M-theory on G_2 manifolds and the method of (p,q) brane webs
更新时间:2023-05-16 00:02:01 阅读量: 实用文档 文档下载
M-theory on G_2 manifolds and the method of (p,q) brane webs
GNPHE/03-04
hep-th/0303198
arXiv:hep-th/0303198v3 25 Mar 2004M-theoryonG2manifoldsandthemethodof(p,q)branewebsAdilBelhajNationalGroupingofHighEnergyPhysics,GNPHEandLab/UFRHighEnergyPhysics,DepartmentofPhysicsFacultyofSciences,Rabat,MoroccoDepartmentofMathematicsandStatistics,ConcordiaUniversityMontr´eal,Qu´ebec,CanadaH4B1R6February1,2008AbstractUsingareformulationofthemethodof(p,q)webs,westudythefour-dimensionalN=1quivertheoriesfromM-theoryonseven-dimensionalmanifoldswithG2holon-
omy.We rstconstructsuchmanifoldsasU(1)quotientsofeight-dimensionaltorichyper-K¨ahlermanifolds,usingN=4supersymmetricsigmamodels.Weshowthatthesegeometries,ingeneral,aregivenbyrealconesonS2bundlesovercomplextwo-dimensionaltoricvarieties,V2=Cr+2/C r.ThenwediscusstheconnectionbetweenthephysicscontentofM-theoryonsuchG2manifoldsandthemethodof(p,q)webs.Mo-tivatedbyaresultofAcharyaandWitten[hep-th/0109152],wereformulatethemethodof(p,q)websandreconsiderthederivationofthegaugetheoriesusingtoricgeometryMorivectorsofV2andbranechargeconstraints.ForWP2w1,w2,w3,we ndthatthe
gaugegroupisgivenbyG=U(w1n)×U(w2n)×U(w3n).Thisisrequiredbytheanomalycancellationcondition.
KEYWORDS:M-theory,G2manifolds,Toricgeometry.
M-theory on G_2 manifolds and the method of (p,q) brane webs
1Introduction
Sincethediscoveryofsuperstringdualities,four-dimensionalsupersymmetricquantum eldtheories(QFT4)havebeenasubjectofgreatinterestinconnectionwithsuperstringcompact-i cationonCalabi-YaumanifoldsandD-branephysics[1,2,3,4].Forexample,embeddingN=2QFT4intypeIIAsuperstringcompacti edonCalabi-Yauthreefolds,withK3 bration,hasfoundaverynicegeometricdescriptionusingtheso-calledgeometricengineeringmethod
[5,6,7,8,9,10].Inthisprogram,thesemodels,whichgiveexactresultsforthemodulispaceofthetypeIIACoulombbranch,arerepresentedbyDynkinquiverdiagramsofLiealgebras
[7,8,9,10].
Quiterecently,aspecialinteresthasbeendevotedtofour-dimensionalgaugemodelspre-servingonlyfoursupercharges[11,12].These eldmodelsadmitaverynicedescriptionintheso-called(p,q)webs[13-24].ThismethodconcernsthestudyofN=1four-dimensionalquivertheoriesarisingontheworld-volumeofD3-branestransversetosingularCalabi-Yau
3threefolds,CYB.ThesubscriptherereferstotypeIIBstringgeometry.Themanifoldsarecomplexconesovercomplextwo-dimensionaltoricvarietiesV2,e.g.delPezzosurfaces.They
3givenbyellipticandC brationsaremirrormanifoldsoflocalCalabi-YauthreefoldsCYA
overthecomplexplane.Underlocalmirrorsymmetry,aD3-braneintypeIIBgeometrybecomesaD6-branewrappingaT3intypeIIAmirrorgeometry.Inthisway,theN=1four-dimensionalquivertheoriescanbeobtainedfromD6-braneswrapping3-cyclesSiinthemirrormanifold.Forinstance,aD6-braneonT3,whosehomologyclassis
[T]=3
i=1
3where{Si,i=1,..., }formabasisofH3(CYA,Z),givesafour-dimensionalN=1super-niSi,(1.1)
symmetricgaugetheorywithgaugegroup
G=
andquivermatrix
Iij=Si·Sj.
Ineqs.(1.1)and(1.2),thevectorniisspeci edbytheanomalycancellationcondition
i=1 i=1U(ni),(1.2)(1.3)Iijni=0.
