c2+…+cs= . 解:因为η1, η2,…, ηs是Ax=b的一组解向量,则Aη1=b, Aη2=b,…, Aηs=b,又

C1η1+ C2η2+…+ Csηs也是Ax=b的一解向量,所以A(C1η1+…+ Csηs)=b,即C1Aη1+ CAη2+…+ CsAηs=b,即C1b+ C2b+…+ Csb=b,(C1+…+Cs)b=b,所以C1+…+ Cs=1.

8. 设向量组?1=(1,0,2,3),?2=(1,1,3,5),?3=(1,?1,a+2,1),?4=(1,2,4,a+8),?=(1,1,b+3,5)

问:(1) a,b为何值时,?不能由?1,?2,?3,?4线性表出?

(2) a,b为何值时,?可由?1,?2,?3, ?4惟一地线性表出?并写出该表出式. (3) a,b为何值时,?可由?1,?2,?3,?4线性表出,且该表出不惟一?并写出该表出式. 【解】

??x1?1?x2?2?x3?3?x4?4 (*)

?1?0A?(A?b)???2??3?1?0??0??0113511121??121?r3?2r1?????a?24b?3?r4?3r1?1a?85?111??1?0?121?r?r32??????r4?2r2?0a2b?1????2a?52??0111?1?121??0a?10b??00a?10?111

(1) ?不能由?1,?2,?3,?4线性表出?方程组(*)无解,即a+1=0,且b≠0.即a=?1,且b≠0.

(2) ?可由?1,?2,?3,?4惟一地线性表出?方程组(*)有惟一解,即a+1≠0,即a≠?1. (*) 等价于方程组

?x1?x2?x3?x4?1?x?x?2x?1?234??(a?1)x3?b??(a?1)x4?0bba?b?1

?x4?0x3?x2?x3?1??1?a?1a?1a?1b2b?b?x1?1???0???1??a?1?a?1?a?12ba?b?1b?????1??2??3a?1a?1a?1(3) ?可由?1,?2,?3,?4线性表出,且表出不惟一?方程组(*)有无数解,即有 a+1=0,b=0?a=?1,b=0.

?x1?k2?2k1??x1?x2?x3?x4?1?x2?k1?2k2?1方程组(*)?? ??x?x?2x?1x3?k14?23??x4?k2?k1,k2,k3,k4为常数.

∴??(k2?2k1)?1?(k1?2k2?1)?2?k1?3?k2?4

9. 设有下列线性方程组(Ⅰ)和(Ⅱ)

?x1?x2?2x4??6?x1?mx2?x3?x4??5??(Ⅰ)?4x1?x2?x3?x4?1 (Ⅱ) ?nx2?x3?2x4??11

?3x?x?x?3?x3?2x4?1?t123??(1) 求方程组(Ⅰ)的通解;

(2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换

?110?2?6??1?4?1?1?11???0????3??3?1?10???0?1 ???0??010?5?1?4?100?110?101?2?2?6?725???621???2??4???5???110?2?6??00?125?????010?1?4??

由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组

?x1?x4?0??x2?x4?0 (*) ??x3?2x4?0得方程组(*)的基础解系

??1???1??1??

?2??1?????2??4?令x4?0,得方程组(Ⅰ)的特解 ?????

??5??0??于是方程组(Ⅰ)的通解为x???k?,k为任意常数。

(2) 方程组(Ⅱ)的增广矩阵为

??1m?1?1?5???44m?3n0012?t??0n?1?2?11??21?t???0n0?4?10?t?

?001?????001?21?t???系数矩阵与增广矩阵的秩均为3,令

??4x1?(4m?3n)x2?0?nx2?4x4?0 ??x3?2x4?0方程组(**)的基础解系为

??3?m??4n?当n?0时,??????m??4??1??1?n?,当n?0时,?2??? ?2????0???0??1???方程组(Ⅱ)与方程组(Ⅰ)同解,则n?0,故有

??3??m?1?4n ? ??4?m?2 ??n?4?n?1把m,n代入方程组,同时有 1?t??5,即t = 6.

也就是说当m=2,n=4,t=6时,方程组(Ⅱ)与方程组(Ⅰ)同解.

(**)

10. 设四元齐次线性方程组(Ⅰ)为??x1?x2?0,又已知某齐次线性方程组(Ⅱ)的通解为

?x2?x4?0,k1(0,1,1,0)′+k2(-1,2,2,1)′.

