《数理统计》课后题答案(西交大版)

更新时间:2024-01-14 03:41:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数理统计习题答案

第一章

X?1n92?94?103?105?106n?xi??100i?152S2?1n??215n?xi?x?5??xi?100?i?1i?11.解: ?15???92?100?2??94?100?2??103?100?2??105?100?2??106?100?2?

? ?34解:子样平均数 X?1?l2. m*nixi

i?11 ?60?1?8?3?40?6?10?26?2?

?4 S2?1l子样方差2n?mix*i?x

i?1???1?8??1?4?2?4?0??3?24??1?0?6?2?4??2??2?

60??624?18.67

子样标准差

S?S2?4.32 3. 解:因为

yi?xi?ac 所以

x2i?a?cyi s21n x?n?xi?x

i?1??

x?1n?nxi

i?1?1n?na?cyi?a?cyi?i??2?1?n?a?cyi? ?1n ni?1

n??cyi?cy?1?n?i?1?2n??na??cyii?1???c2n?nyi?yi?1??2

?a?cnn?yii?1 2?a?cy为 s1n因y?n??yi?y?2 i?1所以 x?a?cy 成立

s222x?csy 成立 1

所以

Me?X?n?1??X?7??0?2???

R?X?n??X?1??3.21???4??7.21Me?X?n??2?1????X?8??1.24. 解:变换

yi?xi?2000

2 1697 -303 3 3030 1030 4 2424 424 5 2020 20 6 2909 909 7 1815 -185 8 2020 20 9 2310 310 i 1 1939 -61 xi yi 11n???61?303?103?042?4?209?09?185?? 20 310 y??yi9ni?1?240.4441n2sy??yi?y

ni?1??22122???61?240.444??303?240.444?1030?240.444????????9222 ?424?240.444???20?240.444???909?240.444??

??185?240.444?2??20?240.444?2??310?240.444?2???197032.247利用3题的结果可知

x?2000?y?2240.44422sx?sy?197032.247

5. 解:变换

yi?100?xi?80?

3 4 5 6 7 8 9 10 11 12 13 80.02 2 i 1 2 xi yi 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 -2 4 2 4 3 3 4 -3 5 3 2 0 1n113 y??yi??yi

ni?113i?11??2?4?2?4?3?3?4?3?5?3?2?0?2?

13?2.00?1n2 sy??yi?y

ni?1??2 2

21222?2?2.00?3?2?2.00?5?2.00?3?4?2.00?????????13?22 ?3??3?2.00????3?2.00??

??5.3077?利用3题的结果可知

y?80?80.02 1002sy2sx??5.3077?10?410000x?6. 解:变换yi?10?xi?27?

23.5 -35 2 26.1 -9 3 28.2 12 4 30.4 34 1 xi* yi mi 1l y??miyi

ni?1

1??35?2?9?3?12?4?34? 10??1.5?x?2y

y?27=26.85 1021l s??miyi?y

ni?1??21222???2??35?1.5?3??9?1.5?4?12?1.5?34?1.5????????? 10??440.25122sx?s?4.4025

100y7解: 身高 组中值 学生数 154?158 158?162 162?166 166?170 170?174 174?178 178?182 156 10 160 14 164 26 168 28 172 12 176 8 180 2 1lx??mixi*

ni?11?156?10?160?14?164?26?172?12?168?28?176?8?180?2?

100?166?

2

21l* s??mixi?x

ni?12??2122210?156?166?14?160?166?26?164?166?28?168?166?????????100?222 ?12??172?166??8??176?166??2??180?166????33.448解:将子样值重新排列(由小到大)

-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21

?Me?X?n?1??X?7??0?2???

R?X?n??X?1??3.21???4??7.21 Me?X?n??2?1????X?8??1.21n11n2n1?xi?n2?xjn1i?1n2j?1nx?nx9解: x??1122

n1?n2n1?n21n1?n2xi?x s??n1?n2i?12??21?n1?n2n1in1?n2i?1?xn2jj?12i?x2??x??xi?12n1s1?x1??n1?n22??n?s22?nx?n2x2???11??n1?n2?222?x22n1?n2???nx?nx???11222?n1?n2?222?nx?n2x2?n1s1?n2s2nx?n2x2??11??11?n1?n2n1?n2?n1?n2?2?ns?ns?n1?n2211222n1?n1?n2?x1?n2?n1?n2?x2?n1x1?n2x222??2?n1?n2?22222n1s1?n2s2nnx?n1n2x2?2n1n2x1x2??121n1?n2?n1?n2?2

ns?ns??n1?n29 3 211222n1n2x1?x2??2

?n1?n2?28 0 7 9 6 4 5 0 4 2 10.某射手进行20次独立、重复的射手,击中靶子的环数如下表所示: 环数 频数 10 2 试写出子样的频数分布,再写出经验分布函数并作出其图形。 解:

环数 频数 频率

10 2 0.1 9 3 0.15 8 0 0 7 9 0.45 3

6 4 0.2 5 0 0 4 2 0.1

?0 x?4?0.1 4?x?6??0.3 6?x?7 F20?x???

0.75 7?x?9??0.9 9?x?10??1 x?1011.解: 区间划分 154?158 158?162 162?166 166?170 170?174 174?178 178?182 频数 10 14 26 28 12 8 2 频率 0.1 0.14 0.26 0.28 0.12 0.08 0.02 密度估计值 0.025 0.035 0.065 0.07 0.03 0.02 0.005

12. 解:

200150身高100500123456学生数789xi?P??? Exi?? Dxi?? i?1,2???,n, 1n1nn?EX?E?xi??Exi???ni?1ni?1n 1n1nn??DX?D?xi?2?Dxi?2?ni?1ni?1nn?b?a? i?1,2,???,n a?b13.解:xi?U?a,b? Exi? Dxi?2122 在此题中

xi?U??1,1? Exi?0 Dxi?1 i?1,2,???,n 3 4

1n1nEX?E?xi??Exi?0ni?1ni?1

1n1n1DX?D?xi?2?Dxi?ni?1ni?13n14.解:因为

Xi?N??,?2? EXi????0 DXi????1

所以

Xi????N?0,1? i?1,2,???,n

由?2分布定义可知

Y?1n2n?X???2?2??Xi????i?1?i?1?i????服从?2分布 所以

Y??2?n?

15. 解:因为

Xi?N?0,1? i?1,2,???,n X1?X2?X3?

EX1?X2?X3?0 DX1?X2?X333?1

所以

X1?X2?X33?N?0,1?

??X1?X22?X3?2?3?????1?

?X?X2同理 ?45?X6?2?3?????1? 由于?2分布的可加性,故

1?X?X22Y??12?X3??X4?X5?X6?23?3?????3?????2? 可知

C?13

16. 解:(1)因为 X2i?N?0,??

i?1,2,???,n

Xi??N?0,1?

n 所以 ??X?2Yi?1?i?????1?2??2?n?

F?Yy?Y1?y??P?Y1?y??P?1??2??2??

5

N?0,3?

y?2

? ?f??x?dx20?y?1fY1?y??FY'1?y??f?2?2??2

?????1?nx2??x2?n?n?e x?0因为 f?2?x???22?

?2?????0 x?0?n?1?y2?2y?2?e y?0n?n所以 fY1?y???22????n ?2?????0 y?0?(2) 因为 Xi?N0,?2

??i?1,2,???,n

Xi?n?N?0,1?

2?Xi?nY22????n? ???2所以 i?1????ny?nYny?FY2?y??P?Y2?y??P?22?2??????