(1.4)
M-theory on G_2 manifolds and the method of (p,q) brane webs
Theaboveidentitiesinthemethodof(p,q)websareveryexciting.First,thesameequationformshavebeenusedinthegeometricengineeringofsuperconformalmodelswitheightsu-percharges.Inthiscase,thequivermatrixisidenti edwithana neADECartanmatrixKandthegaugegroupisG= iSU(sin).ThepositiveintegerssiappearinginGaretheusualDynkinweights.Theyformaspecialpositivede niteintegervectors=(si)satisfyingKijsj=0,asrequiredbythevanishingofthebetafunction.Second,for =3correspond-ingtocomplextwo-dimensionalweightedprojectivespacesintypeIIBgeometry,thephysicscontentwithunitarygaugegroupsandchargedchiralmatterseemstobesimilartofour-dimensionalN=1modelsobtainedfromM-theoryonsingularG2manifoldsstudied rstin
[25],seealso[26,27].Thesemanifoldsareconstructedascirclequotientsofeight-dimensionaltorichyper-K¨ahler(HK)manifolds.Following[25],thetwistorspaceovertheweightedpro-jectivespaceWP2m,m,nhasaninterpretationintypeIIAsuperstringasanintersectionofthreegroupsofD6-braneswithmultiplicitiesm,m,nleadingtoSU(m)×SU(m)×SU(n)gaugesymmetry.Accordingtothisfeature,onemightaskthefollowingquestion.Isthereaconnectionbetweentheapproachof(p,q)websandM-theoryonG2manifolds1?However,thisconnectionmaynaturallyleadtotheneedofareformulationofthemethodof(p,q)webs.ThereasonforthisisthatthegaugesymmetryintheM-theorycompacti cationinvolvestheweightsoftheweightedprojectivespaceWP2.InthispaperweaddressthisquestionusingtoricgeometrydataofG2manifoldsasU(1)quotientsofeight-dimensionalHKmanifolds,andbyreconsideringthemethodof(p,q)webs.Thisstudymaycompletetheanalysisof[28]dealingwithdiscreteG2orbifoldsusingtheMcKaycorrespondence[29].
Ourprogramwillproceedintwosteps:
(i)WestudyG2manifoldsasU(1)quotientsofeight-dimensionaltoricHKmanifolds,X7=X8/U(1).ThemanifoldX8isobtainedusingrelevantconstraintequationsintermsoftwo-dimensionalN=4sigma-modelswithU(1)rgaugesymmetryandr+2hypermultiplets
[25,26,30].Weshowthattheresultingseven-dimensionalmanifolds,ingeneral,aregivenbyrealconesonS2bundlesovercomplextwo-dimensionaltoricvarieties
V2=Cr+2/C r.(1.5)
Explicitmodelsarepresentedintermsoftwo-dimensionalN=2sigmamodelrealizationsofV2.
(ii)WediscussthelinkbetweenthephysicscontentofM-theoryonsuchG2manifoldsandthemethodsof(p,q)webs.Inparticular,wereconsiderandreformulatethe(p,q)webequations
M-theory on G_2 manifolds and the method of (p,q) brane webs
usingthetoricgeometryMorivectorsofV2andsetofbranechargeconstraintequations.FortheweightedprojectivespaceWP2w1,w2,w3,forexample,we ndthefollowinggaugegroup
G=U(w1n)×U(w2n)×U(w3n).(1.6)
Thisisrequiredbytheanomalycancellationcondition.Withanappropriatechoiceofweightvectors,werecovertheresultofAcharyaandWittengivenin[25].
Theplanofthispaperisasfollows.Insection2,webrie yreviewthemainlinesoftoricgeometrymethodfortreatingcomplexmanifolds.Thenwegivetheinterplaybetweenthetoricgeometryandtwo-dimensionalN=2supersymmetricgaugetheories.Insection3,westudyG2manifoldsasU(1)quotientsofeight-dimensionaltoricHKmanifoldsX8constructedfromD- atnessconditionsoftwo-dimensional eldtheorywithN=4supersymmetric.ThenweidentifytheU(1)symmetrygroupwiththetoricgeometrycircleactionsofX8topresentquotientsX7=X8/U(1)ofG2holonomy.ExplicitmodelsaregivenintermsofrealconesonanS2bundleovercomplextwo-dimensionaltoricvarietiesV2.Insection4,weengineerN=1quivermodelsfromG2manifolds.WediscussthelinkbetweenthephysicscontentofM-theoryonsuchG2manifoldsandthemethodof(p,q)webs.Wereconsiderandreformulatethe(p,q)equationsusingthetoricgeometryMorivectorsofV2andsetofbranechargeconstraintequations.Inparticular,fortheweightedprojectivespaceWP2w1,w2,w3,we nd
thatthegaugegroupisgivenby(1.6).Insection5,wegiveillustratingapplications.Insection6,wegiveourconclusion.
