西工大材料考研必看练习题5

更新时间:2023-09-13 04:06:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1.锌单晶体试样的截面积A=78.5 mmz,经拉伸试验测得有关数据如表6-1所示。试回答下列问题:

(1) 根据表6-1中每一种拉伸条件的数据求出临界分切应力τk,分析有无规律。

(2) 求各屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。

表6-1 锌单晶体拉伸试验测得的数据

屈服载荷/N υ/( °) λ/( °) 620 83 25.5 252 72.5 26 184 62 3 148 48.5 46 174 30.5 63 273 17.6 74.8 525 5 82.5 2.低碳钢的屈服点与晶粒直径d的关系如表6-2中的数据所示,d与,,是否符合霍尔配奇公式?试用最小二乘法求出霍尔—配奇公式中的常数。

表6-2 低碳钢屈服极限与晶粒直径

d/?m σs/(kPa) 400 86 50 121 10 180 5 242 2 345 3.拉伸铜单晶体时,若拉力轴的方向为[001],σ=106Pa。求(111)面上柏氏矢

a[110]量b=2的螺型位错线上所受的力(aCu=0.36nm)。

4.给出位错运动的点阵阻力与晶体结构的关系式。说明为什么晶体滑移通常发生在原子最密排的晶面和晶向。

5.对于面心立方晶体来说,一般要有5个独立的滑移系才能进行滑移。这种结论是否正确?请说明原因及此结论适用的条件。

6.什么是单滑移、多滑移、交滑移?三者滑移线的形貌各有何特征?

7.已知纯铜的{111}[110]滑移系的临界切应力rc为1 MPa,问;

(1) 要使(111)面上产生[101)方向的滑移,则在[001]方向上应施加多大的应力?

(2) 要使(111)面上产生[110]方向的滑移呢?

8.证明体心立方金属产生孪生变形时,孪晶面沿孪生方向的切应变为0.707。 9.试比较晶体滑移和孪生变形的异同点。

10. 用金相分析如何区分“滑移带”、“机械孪晶”、“退火孪晶”。 11. 试用位错理论解释低碳钢的屈服。举例说明吕德斯带对工业生产的影响及

防止办法。

12. 纤维组织及织构是怎样形成的?它们有何不同?对金属的性能有什么影响? 13. 简要分析加工硬化、细晶强化、固熔强化及弥散强化在本质上有何异同。 14. 钨丝中气泡密度(单位面积内的气泡个数)由100个/cm2增至400个/cm2时,

拉伸强度可以提高1倍左右,这是因为气泡可以阻碍位错运动。试分析气泡阻碍位错运动的机制和确定切应力的增值?r。 15. 陶瓷晶体塑性变形有何特点?

16. 为什么陶瓷实际的抗拉强度低于理论的屈服强度,而陶瓷的压缩强度总是

高于抗拉 17. 强度?

18. 已知烧结氧化铝的孔隙度为5%时,其弹性模量为370 GPa,若另一烧结氧

化铝的弹性模量为270 GPa,试求其孔隙度。

19. 为什么高聚物在冷拉过程中细颈截面积保持基本不变?将已冷拉高聚物加热

到它的玻理化转变温度以上时,冷拉中产生的形变是否能回复? 20. 银纹与裂纹有什么区别?

1. (1)临界分切应力n及取向因子数据如附表2.3所示。 以上数据表明,实验结果符合临界分切应力定律τk=σm。 (2)屈服应力σs与取向因子,m之间的关系如附图2.17所示。

6. 单滑移是指只有一个滑移系进行滑移。滑移线呈一系列彼此平行的直线。这是因为单滑移仅有一组多滑移是指有两组或两组以上的不同滑移系同时或交替地进行滑移。它们的滑移线或者平行,或者相交成一定角度。这是因为一定的晶体结构中具有一定的滑移系,而这些滑移系的滑移面之间及滑移方向之间都交滑移是指两个或两个以上的滑移面沿共同的滑移方向同时或交替地滑移。它们的滑移线通常为折线或波纹状。只是螺位错在不同的滑移面上反复“扩展”的结果。