?20?f??x?dx

2?ny?nfY2?y??FY'2?y??f?2?2?2

????n?1?nny22?2ny?2?e y?0 n?nn故 fY2?y????22??? ?2?????0 y?0?2(3)因为 Xi?N0,?

??i?1,2,???,n

?i?1nXi?N?0,1? n? 6

?nXi?Y32???所以 ???1? ?n??i?1n??y2?Y3?n?FY3?y??P?Y3?y??P?2?y???f?2?1??x?dx

?n??0?y?1fY3?y??FY'3?y??f?2?1??2?2

?n??n?x?1?2e x?0?f?2?1??x???2?x

?0 x?0?y??12e2n? y?0?故 fY3?y????2?ny

?0 y?0?2(4)因为 Xi?N0,?2

??i?1,2,???,n

? 所以

i?1nnXi?N?0,1?n?2Xi?Y4?2?????2???1??i?1n??

yy???Y4FY4?y??P?Y4?y??P?2?2???f?2?1??x?dx????0 ?y?1f?2?y??FY'4?y??f?2?1??2?2????y?2?1e2? y?0?故 fY4?y???2?y?

?0 y?0?217.解:因为 存在相互独立的U,V

X?t?n?

U?N?0,1? V??2?n?

使

X?U Vn

U2??2?1?

7

U2则 X2?1

Vn由定义可知

?2?F?1,n?

18解:因为 Xi?N0,?2 ??i?1,2,???,n

n

?Xii?1n??N?0,1? n??m ?X?2?1?i??????2?m?

i?nmnnXi所以

Yn1??Xii?1?i?1??t?m?nn??m?X2n?m2ii?n?1i???n?1?Xi?????m(2)因为

Xi??N?0,1? i?1,2,???,n?m

?n?2?Xi?2

?????n?i?1???n?m?2

i?n?1?Xi???2?????m?n?X2m?nX2?ii?1?i?????所以 Y2?i?1?nnn??mX2n?m2?F?iXn,m? i1i???i?n??n?1?????m19.解:用公式计算 ?20.01?90??90?2?90U0.01

查表得

U0.01?2.33

代入上式计算可得 ?20.01?90??90?31.26?121.26

20.解:因为

X??2?n? E?2?n 由?2分布的性质3可知

8

D?2?2n

X?n?N?0,1? 2n

?X?nc?n?P?X?c??P???

2n??2nc?n2n???X?nc?n?P????lim2n?n???2n故

?1?t2?c?n?edt???? 2n?2n?2?c?n?P?X?c?????

?2n?

第 二 章

1.

??e??x,x?0f(x)???0,x?0E(x)????????0f(x)?xdx??1???0?xe??xdx??xe??x??令1????0e??xd(?x)?e??x??0?1?1??x

从而有 2.

???1x

1).E(x)??k(1?p)x?1?k?1p?p?k(1?p)k?1x?1??p1??1??1?p???2?1p

1令

p=X

p??所以有

1X

9

2).其似然函数为

L(P)??(1?P)p?p(1?p)xi?1`nnXi?n?i?1ni?1

lnL(P)?nlnp?(?Xi?n)ln(1?p)i?1n

ndlnLn1??(?Xi?n)?0dpp1?pi?1

p??n解之得

?Xi?1n?i1X

3. 解:因为总体X服从U(a,b)所以

2a?b(a-b)n! D(X)=212r!?n?r?!2令E(X)=X D(X)=S,1nS2=?(Xi?X)2 ni?1a+b??X? ?2?2(a?b)??S2??12??a??X?3S ????b?X?3S E(X)?4. 解:(1)设1nni?1x,x2,?xn为样本观察值则似然函数为:

ni?iL(?)??(?xi)??1,0?xi?1,i?1,2,?,nlnL(?)?nln??(?-1)?lnxindlnLn??lnxi?0d???i?1

???????n?lnxi?1nnin解之得:

?lnxi?1i

(2)母体X的期望

E(x)??????xf(x)dx???xdx??01???1

而样本均值为:

10

1nX??xini?1令E(x)?X得?X??1?X 5.。解:其似然函数为:

??xi1??1?i?1L(?)???e??en2?(2?)i?1令1nlnL(?)??nln(2?)??xi?0nxi1n?i?1得:???x??i?11ni

xx??x(2)由于

E???????xe2??x?dx?2???0xe2???dx??xe??0????0e??dx??1n1n1E(?)?E(?xi)?E(x)??n????ini?1ni?1n

1n???xi所以ni?1 为?的无偏估计量。

?6. 解:其似然函数为:

kn?k(k?1)n???xni?(L(?)??xie)?xi(k?1)e??xi(k?1)!i?1i?1(k?1)!

L??nkdlnL(?)nk??d??n??k?nn?Xi???Xii?1i?1

?Xi?1i?0解得

??

?nk?Xi?1nk?Xi1f(x)?,0?x??,?

11

7.解:由题意知:均匀分布的母体平均数????0?2?2,

方差?2?(??0)2?212?12 用极大似然估计法求?得极大似然估计量 似然函数:L(?)??n1 0?minxi?maxxi?1?ni)1?i?ni??

(选取?使L达到最大

取???maxxi

1?i?n由以上结论当抽得容量为6的子样数值1.3,0.6,1.7,2.2,0.3,1.1,时???2?2.2即????2.2?2.22?1.1, ?2???12?12?0.4033 8. 解:取子样值为(x1,x2,?xn),(xi??)

则似然函数为: L(?)??ne?(xi??) xi??

i?1lnL(?)???n(xi??)???nxi?n?

i?1i?1要使似然函数最大,则需?取min(x1,x2,?,xn)

即?=min(x1,x2,?xn)

9. 解:取子样值(x1,x2,?,xn)(xi?0) n则其似然函数L(?)??n?e??x??ne??i?xii?1

i?1lnL(?)?nln????nxlnL(?)nn?n1i ??i?1d???xi ??? i?1?nxxii?1由题中数据可知

x?11000(365?5?245?15?150?25?100?35?70?45?45?55?25?65)?20 则 ???120?0.05

10. 解:(1)由题中子样值及题意知:

12

?1极差R?6.2?1.5?4.7 查表2-1得?0.4299 故??0.4299?4.7?2.0205

d5?1(2)平均极差R?0.115,查表知?0.3249 ??0.3249?0.115?0.0455

d10解:设u为其母体平均数的无偏估计,则应有??x 又因x????1(8?1?40?3?10?6?2?26)?4 60即知??4

12. 解:?X~N(?,1)

12?E(xi)?? ,D(xi)?1, (i?1,2) 则E(?1)?EX1?EX2??

33?13E(?2)?EX1?EX2??

44?11E(?3)?EX1?EX2??

22?所以三个估计量?1,?2,?3均为?的无偏估计

???2141415D(?)?D(X1?X2)?DX1?DX2???

3399999??51同理可得D(?2)?,D(?2)?

82?可知?3的方差最小也亦?2最有效。 13解:?X~P(?)?E(X)??,D(X)??

21n1n22E(S)?E[(X?X)]?[E(X)?nE(X)] ??iin?1i?1n?1i?1*2??11n?(n???)?? ?[?(???2)?n(??2)]?n?1n?1i?1n即S*是?的无偏估计

n1n11n又因为E(X)?E(?Xi)?E(?Xi)??EXi??

ni?1ni?1ni?12即X也是?的无偏估计。

又???[0,1] E(aX?(1??)S*)??E(X)?(1??)E(S*)????(1??)???