2Toricgeometry
Inthissection,wecollectafewfactsontoricgeometryofcomplexmanifolds.ThesefactsareneededlatertoconstructaspecialtypeofG2manifolds,asU(1)quotientsofeight-dimensionaltoricHKmanifolds.Roughlyspeaking,toricmanifoldsarecomplexn-dimensionalmanifoldswithTn brationovern-dimensionalbasespaceswithboundary[7,10,31,32,33,34].TheyexhibittoricactionsU(1)nallowingustoencodethegeometricpropertiesofthecomplexspacesintermsofsimplecombinatorialdataofpolytopes noftheRnspace.Inthiscorrespondence, xedpointsofthetoricactionsU(1)nareassociatedwiththeverticesofthepolytope n,theedgesare xedone-dimensionallinesofasubgroupU(1)n 1ofthetoricactionU(1)n,andsoon.Geometrically,thismeansthattheTn berscandegenerateovertheboundaryofthebase.Notethatinthecasewherethebasespaceiscompact,theresultingtoricmanifoldwillbecompactaswell.
M-theory on G_2 manifolds and the method of (p,q) brane webs
Instringtheory,thepowerofthetoricgeometryrepresentationisduetothefollowingpoints:
(1)Thetoricdataofthepolytope nhavesimilarfeaturestotheADEDynkindiagramsleadingtonon-abeliangaugesymmetriesintypeIIsuperstringcompacti cationsonCalabi-Yaumanifolds[7,8,9,10].(2)Thetoric xedloci,whichcorrespondtothevanishingcycles,havebeenknowntobeassociatedwithD-branecharges[32].Thelatterwillbeusedinsection4todiscussthephysicscontentofM-theoryonourproposedmanifoldsofG2holonomy,usingareformulationofthemethodof(p,q)websintypeIIsuperstringonCalabi-Yauthreefolds.Toillustratethemainideaoftoricgeometry,letusdescribethephilosophyofthissubjectthroughcertainusefulexamples.
(i)P1projectivespace.
Thisisthesimplestexampleintoricgeometrywhichturnsouttoplayacrucialroleinthebuildingblocksofhigher-dimensionaltoricvarietiesandinthestudyofthesmallresolutionofADEsingularitiesoflocalCalabi-Yaumanifolds.P1hasanU(1)toricaction
z→eiθz(2.1)
withtwo xedpointsv1andv2ontherealline.Thelatterpoints,whichcanbegenerallychosenasv1= 1andv2=1,describerespectivelynorthandsouthpolesoftherealtwosphereS2~P1.Thecorrespondingone-dimensionalpolytopeisjustthesegment[v1,v2]joiningthetwopointsv1andv2.Thus,P1canbeviewedasasegment[v1,v2]withacircleontop,wherethecirclevanishesattheendpointsv1andv2.
(ii)P2projectivespace.
P2isacomplextwo-dimensionaltoricvarietyde nedby
P=2C3\{(0,0,0)}
M-theory on G_2 manifolds and the method of (p,q) brane webs
stableunderthethreeU(1)subgroupsofU(1)2;twosubgroupsarejustthetwoU(1)factors,whilethethirdsubgroupisthediagonalone.P2canbeviewedasatriangleovereachpointofwhichthereisanellipticcurveT2.Thistorusshrinkstoacircleateachsegment[vi,vj]anditshrinkstoapointateachvi.Theabovetoricrealizationcanbepushedfurtherfordescribingthesamephenomenoninvolvingcomplexn-dimensionaltoricvarietiesthataremorecomplicatedthanprojectivespaces.Thelatterspacescanbeexpressedinthefollowingform
V=nCn+r\U
M-theory on G_2 manifolds and the method of (p,q) brane webs
whichmeansthatthesystem owsintheinfra-redtoanon-trivialsuperconformaltheory
[35,36].Underlocalmirrorsymmetry,thistoricCalabi-YausigmamodelmapstoLandau-Ginsburg(LG)models[37,38,39,40].Inthisway,themirrorversionoftheconstraintequation(2.9),givingtheLGsuperpotential,reads
iyi=0(2.11)
subjectto
iQayii=e ta,(2.12)
whereyiareLGdualchiral eldswhichcanberelated,upsome eldchanges,tosigmamodel elds,andwhereta’sarethecomplexi edFIparametersde ningnowthecomplexdeforma-tionsoftheLGCalabi-Yausuperpotentials.