(1) 求齐次线性方程组(Ⅰ)的基础解系;

(2) 问方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由.

??1??? 1?x1?x2?0?x1??x2解:(1)由?,所以?,以x2,x3为自由未知数可得基础解系?1???,

? 0??x2?x4?0?x4?x2??? 1??0???0?2???.

?1????0??0???1???1??0?????????1 2 10?????????k?k?k(2)令k1,则可得: ?1?2? 2?3? 0?4?1?????????0 1 1???????0???k2??k3?k3?k2???k1?2k2?k3,即?k1??k2 ??k?k?k1?2k2?k42?4?k?k3?2?0???1???1???????1 2 1所以有公共解k1???k2???k?? ?k?k2??k1?

?1?? 2?? 1???????0 1????? 1?

习题五

(A类)

1. 计算??,??.

(1)??(?1,0,3,?5),??(4,?2,0,1);?313??3? 2(2)???,?,,?1?,????,?2,3,?.343??2??2【解】

(1)??,???(?1)?4?0?(?2)?3?0?(?5)?1??9 32?????1?(2)??,?????3???3??(?2)?????3???(?1)?043?3??2??2?2. 把下列向量单位化.

(1) ?=(3,0,-1,4); (2) 【解】

?=(5,1,-2,0).

(1)e?aaa??a,a??32?02?(?1)2?42?26

?e?(2)a?e?aa?14?1?3,0,,?(3,0,?1,4)???;26262626???a,a??25?1?4?0?30?1?2?1?5,,,0?.(5,1,?2,0)??30?303030?

3. 在R4中求一个单位向量,使它与以下三个向量都正交:α1=(1,1,-1,1), α2=(1,-1,-1,1), α3=(2,1,1,3).

解:设向量a=(x1,x2,x3,x4)与a1,a2,a3都正交,则

?x1?x2?x3?x4?0?x1?4x3??令x3=1得a=(4,0,1,-3) ?x1?x2?x3?x4?0 得:?x2?0?2x?x?x?3x?0?x??3x34?123?4单位化可得单位向量为?1(4,0,1,?3). 26

4. 利用施密特正交化方法把下列向量组正交化.

(1) ?1 =(0,1,1)′, ?2 =(1,1,0)′, ?3 =(1,0,1)′; (2) ?1 =(1,0,?1,1), ?2 =(1,?1,0,1), ?3 =(?1,1,1,0) 【解】

(1)?1??1?(0,1,1)?,?2,?1??111????2??2??1?(1,1,0)??(0,1,1)???1,,??,2?22???1,?1??3,?1??3,?2????222???3??3??1??2??,?,?;?333???1,?1???2,?2?(2)?1??1?(1,0,?1,1)?,

?2,?1??221???1???2??2??1?(1,?1,0,1)?(1,0,?1,1)??,?1,,?,3?,?33??3?11??3,?1??3,?2????1334???3??3??1??2???,,,?.?5555???1,?1???2,?2?5. 试证,若n维向量?与?正交,则对于任意实数k,l,有k?与l?正交. 【证】?与?正交???,???0.

?k,l?R.∴ k?与l?正交.

6. 下列矩阵是否为正交矩阵.

(k?,l?)?kl??,???0

??1?1(1)???2??1??3?121121??1013???2?10?11?;(2)?2?0102???0?10??1??0?0??. 1??1?【解】

(1) A′A≠E, ∴A不是正交矩阵 (2) A′A=E?A为正交矩阵

7. 设x为n维列向量,x′x=1,令H=E-2xx′.求证H是对称的正交矩阵. 【证】

H?E?2xx?H?(E?2xx?)??E??2(xx?)??E?2(xx?)?H∴ H为对称矩阵.

H?H?(E?2xx?)(E?2xx?)?E2?2E(xx?)?2(xx?)E?4(xx?)(xx?) ?E2?4(xx?)?4x(xx?)x??E∴ H是对称正交矩阵.

8. 设A与B都是n阶正交矩阵,证明AB也是正交矩阵. 【证】A与B为n阶正交矩阵?A′A=EB′B=E

(AB)(AB)′=AB·(B′A′)=A(BB′)A′=AEA′=AA′=E

∴ AB也是正交矩阵.

9. 判断下列命题是否正确.

(1) 满足Ax=?x的x一定是A的特征向量;

(2) 如果x1,…,xr是矩阵A对应于特征值?的特征向量.则k1x1+k2x2+…+krxr也是A对应于?的特征向量;

(3) 实矩阵的特征值一定是实数. 【解】

(1) ╳.Ax=?x,其中当x=0时成立,但x=0不是A的特征向量.