13

22

因此?X?(1??)S*也是?的无偏估计 14.解:由题意:X~N(?,?2)

因为E(?)?C?E(Xi?1?Xi)2?C?[D(Xi?1?Xi)?(E(Xi?1?Xi)2]

2i?1?n?12?C?[D(Xi?1)?D(Xi)?0]?C?2?2?2C(n?1)?2

i?1i?1?211要使E(?)??只需C? 所以当C?时?为?2的无偏估计。

2(n?1)2(n?1)n?1n?1?2215.证明:?参数?的无偏估计量为?,D?依赖于子样容量n 则???0,由切比雪夫不等式

????limD??0故有limp????????1 n??n???????即证?为?的相合估计量。

k16证明:设X服从B(N,p),则分布律为 P(X?k)?CNPk(1?P)k (k?1,2,?N)

? 这时E(X)?NP D(X)?NP(1?P) EX2?DX?(EX)2?NP(1?P)?N2P2 例4中p??EXNPX??P(无偏) 所以E(P)?NNN???? DP?DXNP(1?P)P(1?P)?? 22NnNNn? 罗—克拉美下界满足

n1?KK?n?[LnCNPK(1?P)N?P]2CNPK(1?P)N?P IRk?0?pN ?n?[K?0?KK(LnCN?KLnP?(N?P)Ln(1?P))]2CNPK(1?P)N?K ?PEX22NEX?2EX2N2?2NEX?EX2KN?P2KKN?K ?n?[? ?n[2??] ]CNP(1?P)2P(1?P)1?PP(1?P)K?0PN

14

NP(1?P)?N2P2N2P?NP(1?P)?N2P2N2?2N2P?NP(1?P)?N2P2?n[?2?22P(1?P)(1?P)211?nN[?]P1?P

nN?P(1?P)??P(1?P) 所以IR??DP即p为优效估计

nN17. 解:设总体X的密度函数 f(x)?1e2??(xi??)22?2?(x??)22?2

(xi??)2?i?12?2n 似然函数为L(?)??2i?1nn1e2??i?(2??)e2?n2?

nnLnL(?2)??Ln2??Ln?2?222?(xi?1??)222?

dLnLn??2?d?22??(xi?1ni??)242??0

1n ???(xi??)2

ni?1 因为???(??(x??)121?Lnf(x)2[?)f(x)dx=???2?42?2]2??e??2??2?(x??)22?2dx

n2?4 =

14?[E(X??)4?E(X??)22?2??4] =8

故?2的罗—克拉美下界 IR??4

1n1n2 又因E??E(?(Xi??))?E(?(Xi??)2)??2

ni?1ni?121n 且D(?)?D(?(Xi??)2)??4

nni?122n?2所以?是?的无偏估计量且IR?D(?) 故?是?的优效估计 18. 解:由题意:n=100,可以认为此为大子样,

?2?2?2?2?2 15

所以U?X??近似服从N(0,1) Sn2P{U?u?}?1??

得置信区间为(x?u?2ss) x?u?nn22已知1???0.95 s=40 x=1000 查表知u??1.96代入计算得 所求置信区间为(992.16 1007.84) 19.解:(1)已知??0.01cm 则由U?X???~N(0,1)

n P{U?u?}?1??

2 解之得置信区间(X?u?2?n X?u?2?n)

将n=16 X=2.125 u??u0.05?1.645 ??0.01

2代入计算得置信区间(2.1209 2.1291) (2)?未知 T?X??~t(n?1) Sn2 P{T?t?}?1?? 解得置信区间为(X?sst? X?t?) n2n2 将n=16 t?(15)?t0.05(15)?1.753 S2?0.00029代入计算得

2 置信区间为(2.1175 2.1325)。

X??~t(n?1) S?n P{T?t?(n?1)}?1??

20.。解:用T估计法 T?2S?S* 解之得置信区间(X?t? X?t?)

n2n2 将X?6720 S??22 0 n=10 查表t0.025(9)?2.2622

16

代入得置信区间为(6562.618 6877.382)。

21.解:因n=60属于大样本且是来自(0—1)分布的总体,故由中心极限定理知

?Xi?1ni?np?np(1?p)nX?np近似服从N(0,1) 即

np(1?p)p{n(X?P)?u?}?1?? np(1?p)2

解得置信区间为(X?本题中将

p(1?p)p(1?p)u? X?u?) nn22UUn代替上式中的X 由题设条件知n?0.25

nnUn(n?Un)p(1?p)??0.055 查表知Un?U0.025?1.96 2nn代入计算的所求置信区间为(0.1404 0.3596) 22. 解:?2未知 故U?X???~N(0,1)

n 由P{U?u?}?1?? 解得

2 置信区间为(X? 区间长度为

?nu? X?2?nu?)

22?2?u? 于是u??L n2n24?2 计算得n?2U?2 即为所求

L223.解:?未知,用?2估计法 ??2(n?1)S2?2~?2(n?1)

2(n?1)}?1?? P{?2?(n?1)??2(n?1)???1?22 解得?的置信区间为(

(n?1)S22??2

(n?1)S2?2?1?2)

17

(1)当n=10,S?=5.1时 查表?02.005(9)=23.59 ?02.995(9)=1.73 代入计算得?的置信区间为(3.150 11.616)

(2)当n=46,S?=14时 查表?02.005(45)=73.166 ?02.995(45)24.311 代入计算可得?的置信区间为(10.979 19.047) 24.解:(1)先求?的置信区间 由于?未知 T?X??~t(n?1) Sn2 P{T?t?}?1?? 得置信区间为(X?SSt? X?t?) n2n2 经计算X?5.12 查表t0.025(19)?2.093 n=20

S?0.2203 代入计算得置信区间为(5.1069 5.3131) (2)?未知 用统计量??2(n?1)S2?2~?2(n?1)

2}?1?? P{?2???2???1?22 得?的置信区间为((n?1)S22??2

(n?1)S2?2?1?2)

查表?02.025(19)=32.85 ?02.975(19)=8.91 代入计算得?的置信区间为(0.1675 0.3217)

25.解:因Xn?1与X1,X2,?Xn相互独立,所以Xn?1与X相互独立,故 Xn?1?X~N(0,(1?)?2) 又因

nS21n?2~?2(n?1) 且与Xn?1?X相互独立,有T分布的定义知

18

Xn?1?Xn?1?X?Xn?n?1SnS2(n?1)?2n?1~t(n?1) n?126. 解:因Xi~N(?1,?2) i?1,2,?m Yj~N(?2,?2) j?1,2,?n 所以?(X??1)~N(0,?2?2m), ?(Y??2)~N(0,?2?2n)

由于X与Y相互独立,则

?(X??1)??(Y??2)~N[0,(?2m??2n)]

22nsymsx?(X??1)??(Y??2)2即 ~N(0,1)又因 2~?(m?1) 2~?2(n?1)

???2?2??m2n则

2msx?2?2nsy?~?2(m?n?2)

构造t分布

?(X??1)??(Y??2)?(X??1)??(Y??2)=~t(m?n?2) 222222msx?nsy???????mnm?n?2mn27. 证明:因抽取n>45为大子样 ??2(n?1)s*2?2~?2(n?1)

由?2分布的性质3知

U??2?(n?1)2(n?1)近似服从正态分布N(0,1)

所以 P{U?u?2}?1?? 得

?2?(n?1)2(n?1)(n?1)s2??u?2 或?u2??2?(n?1)2(n?1)?u?2

可得?2的置信区间为

19

????22ss?? ,?2?2??1?u1?u2??2n?1n?1??228. 解: 因?12??2??2未知,故用T统计量

T?X?Y?(?1??2)~t(n?m?2)

11sw?nm2w2(n?1)s12?(m?1)s2其中s? 而??0.05 n?m?2

n?m?2查表 t0.025(4)?2.144 计算 X?81.625 Y?76.125

22 s12?145.695,s2?123.625 代入得 ?101.554, swX?Y?t?2(n?m?2)sw11??5.5?11.9237 nm故得置信区间(?6.4237,17.4237)

229解: 因?12??2??2故用T统计量

XA?YB?(?1??2)(n?1)S12?(m?1)S222T?~t(n?m?2)其中SW?

n?m?211sw?nm??P?T?t???1??