10. 滑移带一般不穿越晶界。如果没有多滑移时,以平行直线和波纹线出现,如附图2.19(a),它可以通过抛光而去除。

机械孪晶也在晶粒内,因为它在滑移难以进行时发生,而当孪生使晶体转动后,又可使晶体滑移。所以一般孪晶区域不大,如附图2.19(b)所示。孪晶与基体位向不同,不能通过抛光去除。

退火孪晶以大条块形态分布于晶内,孪晶界面平直,一般在金相磨面上分布比较均匀,如附图2。19(c)所示,且不能通过抛光去除。

11. 低碳钢的屈服现象可用位错理论说明。由于低碳钢是以铁素体为基的合金,铁素体中的碳(氮)原子与位错交互作用,总是趋于聚集在位错线受拉应力的部位以降低体系的畸变能,形成柯氏气团对位错起“钉扎”作用,致使σ

s

升高。而位错一旦挣脱气团的钉扎,便可在较小的应力下继续运动,这时拉伸曲线上又会出现下屈服点。已经屈服的试样,卸载后立即重新加载拉伸时,由于位错已脱出气团的钉扎,故不出现屈服点。但若卸载后,放置较长时间或稍经加热后,再进行拉伸时,由于熔质原子已通过热扩散又重新聚集到位错线周围形成气团,故屈服现象又会重新出现。

吕德斯带会使低碳薄钢板在冲压成型时使工件表面粗糙不平。其解决办法,可根据应变时效原理,将钢板在冲压之前先进行一道微量冷轧(如1%~

2%的压下量)工序,使屈服点消除,随后进行冲压成型,也可向钢中加入少量Ti,A1及C,N等形成化合物,以消除屈服点。

12. 材料经冷加工后,除使紊乱取向的多晶材料变成有择优取向的材料外,还使材料中的不熔杂质、第二相和各种缺陷发生变形。由于晶粒、杂质、第二相、缺陷等都沿着金属的主变形方向被拉长成纤维状,故称为纤维组织。一般来说,纤维组织使金属纵向(纤维方向)强度高于横向强度。这是因为在横断面上杂质、第二相、缺陷等脆性、低强度“组元”的截面面积小,而在纵断面上截面面积大。当零件承受较大载荷或承受冲击和交变载荷时,这种各向异性就可能引起很大的危险。

金属在冷加工以后,各晶粒的位向就有一定的关系。如某些晶面或晶向彼此平行,且都平行于零件的某一外部参考方向,这样一种位向分布就称为择优取向或简称为织构。

形成织构的原因并不限于冷加工,而这里主要是指形变织构。无论从位向还是从性能看,有织构的多晶材料都介于单晶体和完全紊乱取向的多晶体之间。由于织构引起金属各向异性,在很多情况下给金属加工带来不便,如冷轧镁板会产生(0001)<1120>织构,若进一步加工很容易开裂;深冲金属杯的制耳,金属的热循环生长等。但有些情况下也有其有利的一面。

13. 加工硬化是由于位错塞积、缠结及其相互作用,阻止了位错的进一步运动,流变应力?d??Gb?。

细晶强化是由于晶界上的原子排列不规则,且杂质和缺陷多,能量较高,阻碍位错的通过,?s??0?Kd裂纹不易萌生和传播。

?12;且晶粒细小时,变形均匀,应力集中小,

固熔强化是由于位错与熔质原子交互作用,即柯氏气团阻碍位错运动。 弥散强化是由于位错绕过、切过第二相粒子,需要增加额外的能量(如表面能或错排能);同时,粒子周围的弹性应力场与位错产生交互作用,阻碍位错运动。

14. 气泡阻碍位错运动的机制是由于位错通过气泡时,切割气泡,增加了气泡—金属间界面的面积,因此需要增加外切应力做功,即提高了金属钨的强度。

设位错的柏氏矢量为b,气泡半径为r,则位错切割气泡后增加的气泡—金属间界面面积为A=2rb。

设气泡—金属的比界面能为σ,则界面能增值为2rbσ。

若位错切割一个气泡的切应力增值为?τ’,,则应力所做功为?τ’b。 所以2rbσ=?τ’b,即:2rσ=?τ’

