2018年中考数学试卷
更新时间:2023-03-08 04:41:42 阅读量: 初中教育 文档下载
2018年中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)﹣5的倒数是( ) A.﹣ B. C.5 2.(3分)使A.x>3
D.﹣5
有意义的x的取值范围是( )
B.x<3 C.x≥3 D.x≠3
3.(3分)如图所示的几何体的主视图是( )
A. B. C. D.
4.(3分)下列说法正确的是( )
A.一组数据2,2,3,4,这组数据的中位数是2 B.了解一批灯泡的使用寿命的情况,适合抽样调查
C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分
D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃
5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是( ) A.x1<x2<0
B.x1<0<x2
C.x2<x1<0
D.x2<0<x1
6.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是( )
A.(3,﹣4) B.(4,﹣3) C.(﹣4,3) D.(﹣3,4)
第1页(共23页)
7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )
A.BC=EC B.EC=BE C.BC=BE D.AE=EC
8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:
①△BAE∽△CAD;②MP?MD=MA?ME;③2CB2=CP?CM.其中正确的是( )
A.①②③ B.① C.①②
D.②③
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为 .
10.(3分)因式分解:18﹣2x2= .
11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是 .
12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为 . 13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为 cm. 14.(3分)不等式组
的解集为 .
15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .
第2页(共23页)
16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是 .
17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 .
18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为 .
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤) 19.(8分)计算或化简 (1)()﹣1+|
|+tan60°
(2)(2x+3)2﹣(2x+3)(2x﹣3)
20.(8分)对于任意实数a,b,定义关于“?”的一种运算如下:a?b=2a+b.例如3?4=2×3+4=10.
第3页(共23页)
(1)求2?(﹣5)的值;
(2)若x?(﹣y)=2,且2y?x=﹣1,求x+y的值.
21.(8分)江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表. 最喜爱的省运会项目的人数调查统计表
最喜爱的项目 篮球 羽毛球 自行车 游泳 其他 合计 根据以上信息,请回答下列问题:
(1)这次调查的样本容量是 ,a+b .
(2)扇形统计图中“自行车”对应的扇形的圆心角为 .
(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.
人数 20 9 10 a b
22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.
(1)从中任意抽取1张,抽到的数字是奇数的概率是 ;
(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四
第4页(共23页)
象限的概率.
23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h) 24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE. (1)求证:四边形AEBD是菱形; (2)若DC=
,tan∠DCB=3,求菱形AEBD的面积.
25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F. (1)求证:AC是⊙O的切线;
(2)若点F是A的中点,OE=3,求图中阴影部分的面积;
(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.
26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工
第5页(共23页)
程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
27.(12分)问题呈现
如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值. 方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中. 问题解决
(1)直接写出图1中tan∠CPN的值为 ;
(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值; 思维拓展
(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.
28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,
第6页(共23页)
同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒. (1)当t=2时,线段PQ的中点坐标为 ; (2)当△CBQ与△PAQ相似时,求t的值;
(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.
第7页(共23页)
参考答案与试题解析
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.
【解答】解:﹣5的倒数﹣. 故选:A. 2.
【解答】解:由题意,得 x﹣3≥0, 解得x≥3, 故选:C. 3.
【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形, 故选:B. 4.
【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;
B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;
C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;
D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;
第8页(共23页)
故选:B. 5.
【解答】解:由题意,得
k=﹣3,图象位于第二象限,或第四象限, 在每一象限内,y随x的增大而增大, ∵3<6, ∴x1<x2<0, 故选:A. 6.
【解答】解:由题意,得 x=﹣4,y=3,
即M点的坐标是(﹣4,3), 故选:C. 7.
【解答】解:∵∠ACB=90°,CD⊥AB, ∴∠ACD+∠BCD=90°,∠ACD+∠A=90°, ∴∠BCD=∠A. ∵CE平分∠ACD, ∴∠ACE=∠DCE.
又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE, ∴∠BEC=∠BCE, ∴BC=BE. 故选:C. 8.