2??计算得置信区间为

(XA?XB?SWt?(n?m?2)21111? XA?XB?SWt?(n?m?2)?) nmnm22把SW2=0.000006571 t?(7)=2.364

代入可得所求置信区间为(-0.002016 0.008616)。 30.解:由题意 用U统计量

20

U?X1?X2?(?1??2)S1S2?nm222~N(0,1)

P{U}?u?}?1?? 计算得置信区间为 (X1?X2?u?2S12S22S12S22 X1?X2?u???)

nmnm2把X1?1.71 X2?1.67 S12?0.0352 S22?0.0328 n?m?100

u??u0.025?1.96 代入计算得 置信区间(?0.0299,0.0501)

231.解:由题意,u1,u2未知,则

S2*F?S1*22?22?12??~F(n2?1,n1?1)则P?F?(n2?1,n1?1)?F?F?(n2?1,n1?1)??1??

2?1?2?22?S1*?12S1*??经计算得P?F?(n2?1,n1?1)*2?2?F?(n2?1,n1?1)*2???1?? 1??2?S2S2?2?2?**???12SS解得2的置信区间为?F?(n2?1,n1?1)1*2,F?(n2?1,n1?1)1*2?

?1?2?2S2S2?2??*n1?6 n2?9 S1*?0.245 S2?0.357 ??0.05

2222查表:F0.025(5,8)?4.82 ?F0.975(8,5)?11??0.20 7F0.025(5,8)4.82?12带入计算得2的置信区间为:(0.142,4.639)。

?232. 解:?2未知,则 T?X??~t(n?1)即:P?T?t?(n?1)??1?? S*n?S*?S*有:P???X?t?(n?1)??1??则单侧置信下限为:X?t?(n?1)

n?n?.471 将X?6720 S*?220 n?10 t0.05(9)?1.83 3带入计算得6592.471。 即钢索所能承受平均张力在概率为95%的置信度下的置信下限为659233.解:总体服从(0,1)分布且样本容量n=100 为大子样。

21

令X为样本均值,由中心极限定理

nX?nPn?2~N(0,1) 又因为?2?S2所以P???nX?npnS2??u???1??

?S2则相应的单侧置信区间为(??, X?u?)

n将X=0.06 S2?mm(1?)?0.6?0.94 u??u0.05?1.64 5nn代入计算得所求置信上限为0.0991

即为这批货物次品率在置信概率为95%情况下置信上限为0.0991。 34.解:由题意: ?2?(n?1)S?2?2~?2(n?1)P?2??21??(n?1)?1??

2??(n?1)S? 解得?的单侧置信上限为2

?1??(n?1)22 其中n=10,S?=45, 查表??(n?1)??0.95(9)?3.325

代入计算得?的单侧置信上限为74.035。

第五章

1.解: 对一元回归的线性模型为Yi离差平方和为

??xi??i i????n

Q???yi??xi?

2i?1n对Q求?的偏导数,并令其为0,即

??y??x?x?0

iiii?1n1n1n2变换得 ?xiyi???xi

ni?1ni?1解此方程得

???xy 2x因为

?2?D??E?2 ?i?yi??xi

22

?1n??所以 ????yi??xi?

ni?1????2?1n?2???yi?2?xiyi??xi2?ni?1???22

?y?2?xy??x22??2

其中 2. 解:将代入得

3证明:

22?y2?2?xy?x2??xy??x2x2?22

?y2??xy?x2

xy?1n?nx21n2 y2?1n2iyi x??xi ?1n?yi

i?1nii?1 x?26 y?90.1 4 xy?2736.5 1 1 m22x?451.11 my?342.66???xy?xym2?2736.511?26?90.14?0.8706x451.11??

??y??x?90.14?0.8706?26?67.5088

??2?m2???2ym2x?342.665?0.87062?451.11?0.7487d' 0?d0uv?uvd??d 11u2?u2?n di?1?ui?u??vi?v? ?0d1?n?u?u2

ii?1?23

5

?xi?c1x?c1??yi?c0y?c0????????d1??d0d0?d0i?1?d1?2n?d1xi?c1x?c1?????dd1?i?1?1n1nxi?xyi?y d0d0d1?i?1?21nd1x?xid12?i?1????

?????x?x??y?y?iii?1n??x?x?ii?1?n2??d0?'d0??c0??c1d1d0?'?d0v?d0?u?c0??c1d1?c1??dv?c?d?u???000 d?1?d0?'?y??xd1?y??x???'?'??2d0??vi????ui?i?1??nn?'2?'?'?'

???????d0vi?d0??d0?ui?i?1??n?'2?'?'?x?c???i1 ???yi?c0?d0??d0?d1?i?1??n2

2?'d?'?d0?'?0???yi?c0?d0???xi??c1?d1d1i?1????????yi????xi????i?1n2 24

B26002500240023002200210020001900180015202530354045505560品质指标支数4.解:将

22x?35.353 y?2211. 2 xy?76061.6 7 6mx 0 my?34527. 46?132.13代入得

????xy?xy76061.676?35.353?2211.2???15.982mx132.130???y??x?2211.2?15.98?35.353?2776.142??m??mx?34527.46???15.98??132.130?786.692y2?2?2

??*2为?的无偏估计量

?*2?2n?220??786.69?874.10 ??n?2185. 解:将 代入得

22x?6 y?210. 4 xy?1558 mx?8 my?10929. 84????xy?xy1558?6?210.4??36.952mx8???y??x?210.4?36.95?6??11.3n?25???10929.84?36.952?8??12.37 ??n?23?*2??3.517假设

?*H0:??38 H1:??38

25

用T检验法 拒绝域为

???0?*???x?x?ii?1n2?t?2?n?2?

查表得

t0.025?3??3.1824

将上面的数据代入得

t?1.89?t0.025?3?

所以 接受H0 即认为?为38

6. 解:(1)由散点图看,x的回归函数具有线性函数形式,认为长度对于质量的回归是线性的。

B121110长度98751015202530质量

(2)将

22x?17. 5 y?9.4 9 xy?179.3 7 mx my?2.45 ?72.9 2?代入得

???xy?xy179.37?17.5?9.49??0.182 2mx72.92?

??y??x?9.49?0.182?17.5?6.305

y????x?6.305?0.182x

???(3)当x?16时 由T分布定义

y0?a?16b??0

??T?Y0????x0??*11??n?x?x???x?x?20nii?1?t?n?2?

2 26

??????????Y0????x0?? P??tn?2????0.95 0.0252???x0?x1*??1??n?2n??x?x?i??i?1??????所以Y0的预测区间为

???1??*??x?tn?2?1???00.025??n??x?x?,???x?t??x?x?20??n20ii?10.025?n?2???*?x0?x?1? 1??n2nxi?x???i?1???2??查表得 将(2)的数据代入得

t0.025?4??2.776

?*2n?262?????2.4?50.1?82n?24

7?2.?92

0.0075??0.0866计算得Y0的预测区间为

?*?8.9521,9.4? 7212x?21 y?141. 2 xy?3138 mx?90

9. 解:利用第八题得到的公式 将 代入得

??