Notethattheabovetwo-dimensionalN=2toricsigmamodelscanbeextendedtoN=4sypersymmetrymodelswithhypermultipletsleadingtotoricHKgeometries[41].Intherestofthispaper,wewillusetoricgeometryandHKanalysistostudyseven-dimensionalmanifoldswithG2holonomy.ThelatterareU(1)quotientsofeight-dimensionaltoricHKmanifoldsX8.3
3.1G2manifoldsasU(1)quotientsG2manifoldsandN=4D- atnessconditions
Itisknownthatinordertogetasemi-realisticfour-dimensionaltheoryfromM-theoryitisnecessarytoconsideracompacti cationonaseven-dimensionalmanifoldX7withG2holonomy
[42-51].Inthisway,theresultingmodelswithN=1supersymmetrydependonthegeometricpropertiesofX7.Forinstance,ifX7issmooth,thelow-energytheorycontains,inadditiontoN=1supergravity,onlyabeliangaugesymmetryandnochargedchiralfermions.Non-abelaingaugesymmetriescanbeobtainedbyconsideringlimitswhereX7developsADEorbifoldsingularitiesusingwrappedM2-branesonvanishing2-cycles[43].However,thepresenceofconicalsingularitiesleadstochargedchiralfermions.Following[25],aninterestinganalysisforbuildingsuchgeometriesistoconsiderquotientsofeight-dimensionaltoricHKmanifoldsX8byanU(1)circlesymmetry.TheU(1)grouphasbeenchosensuchthatitcommuteswiththeSU(2)symmetry,permutingthethreecomplexstructuresofHKgeometries.Apriori,therearemanywaystochoosetheU(1)groupaction.Twosituationshavebeengivenin
[25]butherewewillidentifytheU(1)groupwiththetoricgeometrycircleactionofcomplex
M-theory on G_2 manifolds and the method of (p,q) brane webs
subvarietieswithinHKgeometries.Inparticular,wewillusetheHKanalysistopresentexplicitmodelswithG2holonomygroupleadingtointerestingN=1supersymmetricgaugetheoriesinfourdimensions.Todoso,weconsidertwo-dimensionalN=4supersymmetricgaugetheorieswithU(1)rgaugesymmetriesandr+2hypermultipletswithaQaimatrixcharge
[36,41].TheN=4D- atnessequationsofsuchmodelsaregenerallygivenby
r+2
i=1α¯¯α σα,Qai[φiφiβ+φiβφi]=ξa βa=1,...,r.(3.1)
Intheseequations,φαi’sdenoter+2component elddoubletsofhypermultiplets,ξaarerFI3-
αvectorcouplingsrotatedbySU(2)symmetry,and σβarethetraceless2×2Paulimatrices.In
thisconstruction,foreachU(1)factor,therearethreerealconstraintequationstransformingasaniso-tripletofSU(2)R-symmetry(SU(2)R)actingontheHKstructures.
UsingtheSU(2)Rtransformations
φα=εαβφβ,φα,ε12=ε21=1,(3.2)
andreplacingthePaulimatricesbytheirexpressions,theidentities(3.1)canbesplitasfollows
k
i=1
k
i=1
1φi=ξa iξ2a.11Qaiφi12223Qai(|φi| |φi|)=ξa(3.3)(3.5)
Dividingtheresultingspaceof(3.3-5)byU(1)rgaugetransformations,we ndpreciselyaneight-dimensionaltoricHKmanifoldX8.However,explicitsolutionsofthesegeometries
123dependonthevaluesoftheFIcouplings.Takingξa=ξa=0andξa>0,(3.3-5)describethe
cotangentbundleovercomplextwo-dimensionaltoricvarieties[30].Indeed,ifwesetallφ2i=0,wegetacomplextwo-dimensionaltoricvarietyVde nedby
Equations(3.4-5)meanthattheφ2i’s22+r i=1123Qai|φi|=ξa,(a=1,...,r).
de nethecotangentorthogonal berdirectionsover
2V2.Thismanifoldhasfourtoricgeometrycircleactions:U(1)2base×U(1)fiber.Twoofthem
2correspondtotheV2toricbasespacedenotedbyU(1)2base,whiletheremainingones,U(1)fiber,
actonthe berorthogonalcotangentdirections.Togetthecorrespondingseven-dimensionalmanifoldswithG2holonomy,wewillidentifytheU(1)groupsymmetryofthequotientusedin[25]withone nitecircletoricaction.IdentifyingthisU(1)symmetrywithoneU(1)fiber,one ndsthefollowingseven-dimensionalmanifold
X7=X8/U(1)fiber.
(3.6)
M-theory on G_2 manifolds and the method of (p,q) brane webs
SinceC2/U(1)=R×S2,thisquotientspaceisnowisomorphictoanR×S2bundleoveraV2.Similarlyto[25],equation(3.6)describesrealconesonaS2bundleoverV2.Mathematically,itisnoteasytorevealthatthesequotientspaceshaveG2holonomygroup.However,onecanshowthisusingaphysicalargument.Indeed,V2,withh1,0=h2,0=0,preserves1/4ofinitialsuperchargesandinthepresenceofS2itshouldbe1/8.Inthisway,thesupersym-metrytellsusthattheholonomyof(3.6)istheG2Liegroup.Thus,M-theoryontheaboveseven-dimensionalmanifoldleadstoN=1theoryinfourdimensions.