当气泡密度为n时,则切应力总增值:?τ=n?τ’=2nrσ 可见,切应力增值与气泡密度成正比。

15. 作为一类材料,陶瓷是比较脆的。晶态陶瓷缺乏塑性是由于其离子键和共价键造成的。在共价键键合的陶瓷中,原子之间的键合是特定的并具有方向性,如附图2.20(a)所示。当位错以水平方向运动时,必须破坏这种特殊的原子键合,而共价键的结合力是很强的,位错运动有很高的点阵阻力(即派—纳力)。因此,以共价键键合的陶瓷,不论是单晶体还是多晶体,都是脆的。

基本上是离子键键合的陶瓷,它的变形就不一样。具有离子键的单晶体,如氧化铁和氯化钠,在室温受压应力作用时可以进行相当多的塑性变形,但是具有离子键的多晶陶瓷则是脆的,并在晶界形成裂纹。这是因为可以进行变形的离子晶体,如附图2.20(b)所示,当位错运动一个原子间距时,同号离子的巨大斥力,使位错难以运动;但位错如果沿45°方向而不是水平方向运动,则在滑移过程中相邻晶面始终由库仑力保持相吸,因而具有相当好的塑性。但是多晶陶瓷变形时,相邻晶粒必须协调地改变形状,由于滑移系统较少而难以实现,结果在晶界产生开裂,最终导致脆性断裂。

16. 这是由于陶瓷粉末烧结时存在难以避免的显微空隙。在冷却或热循环时由热应力产生了显微裂纹,由于腐蚀所造成的表面裂纹,使得陶瓷晶体与金属不同,具有先天性微裂纹。在裂纹尖端,会产生严重的应力集中,按照弹性力学估算,裂纹尖端的最大应力已达到理论断裂强度或理论屈服强度(因为陶瓷晶体中可动位错很少,而位错运动又很困难,故一旦达到屈服强度就断裂了)。反过来,也可以计算当裂纹尖端的最大应力等于理论屈服强度时,晶体断裂的名义应力,它和实际得出的抗拉强度极为接近。陶瓷的压缩强度一般为抗拉强度的15倍左右。这是因为在拉伸时当裂纹一达到临界尺寸就失稳扩展而断裂;而压缩时裂纹或者闭合或者呈稳态地缓慢扩展,并转向平行于压

缩轴。即在拉伸时,陶瓷的抗拉强度是由晶体中的最大裂纹尺寸决定的,而压缩强度是由裂纹的平均尺寸决定的。

18. 玻璃态高聚物在Tb~Tg之间或部分结晶高聚物在Tg~Tm之间的典型拉伸应力—应变曲线表明,过了屈服点之后,材料开始在局部地区(如应力集中处)出现颈缩,再继续变形时,其变形不是集中在原颈缩处,使得该处愈拉愈细,而是颈缩区扩大,不断沿着试样长度方向延伸,直到整个试样的截面尺寸都均匀减小。在这一段变形过程中应力几乎不变,如附图2.21所示。

在开始出现颈缩后,继续变形时颈缩沿整个试样扩大,这说明原颈缩处出现了加工硬化。X射线证明,高聚物中的大分子无论是呈无定形态还是呈结晶态,随着变形程度的增加,都逐渐发生了沿外力方向的定向排列。由于键的方向性(主要是共价键)在产生定向排列之后,产生了应变硬化。

把已冷拉高聚物的试样加热到Tg以上,形变基本上全能回复。这说明非晶态高聚物冷拉中产生的形变属高弹性形变范畴。部分结晶高聚物冷拉后残留的形变中大部分必须升温至丁-附近时才能回复。这是因为部分结晶高聚物的冷拉中伴随着晶片的排列与取向,而取向的晶片在Tm以下是热力学稳定的。

19. 银纹不同于裂纹。裂纹的两个张开面之间完全是空的,而银纹面之间由高度取向的纤维束和空穴组成,仍具有一定的强度。银纹的形成是由于材料在张应力作用下局部屈服和冷拉造成。

本文来源:https://www.bwwdw.com/article/tfih.html

Top