??xy?xy3138?21?141.2??1.922mx90

???y??x?141.2?1.92?21?100.8810.。解:二元线性回归模型为Yi离差平方和为

??1xi1??2xi2??i,i?1,2,???,n

nQ???yi??ixi1??2xi2?

2i?1对Q求?1,?2的偏导数并令其为0

?n?yi??1xi1??2xi2?xi1?0???i?1 ?

n??y??x??x?x?0?i1i12i2i2??i?1可变换为

27

?n? ??xyn2?ni1i??1?xi1?2?xi1xi2?0?i?1i?1i?1?n???yixi2??nn

21?xi1xi2??2?xi2?0i?1i?1i?1

正规方程为

? ??x2??1?1?x1x2?2?x1y

?x???21x2?1?x2?2?x2y最小二乘估计为

?

?x21?2yx1x2?x1yx2x222

1x2?x1x2??x22?1yx1x2?x2yx1x221x2?x21x2xn其中

1n11n1n1y?n?xi1yi x2y?n?xi2yi x1x2??xix1i 2 x2j?i?1i?1ni?1n?x2iji?111解:(1)

p?2 n?15

采用线性回归模型

Y????1?x1?x???2?x2?x???

15

?yi?248.25 y?16.55

i?1151515

?y22i?4148.3125

i1?56734

i?1?xi1?920

i?1?xi?115

x1?61.33

?xi2?7257 x2?483. 8i?11515

?x2i2?3524489

?445366

i?1?xi1xi2i?11515

?xi1yi?15170 i?1?xi2yi?12063925

i?1

28

j?1,2

1?15?2???xi?1?56734?56426.66?307.34 L11??xi115?i?1?i?11521?15?2???xi? L22??xi22?3524489?3510936.6?13552.4 15i?1?i?1?1521?15??15 L12?L2?xi??1?xi?1?xixi1?2?15?i?1??i?1i?11515??6445?096 270??244536?1?15??15? L1y??xi1yi???xi10152?2?6 56???yi??1517?15i?1?i?1??i?1?1?15??15? L2y??xi2yi???xi2 5yi??120639.?251201?03.2???15?i?1??i?1?i?115536于是

??y?16.55

?307.34270? L????27013552.4???L1y???56? ?????

L536???2y???????1?1??56?可得 ????L? ????536???2?所以 12.解

y?10.504?0.216x1?0.04x2 p?3 n?18

采用线性回归模型

18Y????1x1?x??2x2?x??3x3?x??

18i1??????

?x?y?1463 y?81.27 7ii?1?215

i?1

x1?11.944

?xi?118i2?758 x2?42.11

?xi?118i?118i3?2214 x3?123 ?35076

?xi?1182i1?4321.02

?x2i2?xi?1182i3?307864

29

1?18?2L11??xi1???xi1??4321.02?2568.05?1752.9718?i?1?i?11821?18?2 L22??xi2???xi2??35076?31920.22?3155.78

18?i?1?i?11821?18?2L33??xi3???xi3??307894?272322?3557218?i?1?i?1182

?xxi?118i1i2?10139.5

1?18??18? L12?L21??xi1xi2???xi1???xi2??10139.5?9053.88?1085.62

18?i?1??i?1?i?118?xxi?118i1i3?96598

1?18??18?L?L31??xi1xi3???xi1???xi3??27645?26445?1200 13 18?i?1??i?1?i?11818

?xi?1i2i3x?96598

181?18??18? L32?L23??xi2xi3???xi2???xi3??96598?93234?3364

18?i?1??i?1?i?1

?xy?20706.2

i1ii?1181?18??18? L1y??xi1yi???xi1???yi??20706.2?17474.7?3231.5

18?i?1??i?1?i?118

?xi?118i2iy?63825

1?18??18? L2y??xi2yi???xi2???yi??63825?61608.5?2216.5

18?i?1??i?1?i?118

?xi?118i3iy?187542

1?18??18?L?xi3yi???xi3???yi??187542?179949?7593 3y? 18?i?1??i?1?i?118 30

于是

??y?4.582

?1200???1752.93 1085.62?? L?1085.62 3155.78 3364 ???35572??1200 3364 ?

?L1y??3231.5??????L2y???2216.5? ?L??7593???3y??可得

?????1??3231.5?????1?? ??2??L2216.5

??????7593?????3???所以 第三章

y?43.65?1.78x1?0.08x2?0.16x3

?1.解: 假设: H0:??26,H1:??26 由于??5.2已知,故用统计量u?x????~N(0,1)

n???x??27.56?26??1.2 P?u?u???? u的拒绝域u?u? u??5.222??4n因显著水平??0.05,则u?1.2?u??u0.025?1.96

2这时,就接受H0 2. 解: (1) ?已知,故u?x????0n??~N(0,1) P?u?u???? u的拒绝域u?u?

22??u?x????0?n25.32?5?3.2因显著水平??0.01,则 110u?3.2?u??u0.005?2.576 故此时拒绝H0:u?5

31

(2) 检验u?4.8时犯第二类错误的概率?

?????0??12??0?0??1?u??0n22nn???????e0?????x??????2?2?0n2dx 令t??x????0则上式变为

2nn1??2??0??0??1?u?21edt?2?t22?4.58??0.58edtt22n??(4.58)??(?0.58)??(4.58)??(0.58)?1?0.9999979?0.71990?1?0.7180

3. 解:假设H0:??3.25,H1:??3.25

?x??用t检验法拒绝域T?*?t?(n?1) ??0.01, x?3.252

s2n?查表t0.0112(14)?4.6041 s*2?0.00017,s?0.0130 代入计算T?0.344?t0.0112(14) 故接受H0,认为矿砂的镍含量为3.25

4解:改变加工工艺后电器元件的电阻构成一个母体,则在此母体上作假设

H0:??2.64,用大子样检验 x??0u?snx??0s?n??~N(0,1) 拒绝域为u?u? 由n?200,x?2.62,s?0.06,??0.01

2?查表得u??2.575 u?20.02?3.33?2.575?u? 0.06210故新加工工艺对元件电阻有显著影响.

x??0近似5 .解:用大子样作检验,假设H0:???0 u?~N(0,1) sn? 32

拒绝域为u?u?由n?200,?0?0.973,x?0.994,s?0.162,??0.05,u0.025?1.96

2?x??00.021??1.833?1.96故接收H0,认为新工艺与旧工艺无显著差异。 s0.162n200?6.解:由题意知,母体X的分布为二点分布B(1,p),作假设H0:p?p0(p0?0.17) 此时x??m(m为n个产品中废品数) n?因n?400很大,故由中心极限定理知x近似服从正态分布。 故u?mm?p0?p0nn~N(0,1)即P{?u?}??

p0(1?p0)p0(1?p0)2nnm?p0?u?n22计算得拒绝域为

p0(1?p0) n把m?56,n?400,u??u0.025?1.96,p0?0.17代入

m?p0?0.14?0.17?0.03?1.96?0.0188?0.037 n即接受H0,认为新工艺不显著影响产品质量。

7解:金属棒长度服从正态分布原假设H0:???0?10.5,备择假设H1:???0

x??t?x???s~t(n?1) 拒绝域为t?t? n21(10.4?10.6???10.7)?10.48 15样本均方差s?x??0s?n?1(10.4?10.48)2???(10.7?10.48)2?0.237 140.02?0.327而t0.025(14)?2.144 因0.327?2.144

0.23715于是t?故接受H0,认为该机工作正常。

33

8.解:原假设H0:???0?12100,备择假设H1:???0

???x??0sn?n?,s?323,??0.05代入计算 ~t(n?1),拒绝域为T?t? 将x?119582?x??0s142?2.153?t0.025(13)?2.068 故拒绝原假设即认为期望。

323249. 假设H0:????20.8,H1:???0?20.8 使用新安眠药睡眠平均时间

1s2?[(26.7?24.2)2???(23.4?24.2)2]16x?(26.7?22.0???23.4)?24.2

7s?s2?2.296?x??0t?s?n?3.42.296?4.046 所以拒绝域为t?t0.05(n?1) 7查表t0.05(6)?1.943?4.046?t 故否定H0

又因为x?24.2?20.8?3 故认为新安眠药已达到新疗效。 10. 原假设H0:?甲??乙,H1:?甲??乙u?解得拒绝域u?u?