3.2ExplicitmodelsfromV2geometries
Tobetterunderstandthestructureof(3.3-6),letusgiveillustratingmodels.InparticularwewillconsiderspecialmodelscorrespondingtoN=4sigmamodelwithconformalinvariance.Forthisreason,wewillrestrictourselvestoeight-dimensionaltoricHKmanifoldsX8withtheCalabi-Yaucondition(2.10)inN=4supersymmetricanalysis.Inthisway,thegeometryofX8dependsonthemannerwechoosetheU(1)rmatrixgaugechargeQaisatisfyingtheCalabi-Yaucondition.We rststudycomplextwo-dimensionalweightedprojectivespacesWP2,afterwhichwewillconsidertheHirzebruchsurfaces.Otherextendedmodelsarealsopresented.
3.2.1V2asweightedprojectivespaces
Forconstructingthesemodels,weconsideranU(1)gaugesymmetrywiththreehypermulti-pletsφiofcharges(Q1,Q2,Q3)suchthatQ1+Q2+Q3=0.OnewaytosolvethisconstraintequationistotakeQ1=m1,Q2= m1 m2andQ3=m2.ThisgivesWP2m1,m1+m2,ingexamples,letusseehowweobtainthisgeometry.Example1:(m1,m2)=(1,1).ThisexamplecorrespondstothreehypermultipletsφiwiththevectorchargeQi=(1, 2,1).Afterpermutingtheroleofφ12and
φ2= 2,2
ψ1+ 3
3ψ3+2ψ2=0(3.8)
M-theory on G_2 manifolds and the method of (p,q) brane webs
TheseequationsdescribeacotangentbundleoverWP21,2,1.Indeed,takingψ1=ψ2=ψ3=0,eq.(3.7)reducesto| 1|2+| 3|2+2| 2|2=ξ3andde nesaWP21,2,1weightedprojectivespace,whereξ3isaK¨ahlerrealparametercontrollingitssize.Eqs.(3.7-9),forgenericvaluesofψi,canbeinterpretedtomeanthatψiparameterizetheorthogonal berdirectionsonWP21,2,1.Dividingbyone nitetoricgeometry bercircleaction,we ndarealconeonanS2bundleoverWP21,2,1withG2holonomy.
Example2:(m1,m2)=(1,2).Asanotherexample,weconsideravectorchargeasfol-lowsQi=(1, 3,2).Thisexampleisquitesimilartothe rstone,anditstreatmentwillbeparalleltothe rstone.Aftermakingsimilar eldchanges,thisexampledescribesWP21,3,2inthebasegeometryofaneight-dimensionalmanifold.AftertheU(1)quotient,thecorre-spondingseven-dimensionalmanifoldX7willbearealconeonS2bundleoverWP21,3,2.Wewillseelaterthatthisgeometryleadstoafour-dimensionalmodelwhichmightberelatedtothegranduni edsymmetry.
3.2.2V2asHirzebruchsurfacesFn
Fnarecomplextwo-dimensionaltoricsurfacesde nedbynon-trivial brationsofaP1overaP1.Thesemaybeviewedasthecompacti cationofcomplexlinebundlesoverP1byaddingapointtoeach beratin nity.Suchlinebundlesareclassi edbyanintegern,beingthe rstChernclassintegratedoverP1.Forsimplicity,wewillrestrictourselvestoF0withatrivial bration.AwaytowritedowntheF0N=4sigmamodelistostartwithoneP1andthenextendtheresulttoF0.Indeed,oneP1correspondstoanU(1)two-dimensionalN=4linearsigmamodelwithtwohypermultipletswithavectorcharge(1, 1).Makingasimilaranalysisofpreviousexamples,theD- atnessconditions(3.1)reduceto
(| 1|2+| 2|2) (|ψ1|2+|ψ2|2)=ξ3
1
ψ1ψ2=0 2=0.(3.10)(3.11)(3.12)
anddescribethecotangentbundleoveraP1,de nedby| 1|2+| 2|2=ξ3.ThemodelcorrespondingtoF0isobtainedbyconsideringanU(1)2two-dimensionalN=4linearsigmamodelwithfourhypermultipletswiththefollowingcharges
Qi=(1, 1,0,0),
(1)Qi=(0,0,1, 1).(2)(3.13)
M-theory on G_2 manifolds and the method of (p,q) brane webs
Inthisway,N=4D- atnessconstraintequationsdescribethecotangentbundleoverF0.Afterdividingbyone nitetoricgeometrycircleaction,wegetarealconeonS2bundleoverF0.
3.3OthermodelsfromWP2
Here,westudysomeextendedmodelsusingmoregeneralN=4two-dimensionalgaugetheories.Inparticular,weconsidertwopossiblegeneralizationsforWP2.The rstmodeldescribestheblowingupofWP2atonepoint.IthasasimilarfeatureasF2geometry.ThesecondmodeldealswithmodelwithADECartanmatrixgaugechargesleadingtoADEintersectinggeometries.