?1???1?????(2) ╳.例如:E3×3x=?x特征值?=1, ?的特征向量有2,?2 ??????3?????3???1???1??0??0?????????则2??2?0,0不是E3×3的特征向量. ??????????3?????3????0????0??(3) ╳.不一定.实对称矩阵的特征值一定是实数. 10. 求下列矩阵的特征值和特征向量.

?2?3?(1)?,???31??2?20?(3)??21?2?,????0?20??【解】(1)

?6(2)?2???4?2?0(4)??0??024?,32??26??3?1?4? ?1?21??.12?2??112?3?E?A???当????23??1?(??2)(??1)?9?0??2?3??7?0

3?37.23?37时, 2??1?37?2(?E?A)x?0为??3????37?1?3??x1????x1?? ????0得解???6?1?37??x2??x2??1?????2?对应的特征向量为

?37?1???,k??6??1????k?R且k?0.

??1?37?3?372当??时, ?2?3???3??x???1??0

1?37??x2??2??37?1??37?1????其基础解系为?1??,1?,对应的特征向量为k??6?,k?R且k?0. ?6???1??6??

23??2426???6??2023??42

(2)A??E?24?4?2?2???(??2)2(??11)?0,∴ 特征值为

?1??2?2,(i) 当?1??2?2时,

?3?11.

?424??x1??212??x??0?2x?x?2x?0,

123???2???424????x3??其基础解系为

?1???2???,?1??0???∴ 对应于?=2的特征向量为

??1??0?. ????1???1???1???2?k1???k2?0????1???1???0???(ii)当?3?11时,

k1,k2?R且使得特征向量不为0.

??524??x1??2?82??x??0, ???2???42?5????x3??解得方程组的基础解系为

1???(x1,x2,x3)??1,,1?.

?2?T?1?∴ 对应于?3?11的特征向量为k?1,,1?,k?R且k?0.

?2?2??(3)A??E??20?21???20?2??(??2)(??4)(??1)?0 0??T?特征值为?1??2,?2?4,?3?1.

(i) 当?1??2时,

?4?20??x1???23?2??x??0 ???2???0?22????x3???1??.得基础解系为?,11,?

?2??1??2??1??2对应的特征向量为k????1??1???(ii) 当?2?4时,

k?R且k?0.

??2?20??x1???2?3?2??x??0 ???2???0?2?4????x3??其基础解系为(2,?2,1)′,

?2???所以与?2?4对应的特征向量为k??2,????1??(iii) 当?3?1时,

k?R且k?0.

?1?20??x1??0???20?2??x???0? ???2?????0?2?1????0???x3???其基础解系为(2,1,?2)′

?2???∴ 与?3?1对应的特征向量为k?1,?????2??k?R且k?0.

2??(4)A??E?000∴ A的特征值为1,2. (i) 当?1??2??3?1时,

3?1??11?1?22??1?41?22???(2??)??1??11?22??11?22??

??(??1)3?(2??)?0??1??2??3?1,?4?2?13?1?4??x1??0??0?2?21??x??0????2???? ?011?2??x3??0???????0111???x4??0?其基础解系为(4,?1,1,0)′.

∴ 其对应的特征向量为k·(4,?1,1,0)T,k∈R且k≠0. (ii) 当?4?2时,

?03?1?4??x1??0??0?3?21??x??0????2????, ?010?2??x3??0???????0110???x4??0?其基础解系为:(1,0,0,0)′.

∴ 其对应的特征向量为

?1??0?k???,?0????0??1?x1??2?,????2??

k?R且k?0.

11.设3阶方阵A的特征值为λ1=1,λ2=0,λ3=-1,对应的特征向量依次为

?2?x2???2?,????1????2?x3???1?,

????2??

求矩阵A. 【解】

Ax1??1x1,Ax2??2x2,Ax3??3x30? ?0??3????10?A(x1,x2,x3)?(?1x1,?2x2,?3x3)?(x1,x2,x3)??0?2??00由于?1?1,?2?0,?3??1为不同的特征值?x1,x2,x3线性无关,则有

?12?2?(x1,x2,x3)??2?2?1?可逆

???2??21??12?2??100??12?2???102?1?A??2?2?1??000??2?2?1???012?.

???????3???2?2??21???00?1????21??220??12. 设3阶实对称矩阵A的特征值为-1,1,1,与特征值-1对应的特征向量x=(-1,

1,1)′,求A.