2?x甲?x乙ss?n1n22122??近似~N(0,1)

x1?2805,x2?2680x1?x2125??8.03 s1?120.41,s2?105.00代入计算2222s1s2120.41105n1?140,n2?100??110100n1n2????查表u??u0.025?1.96 因8.03?1.96

2故拒绝原假设即两种枪弹速度有显著差异。

211.解:因两种作物产量分别服从正态分布且?12??2

假设H0:?1??2,H1:?1??2 故统计量T?X?Y~t(n1?n2?2) 11Sw?n1n2?? 34

22(n1?1)sx?(n2?1)sy其中Sw? 拒绝域为T?t?

n1?n2?22代入计算sw?24.063 t?(n1?n2?2)?t0.005(18)?287 82代入数值T的观测植为 t?30.97?21.799.18??0.85 10.7561124.063??1010因为t?0.85?2.878?t0.005(18)

所以接受H0,认为两个品种作物产量没有显著差异。

12. 解:因两台机床加工产品直径服从正态分布且母体方差相等,由题意 假设H0:?1??2,H1:?1??2 统计量T?X1?X2~t(n1?n2?2) 11Sw?n1n2??2(n1?1)s12?(n2?1)s2Sw? 拒绝域为T?t? 数值代入计算sw?0.5473

n1?n2?221x1?(20.5???19.9)?19.9258?1x2?(19.7???19.2)?207 因t?0.265?2.160?t0.025(13)

2s12?0.2164,s2?0.396620?19.925t??0.2650.5437?0.5175?故接受假设H0,认为直径无显著差异。

13.解:由题意设施肥,未施肥植物中长势良好率分别为p1,p2(均未知) 则总体X~B(1,p1),Y~B(1,p2)且两样本独立假设H0:p1?p2,H1?p1?p2 既H0:E(x)?E(y).H1:E(x)?E(y)而D(x),D(y)均未知,则

n1?900,x??783?0.87900s?x(1?x)?0.1137u?~N(0,1)由题意易得 ?2253s1s2n2?100,y??0.53?100n1n2??2s2?y(1?y)?0.2491x?y??21?? 35

于是

x?y2s12s2?n1n2???0.87?0.530.34??6.6466查表u0.01?2.33?6.6466 0.05110.11370.2491?900100故应拒绝H0,接受H1即认为施肥的效果是显著的。

(1) 14. 解:假设两厂生产蓄电池容量服从正态分布。由于?1,?2未知,故假

设H0:?1??2,H1:?1??2选取统计量T??X1?X2~t(n1?n2?2) 11Sw?n1n2???2(n1?1)s12?(n2?1)s2Sw?拒绝域为T?t? x1?140.1,x2?140.1

n1?n2?2T?0?2.1009?t0.025(18)2故接受H0:?1??2,即认为两种电池性能无显著差异

2(2)检验要先假设其服从正态分布且?12??2

15. 解:由题意假设H0:???0?0.048,H1:??0.048由于?未知。故

??2(n?1)s22?02或?2??12?? ??2(n?1)拒绝域为?2???22?0?0.048,n?5s?0.007782

得?2的观测值?2?4?0.0077822?13.5查表得??(n?1)??0.025(4)?11.14 0.04822因为?2?13.5?11.14??0.025(4)故拒绝H0,认为母体标准差不正常。 16.解:由题意熔化时间服从N(?,400)假设H0:?2?400,H1:?2?400

??2(n?1)s22?02或?2??12?? ~?2(n?1)拒绝域为?2???22n?25,s?404.77,??400代入计算

22(n?1)s2?2?24.29

22(n?1)??0)?45.56 查表??.005(2422?2?(n?1)??0)?9.89因为9.89?24.29?45.56 .995(241?2故接受H0,即认为无显著差异。 17.证明:大子样在正态母体上作的假设

36

2H0:?2??0??2(n?1)s2?2~?(n?1)2

因n?1很大,故由?2分布的性质3知?2(n?1)分布近似于正态分布N[(n?1),2(n?1)]而

?2(n?1)?(n?1)2(n?1)~N(0,1)给定显著水平?,则

P{?2(n?1)?(n?1)2(n?1)?2(n?1)?(n?1)?2(n?1)u??u?}??即可计算

22或?(n?1)?(n?1)?2(n?1)u?22

拒绝假设H0

相反:若(n?1)?2(n?1)u???2?(n?1)?2(n?1)u?

22则接受H0,即证。

18解:(1)?2未知假设H0:???0?0.5%,H1:???0则T??x??0sn?~t(n?1)

拒绝域为T?t?x?0.452%,?0?0.5%,s?0.037%,n?10?3.162,??0.05 查表t0.025(9)?2.262 因为

x??0s?n?0.048%?4.10?2.262?t0.025(9)

0.037%3.162故拒绝假设H0,即认为???0

(2)?未知假设H0:????0.04%,H1:?????2202202(n?1)s22?0~?2(n?1)

22或?2??12??s2?0.037%2,?0?0.04%2,n?10,??0.025 拒绝域为?2???22?02.025(9)?19.022(n?1)s29?0.037%2查表2????7.70 22?00.04%?0.0975(9)?2.7故?02.975(9)??2??02.025(9)故接受H0:??0.04%

219.解:甲品种X~N(?1,?12)乙品种Y~N(?2,?2)

37

22假设H0:?12??2而均值未知,则 ,H1:?12??22s大F?2~F(n大?1,n小?1)s小 n1?n2?10,s大?sx?26.7,s小?sy?21.1,n大?n小?1026.72?1.601查表F?(n大?1,n小?1)?F0.005(9,9)?6.54 代入计算F?221.12而F?1.601?6.54?F0.005(9,9)故接受H0,认为产量方差无显著差异。

220. 解:甲机床加工产量~N(?1,?12)乙机床加工产量~N(?2,?2) 2s22~F(n大?1,n小?1) ?1,?2未知,则F?大假设H0:?12??2,H1:?12??22s小n1?8,n2?7,由12题计算知s?0.2164?s,s?0.3966?sF?0.3966?1.833 0.2164F?(n大?1,n小?1)?F0.025(6,7)?5.122212小222大n大?n2?7故 代入计算n小?n1?8查表

F?1.833?5.12?F0.025(6,7)故接受H0,认为两台机床加工精度无显著差异。

221.解:A,B测定值母体都为正态分布A:X~N(?1,?12),B:Y~N(?2,?2) 22?1,?2未知,则 假设H0:?12??2,H1:?12??22s大222F?2~F(n大?1,n小?1) n1?5,n2?7,s12?0.432? 2s小,s2?0.500?6s大s小n大?n2?70.5060?1.15 8 故 F?n小?n1?50.4342查表

