2015高考数学考前解题基本方法 七、反证法
更新时间:2023-03-11 04:16:01 阅读量: 教育文库 文档下载
- 2015天津高考数学答案推荐度:
- 相关推荐
七、反证法
与前面所讲的方法不同,反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。
反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。
反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。
在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。
Ⅰ、再现性题组:
1. 已知函数f(x)在其定义域内是减函数,则方程f(x)=0 ______。 A.至多一个实根 B.至少一个实根 C.一个实根 D.无实根
[来源:学科网ZXXK]2. 已知a<0,-1ab> ab B. ab>ab>a C. ab>a> ab D. ab> ab>a
3. 已知α∩β=l,a α,b β,若a、b为异面直线,则_____。
A. a、b都与l相交 B. a、b中至少一条与l相交 C. a、b中至多有一条与l相交 D. a、b都与l相交
4. 四面体顶点和各棱的中点共10个,在其中取4个不共面的点,不同的取法有_____。(97年全国理)
A. 150种 B. 147种 C. 144种 D. 141种
[来源:学#科#网Z#X#X#K]22222【简解】1小题:从结论入手,假设四个选择项逐一成立,导出其中三个与特例矛盾,选A;
2小题:采用“特殊值法”,取a=-1、b=-0.5,选D; 3小题:从逐一假设选择项成立着手分析,选B;
4小题:分析清楚结论的几种情况,列式是:C10-C6×4-3-6,选D。
Ⅱ、示范性题组:
S
例1. 如图,设SA、SB是圆锥SO的两条母线,O是底面
圆心,C是SB上一点。求证:AC与平面SOB不垂直。
C 【分析】结论是“不垂直”,呈“否定性”,考虑使用反证
法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”。
A O 【证明】 假设AC⊥平面SOB,
B ∵ 直线SO在平面SOB内, ∴ AC⊥SO, ∵ SO⊥底面圆O, ∴ SO⊥AB,
∴ SO⊥平面SAB, ∴平面SAB∥底面圆O, 这显然出现矛盾,所以假设不成立。 即AC与平面SOB不垂直。
【注】否定性的问题常用反证法。例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾。
[来源:学_科_网]44例2. 若下列方程:x+4ax-4a+3=0, x+(a-1)x+a=0, x+2ax-2a=0至少有一个方程有实根。试求实数a的取值范围。
【分析】 三个方程至少有一个方程有实根的反面情况仅有一种:三个方程均没有实根。先求出反面情况时a的范围,再所得范围的补集就是正面情况的答案。
【解】 设三个方程均无实根,则有:
22221?3??2?a?22?△1?16a?4(?4a?3)?0??13?22,解得?a??1或a?,即-
3时,三个方程至少有一个方程有实根。2[来源:Z,xx,k.Com]
【注】“至少”、“至多”问题经常从反面考虑,有可能使情况变得简单。本题还用到了“判别式法”、“补集法”(全集R),也可以从正面直接求解,即分别求出三个方程有实根时(△≥0)a的取值范围,再将三个范围并起来,即求集合的并集。两种解法,要求对不等式解集的交、并、补概念和运算理解透彻。
例3. 给定实数a,a≠0且a≠1,设函数y=
1x?1 (其中x∈R且x≠),证明:①.ax?1a经过这个函数图像上任意两个不同点的直线不平行于x轴; ②.这个函数的图像关于直线y
=x成轴对称图像。(88年全国理)。
【分析】“不平行”的否定是“平行”,假设“平行”后得出矛盾从而推翻假设。
【证明】 ① 设M1(x1,y1)、M2(x2,y2)是函数图像上任意两个不同的点,则x1≠x2, 假设直线M1M2平行于x轴,则必有y1=y2,即=x1-x2
∵x1≠x2 ∴ a=1, 这与已知“a≠1”矛盾, 因此假设不对,即直线M1M2不平行于x轴。 ② 由y=
x1?1x2?1=,整理得a(x1-x2)
ax1?1ax2?1y?1x?1得axy-y=x-1,即(ay-1)x=y-1,所以x=, ax?1ay?1x?1x?1的反函数为y=,图像一致。 ax?1ax?1x?1的图像关于直线yax?1即原函数y=
由互为反函数的两个图像关于直线y=x对称可以得到,函数y=
=x成轴对称图像。
【注】对于“不平行”的否定性结论使用反证法,在假设“平行”的情况下,容易得到一些性质,经过正确无误的推理,导出与已知a≠1互相矛盾。第②问中,对称问题使用反函数对称性进行研究,方法比较巧妙,要求对反函数求法和性质运用熟练。
Ⅲ、巩固性题组:
1. 已知f(x)=x,求证:当x1≠x2时,f(x1)≠f(x2)。
1?|x|2. 已知非零实数a、b、c成等差数列,a≠c,求证:1、1、1不可能成等差数列。
abc3. 已知f(x)=x+px+q,求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于1 。
224. 求证:抛物线y=x-1上不存在关于直线x+y=0对称的两点。
225. 已知a、b∈R,且|a|+|b|<1,求证:方程x+ax+b=0的两个根的绝对值均小于1。
2
[来源:学科网ZXXK] A 6. 两个互相垂直的正方形如图所示,M、N在相 应对角线上,且有EM=CN,求证:MN不可能 垂直CF。 F D B M N
E C
正在阅读:
软件工程机票预订系统详细设计11-18
通信工程专业就业方向及前景06-04
心功能临床评价方法05-28
八一建军节歌颂军人优秀作文8篇04-03
高一化学实验总结大全10-03
高二物理-如皋市2015-2016学年高二上学期12月调研检测物理(选修06-22
开展“五项活动”创先争优活动情况汇报材料02-11
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 反证法
- 解题
- 考前
- 数学
- 基本
- 高考
- 方法
- 2015
- 和倍问题1
- 2016年安徽自主招生物理模拟试题:电磁感应中的能量问题
- 中海地产合约策划报告指引
- 2017-2018学年语文版九年级上第七单元检测试卷
- THPFSL-1型实训指导书
- 2017年 matlab实验内容
- 豫剧经典剧目的戏词
- 山东省籍将军
- 人教版数学一年级上册总复习教案
- 2013-4疏散演练活动方案
- 河北省兽药GSP检查验收办法及申请表等(2013修订版) - 图文
- 中国互联网+医疗机构行业发展模式分析与投资潜力预测分析报告(目录)
- 电路基础选择题100题
- 农村小学教职工队伍状况的调查研究
- 司法所队伍建设存在的问题与对策
- 评选优秀班主任事迹材料
- 科技工作者应有责任感 - 图文
- 2018年秋季高中政治教材必修1《经济生活》修改说明
- 氦氖激光器的调试实验
- 江苏大学 金工实习答案