【解】?1??1对应的特征向量为x1=(?1,1,1)T,设?2?1对应的特征向量为x2=(x1,x2,x3)T,A为实对称矩阵,所以(x1,x2)=0,即有?x1+x2+x3=0. 得方程组的基础解系为

?1?1??,?1??1????0??可知?1,?2为?2?1对应的特征向量. 将x1,?1,?2正交化得

?1??,

?2??0????1?????111?,,?1?x1=(?1,1,1)T, 单位化:e1?1??;

?1?333????11?,,0?; ?2??1 =(1,1,0)T, e2?2???2?22?T?3,?1??3,?2????11???3??3??1??2??,?,1?,e3???22???1,?1???2,?2??TT112?,?,?. 666?T

??1?3??1P??3??1??3??1?3??1?A??3??1??3121201?6????100?1??1?010?. ?PAP? 则有

??6????001??2?6??121201???1?36????100??1????1?010??36?????001???2??1?6???3121201??1??36??1??2???36???2??2??36???123132?32?3??2??. 3??1?3??13. 若n阶方阵满足A2=A,则称A为幂等矩阵,试证,幂等矩阵的特征值只可能是1或者

是零.

【证明】设幂等矩阵的特征值为?,其对应的特征向量为x.

Ax??x;A(Ax)?A(?x)?A2x??Ax??2x;由A2=A可知?Ax??x??x??x; 所以有??????0或者?=1.

222

14. 若A2=E,则A的特征值只可能是±1.

【证明】设?是A的特征值,x是对应的特征向量. 则Ax=?x A2x=?(Ax)=?2x 由A2=E可知

x=Ex=A2x=?2x ?(?2?1)x=0,

由于x为?的特征向量,∴ x≠0??2?1=0??=±1.

15. 设λ1,λ2是n阶矩阵A的两个不同的特征根,?1,?2分别是A的属于λ1, λ2的特征向量,证明?1+?2不是A的特征向量.

证明:假设?1+?2是A的属于特征根λ的特征向量,则

A(?1+?2)=λ(?1+?2)=λ?1+λ?2.

又 A(?1+?2)= A?1+ A ?2=λ1?1+λ2?2 于是有 (λ?λ1)?1+(λ?λ2)?2 =0 由于?1??2,?1与?2线性无关,故λ?λ1=λ?λ2=0. 从而?1??2与?1??2矛盾,故?1+?2不是A的特征向量.

??200???100?????16. 设矩阵A?2x2与B?020相似. ???????211???00y??

(1) 求x与y;

(2) 求可逆矩阵P,使P1AP=B.

【解】(1)由A~B可知,A有特征值为?1,2,y.

??2???A??E??2??2由于?1为A的特征值,可知

0???(2??)??(x??)(1??)?2??0 x??2??11????0A+E??(2?1)?(x?1)2?2??0?x?0.

将x=0代入|A??E|中可得

A??E??(2??)?(??)(1??)?2??0

??(2??)(??2)(??1)?0,??1??2,?2?2,?3??1可知y= ?2.

(2) (i) 当?1=?1时,

??100??x1??212??x??0 ???2???212????x3??其基础解系为 ?1=(0,?2,1)T,

?1= ?1对应的特征向量为 ?1=(0,?2,1)T.

(ii) 当?2=2时,

??400??x1??0??2?22??x???0? ???2?????21?1????0???x3???其基础解系为 ?2=(0,1,1)T 所以?2=2对应的特征向量为 ?2=(0,1,1)T (ⅲ) 当?3=?2时,

?000??x1??0??222??x???0?, ???2?????213????0???x3???其基础解系为 ?3=(?2,1,1)T,

取可逆矩阵

?00?2?p?(?1,?2,?3)???211?

????111??则

p?1AP?B.

?11?1???, 求A100.

17. 设A?001????0?23??【解】

1??A??E?001???11?(1??)(??1)(??2)?0

?23???特征值为?1??2?1,?3?2.

(i) 当?1??2?1时,

?01?1??x1??0??0?11??x???0? ???2?????0?22????0???x3???其基础解系为

?0??1?,????1??(ii) 当?3?2时,

?1??1?. ????1????11?1??x1??0?21??x??0 ???2???0?21????x3??其基础解系为(?1,1,2)T.

?01?1??1????1?1?

令p?111,则pAP???????2??112????

本文来源:https://www.bwwdw.com/article/tjy.html

Top