F?(n大?1,n小?1)?F0.025(6,4)?9.202

F?1.158?9.20?F0.025(6,4)故接受H0,认为方差无显著差异。

222,H1:?12??222. 解:由题意(1)检验假设H0:?12??2由于?1,?2,?12,?2未知,则

s12F?2~F(n1?1,n2?1)

s2

38

又??0.05,可查表得相应的拒绝域为

F?F?(n1?1,n2?1)?F0.025(5,5)?7.15

21x?(0.140???0.137)?0.14076?s121由样本计算y?(0.135???0.140)?0.1385由此可得F?2?1.1079

6s22s12?0.0000078666,s2?0.0000071?2由于0.14?F?1.1079?7.15 故接受H0:?12??2

2(2)检验假设H0:?1??2,H1:?1??2由(1)可知?12??2且未知,故 2(n1?1)s12?(n2?1)s2X1?X2,n1?n2?6 T?~t(n1?n2?2) Sw?n1?n2?211Sw?n1n2??又可计算sw?0.0027355,代入得T?0.1407?0.1385?1.2716 10.0027355?3又由??0.05,,查表t0.025(10)?2.228 因T?1.2716?t0.025(10)?2.228 故接受H0,即认为这两批电子元件的电阻值的均值是相同的。 23. 解:(1)检验假设H0:???0,H1:???0由5题,用统计量u?P{u??u?}?? 拒绝域为u?u?

x??0~N(0,1) sn?由n?200,u0?0.973,x?0.994,s?0.162,??0.05,u??1.645

代入计算u?1.833??u???1.645 故接受H0,认为方差无显著降低。 (2)假设H0:p?p0,H1:p?p0由6题知u?m?p0n~N(0,1) p0(1?p0)n?P{u??u?}??拒绝域为u?u?把m?56,n?400,u??u0.05?1.645,p0?0.17代入u??1.59?6?1.64?5?u?即接受H0,即产品质量显著提高。

39

(3)假设H0:?甲??乙,H1:?甲??乙由10题知u?x甲?x乙ss?n1n22122??~N(0,1)

解得拒绝域u?u?

,n2?100,s1?120.41,s2?105.00,n1?110 当x甲?2805,x乙?2680??代入计算u?8.03?1.645?u??u0.05

即拒绝H0,接受H1,认为甲枪弹的速度比乙枪弹速度显著得大。 (4)假设H0:??400,H1?400??22(n?1)s22?0~?2(n?1)

22n?25,s2?404.77,?0?400代入?2?24.29?42.98??0.01(24)

即接受H0,认为符合要求。

2224. 解:由题意假设H0:?12??2 ,H1:?12??2?1,?2未知,故用统计量

s12F?2~F(n1?1,n2?1)

s2解得拒绝域F?F?

*22*2把s12?s乙?0.357,n1?9,n2?6,s乙?s甲?0.245

代入计算F?0.357?1.457?4.82?F0.05(8,5) 0.245故接受H0,即认为乙机床零件长度方差不超过甲机床,或认为甲机床精度不比乙高。

25. 解:假设H0,各锭子的断头数服从泊松分布 即P{x?i}??ii!e??(i?0,1,2?)

其中?未知,而?的极大似然估计为

40

1n292??x??imi??0.66ni?1440 i0.66?0.66pi?ei!^?由此可用泊送分布算得pi及有关值,如下表

i mi pi npi ?mi?npi?2 npi0 1 263 112 0.517 227.5 5.540 0.341 0.113 0.025 150.0 49.7 11.0 9.627 2.754 5.818 2 38 19 3 4~? 8 440 0.004 1 1.8 440 21.356 45.095 合计 由分组数l?5,r?1 故自由度数k?l?r?1?2

22由??0.05查表知??(2)??0.05(2)?7.82

(mi?npi)2由于????45.095?7.82

npi?0i24故拒绝H0,即认为总体不服从泊松分布。

26. 解:假设四面体均匀,记则抛次时白色与地面接触的概率为p?

x?k,表示k?1次抛掷时,白色的一面都未与地面接触,第k次抛掷时才与地面

14相接触则相当于

3?假设H0:P{x?k}?(1?p)k?1p?????4?k?11(k?1,2?) 4 41

1313P{x?1}?,P{x?2}???444162?3?19P{x?3}??????4?464则 ?3?127P{x?4}??????4?4256132781P{x?5}?1????4162562563将以上数据代入下式,则

(fi?npi)2????18.216

npii?125对于??0.05,自由度n?l?1?4 查表?02.05(4)?9.488?18.216??2

所以拒绝H0,即认为四面体是不均匀的。 27. 解:假设H0螺栓口径X具

即X~N(?,?2),首先用极大似然估计法求出参数?与?2的估计值,xi为各小区间中点

^?1n1n2u??xi?11,???(xi?x) ni?1ni?1^下面计算x落在各小区间上的概率

10.95?11)p1?P{???x?10.95}??()??(??)??(?1.5625)?0.05940.03210.97?1110.95?11p2?P{10.95?x?10.97}??()??()0.0320.032??(?0.9375)??(?1.5625)?0.1736?0.0594?0.114210.99?1110.97?11p3?P{10.97?x?10.99}??()??()0.0320.032 ??(?0.3125)??(?0.9375)?0.3783?0.1736?0.204711.01?1110.99?11p4?P{10.99?x?11.01}??()??()0.0320.032??(0.3125)??(?0.3125)?0.6217?0.3783??0.2434p5?P{11.01?x?11.03}??(0.9375)??(0.3125)?0.8264?0.6217?0.2047p6?P{11.03?x?11.05}??(1.5625)??(0.9375)?0.9460?0.8264?0.1142p7?P{11.05?x???}?1??(1.5625)?1?0.9406?0.0594

42

计算?2的观测值列表如下: 区间 ??~10.93 ni 5 组中值 10.94 10.96 10.98 11.00 11.02 11.04 11.06 11.08 pi 0.0594 0.1142 0.2047 0.2434 0.2047 0.1142 0.0594 npi 5.94 11.42 20.47 24.34 20.47 11.42 5.94 (ni-npi)2/npi 0.1488 1.0242 0.0108 3.8338 0.5882 2.5724 2.7750 10.95~10.97 8 10.97~10.99 20 10.99~11.01 34 11.01~11.03 17 11.03~11.05 6 11.09~?? 10 合计 100 1 100 10.9532 计算得统计量的观测值为?2?10.9532

?2的自由度n?7?2?1?4

??0.05查表?02.05(4)?9.49?10.9532

故拒绝H0,认为其不服从正态分布。

28. 解:由题意,取a?2.20,b?3.80,组距为0.2, 得其分布密度估计表 区间划分 [2.20,2.40) [2.40,2.60) [2.60,2.80) [2.80,3.0) [3.0,3.2) [3.2,3.4) [3.4,3.6) [3.6,3.8) 频数 7 16 29 45 46 32 20 6 频率 0.035 0.08 0.145 0.225 0.23 0.16 0.1 0.03 密度估计表 0.175 0.4 0.725 1.125 1.15 0.8 0.5 0.15 由此图形可大致认为其为母体及正态分布下面用?2检验法作检验