【解答】解:由已知:AC=
AB,AD=
AE
第9页(共23页)
∴
∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确 ∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD ∴
∴MP?MD=MA?ME 所以②正确 ∵∠BEA=∠CDA ∠PME=∠AMD
∴P、E、D、A四点共圆 ∴∠APD=∠EAD=90°
∵∠CAE=180°﹣∠BAC﹣∠EAD=90° ∴△CAP∽△CMA ∴AC2=CP?CM ∵AC=
AB
∴2CB2=CP?CM 所以③正确 故选:A.
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.
【解答】解:0.00077=7.7×10﹣4, 故答案为:7.7×10﹣4.
第10页(共23页)
10.
【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x), 故答案为:2(x+3)(3﹣x) 11.
【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,
而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种; 故其概率为:. 12.
【解答】解:由题意可知:2m2﹣3m﹣1=0, ∴2m2﹣3m=1
∴原式=3(2m2﹣3m)+2015=2018 故答案为:2018 13.
【解答】解:设圆锥的底面圆半径为r,依题意,得 2πr=解得r=故选: 14.
【解答】解:解不等式3x+1≥5x,得:x≤, 解不等式
>﹣2,得:x>﹣3, , cm. .
则不等式组的解集为﹣3<x≤,
第11页(共23页)
故答案为:﹣3<x≤. 15.
【解答】解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°, ∴∠ADB=45°, ∴∠AOB=90°, ∵OA=OB=2, ∴AB=2
,
.
故答案为:2
16.
【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根, ∴△>0且m≠0, ∴4﹣12m>0且m≠0, ∴m<且m≠0,
故答案为:m<且m≠0. 17.
【解答】解:由折叠得:∠CBO=∠DBO, ∵矩形ABCO, ∴BC∥OA, ∴∠CBO=∠BOA, ∴∠DBO=∠BOA,
第12页(共23页)
∴BE=OE,
在△ODE和△BAE中,
,
∴△ODE≌△BAE(AAS), ∴AE=DE,
设DE=AE=x,则有OE=BE=8﹣x,
在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2, 解得:x=5,即OE=5,DE=3, 过D作DF⊥OA,
∵S△OED=OD?DE=OE?DF, ∴DF=则D(
,OF=,﹣
). ,﹣
)
=
,
故答案为:(
18.
【解答】解:∵y=mx+m=m(x+1), ∴函数y=mx+m一定过点(﹣1,0), 当x=0时,y=m,
∴点C的坐标为(0,m),
由题意可得,直线AB的解析式为y=﹣x+2,
第13页(共23页)
,得,
∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分, ∴解得,m=故答案为:
或m=.
,
(舍去),
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤) 19.
【解答】解:(1)()﹣1+|=2+(2﹣=2+2﹣=4
(2)(2x+3)2﹣(2x+3)(2x﹣3) =(2x)2+12x+9﹣[(2x2)﹣9] =(2x)2+12x+9﹣(2x)2+9 =12x+18 20.
【解答】解:(1)∵a?b=2a+b,
第14页(共23页)
|+tan60°
)++
∴2?(﹣5)=2×2+(﹣5)=4﹣5=﹣1; (2)∵x?(﹣y)=2,且2y?x=﹣1, ∴
,
解得,
∴x+y=﹣=. 21.
【解答】解:(1)样本容量是9÷18%=50, a+b=50﹣20﹣9﹣10=11, 故答案为:50,11;
(2)“自行车”对应的扇形的圆心角=故答案为:72°;
(3)该校最喜爱的省运会项目是篮球的学生人数为:1200× 22.
【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=; 故答案为; (2)画树状图为:
=480(人).
×360°=72°,
共有12种等可能的结果数,其中k<0,b>0有4种结果, 所以这个一次函数的图象经过第一、二、四象限的概率= 23.
【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,
第15页(共23页)
=.
根据题意得:﹣=6,
解得:x=121≈121.8.
答:货车的速度约是121.8千米/小时. 24.