3.3.1BlowingupofWP2atonepoint
Forsimplicity,weconsiderWP21,2,1asanexample.ThisspacehasaZ2orbifoldsingularitycorrespondingtonon-trivial xedpointsunderthehomogeneousidenti cation
(z1,z2,z3)≡(λz1,λ2z2,λz3).(3.14)
Takingλ= 1,WP21,2,1hasaZ2orbifoldsingularityat(z1,z2,z3)=(0,1,0).Thissingularitymaybeblownupbyintroducinganexceptionaldivisor.Intwo-dimensionalN=2sigmamodel,thiscanbedeformedbyintroducinganextrachiral eldX4andanU(1)gaugegroupfactor.Inthisway,thecorrespondingeight-dimensionalmanifoldscanbedescribedbyanU(1)2linearsigmamodelwithfourhypermultipletswiththefollowingcharges
Qi=(1, 2,1,0)(1)Qi=(0, 1,0,1).(2)(3.15)
ThismodelgivesthesameG2manifoldcorrespondingtotheF2Hirzebruchsurface.
3.3.2ADEintersectinggeometry
AnothergeneralizationistoconsidertheintersectingweightedprojectivespacesaccordingtoADEDynkindiagramsbyimitatingtheanalysisofN=2sigmamodel.Thisinvolvestwo-dimensionalN=4supersymmetricU(1)rgaugetheorywith(r+2)φαihypermultipletswithADECartanmatricesasmatrixgaugecharges.Forsimplicity,letusconsidertheArLie
M-theory on G_2 manifolds and the method of (p,q) brane webs
aaaalgebrawherethematrixchargeisgivenbyQai= 2δi+δi 1+δi+1,a=1,...,r.Puttingthese
equationsintotheD- atnessequations(3.1),onegetsthefollowingsystemof3requations
21212222222(|φ1a 1|+|φa+1| 2|φa|) (|φa 1|+|φa+1| 2|φa|)=ξa(3.16)
(3.18)φ1a 1φ1a 1+φ2a+1φ2a+1 2φ1aφ1a=0.
AnexaminationoftheseequationsrevealsthatV2consistsofrintersectingWP21,2,1accordingtotheArDynkindiagram[30].Actually,thisgeometrygeneralizestheusualADEgeometrycorrespondingtotwo-cyclesofK3surfaces[7,8,9,10].Oneexpectstohaveasimilarfeatureinthecompacti cationofM-theoryonG2manifoldswithintersectingWP21,2,1’s.
ThepreviousanalysisisalsopossibleformodelswithdelPezzosurfacesasabasegeometryofG2manifolds.Notethat,thesesurfaceshavebeenusedinthebuildingofN=1supersym-metricgaugetheoriesinfourdimensionsusingtheso-called(p,q)webs.Thesegaugetheories
3ariseontheworld-volumeofD3-branestransversetolocalCalabi-YauthreefoldsCYBgiven
bycomplexconesoverdelPezzosurfaces[14,22].Inthispresentwork,wewillshowthatthisphysicsisrelatedtoofM-theoryonG2manifoldswithtwocomplexdimensiontoricmanifoldsinthebasegeometry.
4OnM-theoryonG2Manifoldsand(p,q)webs
Sofar,wehaveconstructedaspecialtypeofG2manifoldsasU(1)quotientsofeight-dimensionaltoricHKmanifolds.ThissectionwillbeconcernedwithM-theoryonsuchmanifolds.Wewilltryto ndasuperstringinterpretationofthisusingD-branephysics.Inparticular,wewilldiscusstheconnectionbetweenthephysicscontentofM-theoryonsuchG2manifoldsandthemethodof(p,q)webs,leadingtoN=1supersymmetricgaugetheoriesinfourdimensions.Theanalysiswewillbeusinghereisbasedonareconsiderationofthemethodof(p,q)websandreformulatingtheintersectionnumberstructuresintermsoftoricgeometrydataofV2varieties.
