英文版数字信号处理去年考试题
更新时间:2023-11-03 16:46:01 阅读量: 综合文库 文档下载
1.Consider an LTI system with input x[n] and output y[n] that satisfies the difference equation
y[n]?311y[n?1]?y[n?2]?x[n]?x[n?1] 482a. Find the system function H(z). How many ROCs are associated with H(z)? For each
case ,determine what type of the corresponding impulse response h[n]? b. If this system is causal, then is it stable ? Justify your answer .And whether H(e) exists
or not ? If it exists , determine H(e).
2.Consider the finite-length sequence x[n]={1,0,2,1},0≤n≤3 , with an 4-point DFT given by x[k] .
a. If the 4-point DFT y[k] of length-4 sequence y[n] is given by y(k)=w2x[k], determine y[n]. b.If the 4-point DFT w[k] of length-4 sequence w[n] is denoted by w(k)=x[k],determine w[n]. c. If N-point DFTs are used in the two-step procedure , how should we choose N so that w[n]=x[n]*x[n] for 0≦n≦N-1 ? Determine w[n] in the case also . Note: using the DFT properties without computing x[k].
3.Given x[n]={0,1,2,3,4,5,6} be a length-7 sequence defined for 0≦n≦6 , with X(edenoting its DTFT
a) Evaluate the following function without computing the transform itself :
jwkjwjw2)
X(ej0) ;
j2?k5??|x(e??jw)|2dw;
b) Define Y[k] =X(e), 0≦n≦4, with y[n] denoting its 5-point IDFT.Determine y[n] without
computing Y[k] and its IDFT .Can you recover X[n] from y[n].
4. An IIR filter is described by the following system function :
0.44z2?0.36z?0.020.44z2?0.362z?0.02?2H(z)=3 2z?0.4z?0.18z?0.2(z?0.8z?0.5)(z?0.4)Determine and draw the following structures: (a) Direct from II (b) Cascade form.
5.Verify the identity equation
1
w?n?0N?1?(k?1)nN?{fork?l?rNN0otherwiserisaninteger
6.A continuous-time signal Xa(t)=cos(2?x300t)+ (2?x500t)+ (2?x1200t) is sampled at a 2kHz rate , and the sampled sequence is passed through an ideal lowpass filter with a cutoff frequency of 900Hz , generating a continuous-time signal ya(t) .
a. Determine the discrete-time signal x[n] generated by periodically sampling Xa(t) at FT=2khz b.What are the frequency componts present in the reconstructed signal ya(t).
c.If ya(t) is equal to the original continuous signal ,determine the sampling frequency in this case d.If we want to pass the frequency components at 300Hz ,what type filter we should choose ? If the transition-width is assumed to as 100Hz, the minimum stopand attenuation ?s?52dB, which window functions can we choose from Table1 ? Determine the length of the filter for the window you selectd.
Table1 Window Name Rectangular Hanning Hamming Blackman Transition Width ?w Min. stopband attenuation 20.9dB 43.9dB 54.5dB 75.3dB 0.92? M3.11 M03.32? M5.56? M一、(20 points) 1. The input-output pair of a stable LTI system is shown in Fig.1(a).
(a) Determine the response to the input x1[n] in Fig.1(b).
(b) Determine the impulse response and frequency response of the system.
(c) Sketch the magnitude-frequency response of the system.
2
(a)
(b) Fig.1
二、(20 points)Let h[n] be a Type-4 real-coefficient linear-phase FIR filter .
(1)If this filter has the following zeros:z1?2,z2?0.6j,z3?0.6?2j, please determine the locations of the remaining zeros.
(2)Please determine the FIR transfer function and realize it in cascade form and direct form I.
三、(20 points) The difference equation of a LTI discrete-time system
311is : y[n]-y[n-1]+y[n-2]=x[n]+x[n-1]
483where x[n] and y[n] are the input and output sequences respectively. (a) Please give the transform function H(z) as well as its poles and zeros;
(b) If the system is casual and stable, please give the ROC of the z-transform;
(c) Give the impulse response h[n] of this casual stable system.
3
四、(20 points) Design a DIGITAL low pass filter to meet the following requirements:
Select a window to design a linear-phase FIR filter, using the lowest order filter to meet the specifications.
五、(20 points) Fig.2(a) shows a 6-point discrete time sequence x[n]. Assume that x[n] = 0 outside the interval shown. The value of x[4] is not known and is represented as b. Let X(ejω) be the DTFT of x[n], and X1[k] be samples of X(ejω) with sampling interval π/2, i.e.,
?p?0.2??S?0.5??p?3dB?s?60dBX1[k]=X(ejω)| πkω=,k=0,1,2,32The 4-point sequence x1[n] is the 4-point Inverse DFT of X1[k], and is shown in Fig.2(b).
(a)
Fig.2
(b)
(a) Please determine the value of b.
(b) Let X2[k] be samples of X(ejω) with sampling interval
π/3, i.e.,
X2[k]=X(ejω)|πkω=,k=0,1,3,5
Please determine and sketch the finite-length sequence y[n] whose 6-point DFT is Y[k] = W64kX2[k].
Determine and sketch the finite-length seque
4
正在阅读:
英文版数字信号处理去年考试题11-03
4s店 K歌比赛活动策划07-09
高一数学集合与简易逻辑综合复习训练人教版03-11
陈敬容《山和海》赏析03-27
浙江省丽水市莲都区处州中学2017届九年级科学上学期开学检测试题(答案不全)浙教版12-20
2017年10月自考00908网络营销与策划试卷及答案03-13
园林绿化工程验收标准(试行)检验批表格12-22
特教班体育教案06-20
5热仪试题库04-22
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 考试题
- 信号处理
- 英文版
- 去年
- 数字
- 2015中国轴承行业市场供求状况及变化预测
- 无机及分析化学课后习题第十章答案
- 会计科目明细表及借贷方向使用说明
- 2016年高级中学教师资格证《化学学科知识与教学能力》考试大纲
- 箱梁质量外观控制
- 安伯格操作说明 - 图文
- 开放式基金常见问题及解答
- 2017年教师资格证考试《幼儿综合素质》模拟试题(4)
- 高二化学人教版选修5练习:3.3.2《羟酸》 Word版含答案
- 绿色包装在物流企业中的应用毕业论文设计
- 动物性食品卫生检验试题与复习资料
- 胃镜检查告知书
- 浦市纸扎分类及民俗应用
- 107项素质三级定义词典库
- 振动与波作业
- 七字挽联大全
- 爱考:2015年对外经济贸易大学国际经济贸易学院数量经济学考研专业课资料册含真题,大纲,分数线,参考书
- 高级程序语言课程设计题及参考资料new
- 苏教版语文五年级下册精品练习(含答案)
- 莱布尼兹--博学多才的数学符号大师