【解答】(1)证明:∵四边形ABCD是平行四边形, ∴AD∥CE, ∴∠DAF=∠EBF,
∵∠AFD=∠EFB,AF=FB, ∴△AFD≌△BFE, ∴AD=EB,∵AD∥EB,
∴四边形AEBD是平行四边形, ∵BD=AD,
∴四边形AEBD是菱形.
(2)解:∵四边形ABCD是平行四边形, ∴CD=AB=
,AB∥CD,
∴∠ABE=∠DCB,
∴tan∠ABE=tan∠DCB=3, ∵四边形AEBD是菱形, ∴AB⊥DE,AF=FB,EF=DF, ∴tan∠ABE=∵BF=∴EF=∴DE=3
, , ,
?3
=15.
=3,
∴S菱形AEBD=?AB?DE=
第16页(共23页)
25.
【解答】(1)证明:作OH⊥AC于H,如图, ∵AB=AC,AO⊥BC于点O, ∴AO平分∠BAC, ∵OE⊥AB,OH⊥AC, ∴OH=OE,
∴AC是⊙O的切线;
(2)解:∵点F是AO的中点, ∴AO=2OF=3, 而OE=3,
∴∠OAE=30°,∠AOE=60°, ∴AE=
OE=3
,
﹣
=
;
∴图中阴影部分的面积=S△AOE﹣S扇形EOF=×3×3
(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图, ∵PF=PF′,
∴PE+PF=PE+PF′=EF′,此时EP+FP最小, ∵OF′=OF=OE, ∴∠F′=∠OEF′,
而∠AOE=∠F′+∠OEF′=60°, ∴∠F′=30°, ∴∠F′=∠EAF′, ∴EF′=EA=3
,
, OF′=
,
即PE+PF最小值为3在Rt△OPF′中,OP=
第17页(共23页)
在Rt△ABO中,OB=∴BP=2
﹣
=
,
OA=×6=2,
即当PE+PF取最小值时,BP的长为.
26.
【解答】解:(1)由题意得:解得:
.
,
故y与x之间的函数关系式为:y=﹣10x+700, (2)由题意,得 ﹣10x+700≥240, 解得x≤46,
设利润为w=(x﹣30)?y=(x﹣30)(﹣10x+700), w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000, ∵﹣10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=﹣10(46﹣50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元; (3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600, ﹣10(x﹣50)2=﹣250, x﹣50=±5,
第18页(共23页)
x1=55,x2=45, 如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
27.
【解答】解:(1)如图1中,
∵EC∥MN, ∴∠CPN=∠DNM, ∴tan∠CPN=tan∠DNM, ∵∠DMN=90°, ∴tan∠CPN=tan∠DNM=故答案为2.
==2,
(2)如图2中,取格点D,连接CD,DM.
第19页(共23页)
∵CD∥AN, ∴∠CPN=∠DCM,
∵△DCM是等腰直角三角形, ∴∠DCM=∠D=45°, ∴cos∠CPN=cos∠DCM=
.
(3)如图3中,如图取格点M,连接AN、MN.
∵PC∥MN, ∴∠CPN=∠ANM, ∵AM=MN,∠AMN=90°, ∴∠ANM=∠MAN=45°, ∴∠CPN=45°. 28.