Beforeproceeding,letusrecallquotesomecrucialpointssupportingourdiscussion.Ononehand,accordingto[25],M-theoryonG2manifoldsasU(1)quotientofeight-dimensionalconicaltoricHKmanifolds,hasaninterpretationintermsofintersectingD6-branesintypeIIAsuperstringmodel.Inparticular,thegeometryofWP2describestheintersectionofthreesetsofD6-branes.ForexamplethegeometryWP2m,m,nwithm,mandnrelativelyprime
M-theory on G_2 manifolds and the method of (p,q) brane webs
correspondstoapairoftwospheresofAmsingularitiesandasingleofAnsingularitiestwospheres.IntypeIIAsuperstringpicture,thisisequivalenttotheintersectionofthreesetsofD6-braneswithmultiplicitiesm,mandnleadingtoSU(m)×SU(m)×SU(n)gaugesymmetrywithchiralmultipletsinthe(m,m,¯1)+(1,m,n¯)+(m,¯1,n)bi-fundamentalrepresentations.ThisgaugesystemisrepresentedbyaquivertrianglewhichmaybeviewedasthetoricgeometrygraphofWP2.Ontheotherhand,thesamephysicscontentmodelscanappear
3intypeIIAsuperstringcompacti edonlocalelliptic brationCalabi-YauthreefoldsCYAin
thepresenceofD6-braneswrapping3-cyclesSiand llingthefour-dimensionalMinkowskispace-time[11,12].Intermsofgaugetheory,each3-cycleSiisassociatedtoasinglegaugegroupfactorandtheintersectionnumbers(1.4)countthenumberofN=1chiralmultipletswhichtransforminthebi-fundamentalrepresentation.Wewillseelaterthattheinformationofgaugesystemisencodedintheintersectionnumbers.Undermirrorsymmetry,thephysicsofD6-braneswrapping3-cyclesmapstoIIBD3-branestransversetolocalCalabi-Yauthreefolds
3CYA.ThelatterarecomplexconesoverdelPezzosurfacesormoregenerallycomplextwo-dimensionaltoricmanifoldsV2.Inthisway,theN=1four-dimensionalquivertheorycanbeobtainedfromtypeIIBgeometryusingthesocalled(p,q)branewebs.Indeed,thetoricskeletonsofthesevarietiesarede nedbythe(p,q)webchargesofD5-branes.Theycorrespondtothelociofpointsatwhichsome1-cyclesoftheellipticcurve brationofV2shrinkstozeroradius[32].Thephysicscontentofthesemodelscanbedeterminedexplicitlyfromthegeometryofthe(p,q)webs.Moredetailsonthismethod,see[14,15].Inparticular,ifthevanishing1-cyclesoftheelliptic brationCi≡(pi,qi),theintersectionnumbers,intypeIIAmirrorgeometry,readas
Iij=Ci·Cj=piqj pjqi
Thesetoftheranksofthegaugegroupsniisanullvectorofthismatrix,i.e
i(4.1)(piqj pjqi)ni=0.(4.2)
Untilthislevel,theconnectionbetweenthemethodof(p,q)branewebsandtheAcharya-Wittenmodel[25]isnotobvious.WeproposethatthisconnectionrequirestheintroductionoftheMorivectorchargeQaiinthedescriptionof(p,q)webs.Oursolutionwasinspiredbythefollowing:
(1)ThestudyofM-theoryonlocalgeometryofCalabi-Yauthreefoldshavingtoricrealizationintermsof(p,q)D5-branesoftypeIIBsuperstrings[32].Inthisway,theD-branechargesareassociatedwiththevanishingcyclesinthetoricrepresentation.
M-theory on G_2 manifolds and the method of (p,q) brane webs
(2)TheresultofAcharya-WittenonM-theoryonG2manifolds,wherethesetofranksofgaugegroupscoincidewiththeweightvectoroftheWP2[25].
(3)ThelocalmirrorsymmetryapplicationintypeIIsuperstrings,wherethemirrorconstraintequationsinvolvethetoricgeometrydataoftheoriginalmanifolds[37,38,39,40].
Besidesthesepoints,acloseexaminationoftheformulationofthe(p,q)websreveals,how-ever,thatthematrixintersection(4.1)appearsintheordinaryandweightedprojectivespaces.Moreover,itdoesnotcarryanytransparenttoricgeometrydatadistinguishingthesegeome-tries.Takingintoaccountthisobservation,theconnectionweareafterleadsustoreformulatetheintersectionnumberstructuresbyintroducingthetoricgeometryMorivectorsQaiandasetofbranechargeconstraintequations.Tomakeconnectionwith[25],werestrictourselves
1=(w1,w2,w3).Givenasetofcharges(pi,qi),totheweightedprojectivespaceswhereQ
i=1,2,3,weproposetheintersectionnumberformula
Iij=wiwj(piqj piqj)
withthefollowingconstraintequations
222w1p1+w2p2+w3p3=0
222q2+w3q3=0.q1+w2w1(4.3)(4.4)
Now,thesetofranksofthegaugegroupsnishouldsatisfythefollowingconstraint
iIijni=0,(4.5)
asrequiredbytheanomalycancellationcondition[14,15].Usingequation(4.4),itiseasytoseethatthisconditioncanbesatis edintermsoftheweightsofWP2asfollows
ni=win,
andsothecorrespondinggaugesymmetryisgivenby
G=
i=1(4.6)U(win).(4.7)
Ourreformulationofthe(p,q)webshasthefollowingnicefeatures:
(1)Thisformulationisquitesimilartothegeometricengineeringoffour-dimensionalN=2superconformal eldtheorieswithgaugegroupG=
betafunction.