43

H0:X~N(?,?2)^1n假设u??xi?3.009

ni?1^?1n???(xi?x)2?0.3222ni?1区间 [2.20 2.40) [2.40 2.50) [2.50 2.60) [2.60 2.70) [2.70 2.80) [2.80 2.90) [2.90 3.00) [3.00 3.10) [3.10 3.20) [3.20 3.30) [3.30 3.40) [3.40 3.50) [3.50 3.60) [3.60 3.80) ni 7 5 11 12 17 19 26 24 22 19 13 13 7 5 pi 0.0882 0.0276 0.045 0.0665 0.0893 0.1091 0.1211 0.1223 0.1121 0.1135 0.071 0.0488 0.0314 0.026 npi 4.68 5.52 9 13.3 17.86 21.82 24.22 24.46 22.42 22.7 14.2 9.76 6.28 5.2 (ni-npi)2/npi 1.87 0.05 0.44 0.13 0.041 0.36 0.131 0.009 0.008 0.022 0.101 1.076 0.083 0.079 l?16,k?2

(mi?npi)2????3.069

npi?1i21622??(16?2?1)???(13)

2(13)?3.069 故接受H0,即认为母体服从正态分布 查表可知无论?为何值 总有??数理统计第四章习题答案

1 解: 母体 子样 子样平均 X1

X11 , X12,…, X1n1 44

X1

X2 … X21 , X22,…, X2n2 … X2 Xr Xr1 , Xr2,…, Xrnr Xr 1ni1niyi??b(xij?c)??bxij?bc?b(Xi?c)nij?1nij?11rnibrniy???b(xij?c)???xij?bc?b(X?c)ni?1j?1ni?1j?111?Xi?c?yiX?c?yb?0

bbrr112SA??ni(Xi?X)??ni(c?yi?c?y)2bbi?1i?1r111r2??ni(yi?y)?2?ni(yi?y)2bbbi?1i?1?令SA??ni(yi?y)2?b2SA

i?1r?b2SASA??SA??b2SAr?1r?11??SA?2SAbrnr

11SE???(xij?Xi)2???(c?yij?c?yi)2bbi?1j?1i?1j?1rnr11rnr2???2(yij?yi)?2??(yij?yi)2bi?1j?1i?1j?1brnr?令SE???(yij?yi)2?b2SE

i?1j?1rnr?SEb2SE??SE??b2SEn?rn?r1??SE?2SE b1??SAb2SASAF????F?1?SES?SE2Eb2解:假设H0:?1??2??3??4

H1:?1?2?3?4不全为零

45

生产厂 干电池寿命 24.7 ,24.3 ,21.6 ,19.3 ,20.3 30.8 ,19.0 ,18.8 ,29.7 17.9 ,30.4 ,34.9 ,34.1 ,15.9 23.1 ,33.0 23.0 26.4 18.1 25.1 Xi 22.04 24.575 26.64 24.783 A B C D r?4n1?5n2?4n3?5n4?6n?20X?24.52

经计算可得下列反差分析表: 来源 组间 组内 总和 离差平方和 53.6511 603.0198 656.6709 自由度 3 16 19 均方离差 17.8837 37.6887 查表得F0.05(3,16)?3.24

F?17.8837?0.4745?F0.05(3,16)

37.6887故接受H0即可认为四个干电池寿命无显著差异。 3 解:

假设H0:?1??2??3

H1:?1?2?3不全相等

小学 第一小学 第二小学 第三小学 身高数据(厘米) 128.1,134.1,133.1,138.9,140.8,127.4 150.3,147.9,136.8,126.0,150.7,155.8 140.6,143.1,144.5,143.7,148.5,146.4 Xi 133.733 144.583 144.467 r?3n1?n2?n3?6X?140.9278

经计算可得下列方差分析表: 来源 组间 组内 总和 离差平方和 465.886 799.25 7265.136 自由度 2 15 17 均方离差 232.943 53.385 4.372 F值 F0.05(2,15)?3.68

F?4.373?3.68?F0.05(2,15)

46

?拒绝H0故可认为该地区三所小学五年级男生平均身高有显著差异。

4 解: 假设H0:?1??2??3??4

H1:?1?2?3?4不全相等

伏特计 测定值 100.9,101.1,100.8,100.9,100.4 100.2,100.9,101.0,100.6,100.3 100.8,100.7,100.7,100.4,100.0 100.4,100.1,100.3,1060.2,100.0 Xi 100.82 100.6 100.52 100.2 A B C D r?4n1?n2?n3?n4?5X?100.535

经计算可得下列方差分析表:

来源 组间 组内 总和 离差平方和 0.9895 1.296 2.2855 自由度 3 16 19 均方离差 0.3298 0.081 4.0716 F值 F0.05(3,16)?3.24 F?F0.05(3,16)?3.24

?拒绝H0故可认为这几支伏特计之间有显著差异。

5 解:假设H0:?1??2??3??4??5

H1:?1?2?3?4?5不全相等

温度(?C) 90 97 96 84 84 得率(%) 92 93 96 83 86 88 92 93 88 82 Xi 90 94 95 85 84 60 65 70 75 80 r?5n1?n2?n3?n4?n5?3X?89.6

经计算可得下列方差分析表:

来源 组间

离差平方和 303.6 自由度 4 均方离差 75.9 47

F值 15.18 组内 总和 50 353.6 10 14 5 F0.05(4,10)?3.48

F?15.18?F0.05(4,10)?拒绝H0故可认为温度对得率有显著影响

X1?X5?N(?1??5,(由T检验法知:

112?)?) n1n5T?X1?X5?(?1??5)?t(n?r)

11?SEn1n5?给定的置信概率为1???0.95

P{T?t0.025(n?r)}?0.95

故?1??5的置信概率为0.95的置信区间为

(X1?X5?t0.025(n?r)1111?SE,X1?X5?t0.025(n?r)?SE) n1n5n1n5SE?QE?5?2.236 n?rt0.025(10)?2.2281

由上面的数据代入计算可得:

22SE?90?84?2.2281?2.236??1.932233

2X1?X5?t0.025(10)SE?10.06783X1?X5?t0.025(10)故?1??5的置信区间为(1.9322 , 10.0678)

X3?X4?N(?3??4,(由T检验法知:

112?)?) n3n4T?X3?X4?(?3??4)?t(n?r)

11?Sn3n4E?3??4的置信区间为:

48

(X3?X4?t0.025(n?r)代入数据计算得:

1111?SE,X3?X4?t0.025(n?r)?S) n3n4n3n4EX3?X4?t0.025(10)X3?X4?t0.025(10)112?SE?10?2.2281?2.236??5.9327n3n4311?SE?14.0678n3n4

故?3??4的置信区间为(5.9322 , 14.0678) 6 解:?Xi?N(?i,?2)?EXi??i

1ni? ?又矩估计法知?i?Xi??xij

nij?1rrni11?????ni?xij?X???ini?1ni?1j?1 ????????X?X??iii且

1ni1rni1ni1rni?E?i?EXi?EX??Exij???Exij??(???i)???(???i)nij?1ni?1j?1nij?1ni?1j?1????i?(??0)??iD?i?E(Xi?X??i)?E[(Xi??i)?(X??)]222

1ni1ni?E(Xi??i)?2E[(Xi??i)?ni(Xi??i)]?E[?ni(Xi??i)]2nj?1nj?1注意到

E[(Xi??i)(Xj??j)]?E(Xi??i)(EXj??j)?0(?Xi?N(?i,21r22?上式?E(Xi??i)?niE(Xi??i)?2?niE(Xi??i)2nni?1

21r2?DXi?niDXi?2?niDXinni?12?2ni))

1r2?2?2??ni?2?ni(?DXi?)ninnini?1nini??22??222111??2??2?(?)?ninnnin

27 解: 因子B 因子A

B1 B2

?

49

Bs

Xi.

本文来源:https://www.bwwdw.com/article/ti1o.html

Top