【解答】解:(1)如图1,∵点A的坐标为(3,0), ∴OA=3,
当t=2时,OP=t=2,AQ=2t=4,
第20页(共23页)
∴P(2,0),Q(3,4), ∴线段PQ的中点坐标为:(故答案为:(,2);
(2)如图1,∵当点P与点A重合时运动停止,且△PAQ可以构成三角形, ∴0<t<3,
∵四边形OABC是矩形, ∴∠B=∠PAQ=90°
∴当△CBQ与△PAQ相似时,存在两种情况: ①当△PAQ∽△QBC时,∴
,
, ,
),即(,2);
4t2﹣15t+9=0, (t﹣3)(t﹣)=0, t1=3(舍),t2=, ②当△PAQ∽△CBQ时,∴
t2﹣9t+9=0, t=∵∴x=
, >7,
不符合题意,舍去,
;
,
,
综上所述,当△CBQ与△PAQ相似时,t的值是或(3)当t=1时,P(1,0),Q(3,2),
把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:
,解得:
,
∴抛物线:y=x2﹣3x+2=(x﹣)2﹣,
第21页(共23页)
∴顶点k(,﹣), ∵Q(3,2),M(0,2), ∴MQ∥x轴,
作抛物线对称轴,交MQ于E, ∴KM=KQ,KE⊥MQ, ∴∠MKE=∠QKE=∠MKQ, 如图2,∠MQD=∠MKQ=∠QKE, 设DQ交y轴于H, ∵∠HMQ=∠QEK=90°, ∴△KEQ∽△QMH, ∴
,
∴,
∴MH=2, ∴H(0,4),
易得HQ的解析式为:y=﹣x+4,
则,
x2﹣3x+2=﹣x+4,
解得:x1=3(舍),x2=﹣, ∴D(﹣,
);
同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE, 由对称性得:H(0,0), 易得OQ的解析式:y=x,
第22页(共23页)
则,
x2﹣3x+2=x,
解得:x1=3(舍),x2=, ∴D(,);
综上所述,点D的坐标为:
(﹣,
)或(,).第23页(共23页)
D
正在阅读:
2018年中考数学试卷03-08
高中生励志青春作文03-12
家乡的森林作文400字06-19
全国计算机等级考试一级__WPS Office 考试大纲(2021 年版)05-06
人教版小学四年级语文下册教案05-19
《企划实战方法与策略》01-24
Information Designer 使用手册04-13
移动工作心得体会03-31
- 二甲基甲酰胺安全技术说明书
- 南邮计算机网络复习题
- 高分子物理实验指导书 - 图文
- 2009.9.25 莞惠环控专业施工图设计技术要求
- 学生工作简报
- 揭阳市斯瑞尔环境科技有限公司废酸综合利用项目可行性研究报告-广州中撰咨询
- 今日靓汤(佘自强)
- 奥数 - 二年级 - 数学 - 第三讲时间的教师版计算答案 - 图文
- 如何命制一份好的物理试卷
- 数据库开题报告
- 禁用未经批准或已经废止或淘汰技术的制度流程
- 大学英语(二)第2阶段测试题
- 湘教版一年级上册美术教案(全)
- (整套)学生顶岗(毕业)实习手册
- 高频 二极管包络检波 - 图文
- 2018届中考英语复习题型四任务型完形填空备考精编含解析 - 186
- 郑煤集团超化煤矿一采区开采设计 - 图文
- 财政学习题
- 摄影摄像复习资料
- SMC D-A93接线方式 - 图文
- 数学试卷
- 中考
- 2018
- 中考数学3月模拟试卷(二)(含解析)
- 2018年南宁市中考数学试题及解析
- 2017年广东省深圳市福田区中考数学三模试卷
- 2016年襄阳市初中毕业生学业水平考试(中考数学真题)
- 泰州市2016年中考数学已排
- 2011年全国各地100份中考数学试卷分类汇编第6章不等式
- 2018年中考数学试卷
- 初中数学中考数学模拟试题 2(1)
- 2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习
- 2018年初中数学中考河北试题解析
- 2017年山东省临沂市中考数学试卷
- 最新-华师版初中数学中考模拟试卷 精品
- 初中数学中考一轮复习(12)
- 物理最新教案-中考物理学复习浮力 精品
- 广东省广州市中考语文总复习第一部分基础第八章综合性学习精选资
- j精编初中中考数学试卷及答案解析
- 中考数学一轮复习 微专题 路径与最值(圆弧型路径)导学案(无答案)
- 物理最新教案-中考物理学复习热学基本物理量 精品
- 广东省广州市中考语文总复习第一部分基础第八章综合性学习精选资
- 初中数学知识点 中考复习资料