Dynkinlabelsbeinganullvectorofa neCartanmatricesasrequiredbythevanishingofthei=1 SU(sin)wherethesi’saretheusual
M-theory on G_2 manifolds and the method of (p,q) brane webs
(2)Forwi=1,werecoverthesimplemodelwithgaugegroupU(n)3andmattertriplicationineachbifundamental[20,21].
(3)Forn=1,thecorrespondinggaugetheoryisnowquitesimilartotheinterpretationofM-theoryonG2manifoldsgivenin[25].Inthisway,thegaugegroupreads
G=3
i=1U(wi).(4.8)
Intheinfra-redlimittheU(1)factorsdecoupleandoneisleftwiththegaugesymmetry
G=3
i=1SU(wi).(4.9)
Takinganappropriatechoiceofweights,werecoverthephysicalmodelgivenin[25].
(4)Thecorresponding eldmodelsisrepresentedbyatrianglequiverdiagram
¡¡¡¡¡¡¡¡¡¡¡¡
M-theory on G_2 manifolds and the method of (p,q) brane webs
5.1U(n)2×U(2n)gaugetheory
Consider, rst,thegeometryofWP21,2,1inM-theorycompacti cations.In(p,q)webs,thisisequivalenttotakingthreestacksofbraneseach,wrappingthefollowing1cycles
C1=( 2,0),C2=(0, 1),C3=(2,4).(5.1)
Inthiscase,theintersectionnumbersreadas
I12=4
I31=8
I23=4.
ForoneD6-brane,thisexampleleadstoaN=1spectrumwithgaugegroupU(1)2×U(2)gaugegroupandbifundamentalmatter.ThismodelagreeswiththeresultofAcharyaandWittengivenin[25].WhilefornD6-branes,theabovechargecon gurationsgivesaN=1spectrumwithgaugegroupU(n)2×U(2n)gaugesymmetryandbifundamentalmatter.(5.2)
5.2U(n)×U(2n)×U(3n)gaugemodel
ThegeometryofWP21,3,2isveryexcitinginthisanalysisbecauseitmayleadtothesymmetryofthegranduni edtheory(GUT)2.Forthisexample,weconsiderthreestacksofnD6-braneseach,wrappingthefollowing1cycles
C1=(4,9),C2=( 1,0),C3=(0, 1).(5.3)
Inthiscase,theintersectionnumbersreadas
I12=18
I31=12
I23=6
ThisyieldsaN=1spectrumwithgaugegroupU(n)×U(2n)×U(3n)gaugegroupandbifundamentalmatter.Forn=1,onegetsU(1)×U(2)×U(3)asgaugesymmetry.
Concludingthissection,itisinterestingtomakeacommentregardingthenumbersappear-ingin(5.2)and(5.4),countingthenumberofN=1chiralmultipletsfiinthecorresponding(5.4)
M-theory on G_2 manifolds and the method of (p,q) brane webs
gaugesystems.Thelatterhavearemarkablefeaturewhichhasaniceinterpretationusingtherecentderivationoflocalmirrorsymmetryintwo-dimensional eldtheorywithN=2supersymmetry[39].Indeed,intheabovetwoexamples,ficanbewrittenasfollows
f1=w2w3d
f2=w1w3d
f3=w1w2d
wheredisthedegreeofthefollowinghomogeneousLGCalabi-Yausuperpotentials
y2+x4+z4+etxyz=0
y2+x3+z6+etxyz=0(5.6)(5.5)
mirrortotypeIIBN=2sigmamodelontheanti-canonicallinebundlesoverWP21,2,1andWP21,2,3respectively.
6Conclusion
Inthispaper,wehavestudiedN=1supersymmetricgaugetheoriesembeddedinM-theoryonlocalseven-dimensionalmanifoldswithG2holonomygroup.WehaveengineeredtheN=1quivermodelsfromG2manifolds,asU(1)quotientsofeight-dimensionaltoricHKmanifolds.Thecorrespondingquivermodelshavebeenobtainedusingareformulationofthemethodof(p,q)webs.Ourmainresultsmaybesummarizedasfollows:
(i)Usingtwo-dimensionalN=4sigma-modelswithU(1)rgaugesymmetryandr+2hy-permultiplets,wehaveconstructedaspecialkindofG2manifolds.ThelatterareU(1)quo-tientsofeight-dimensionaltoric(HK)manifolds,X7=X8
M-theory on G_2 manifolds and the method of (p,q) brane webs
Acknowledgments
A.BelhajwouldliketothankDepartmentofMathematicsandStatistics,ConcordiaUniver-sity,Montreal,foritskindhospitalityduringthepreparationofthiswork.HeisverygratefultoJ.McKayfortheinvitation,discussionsandencouragement.HewouldliketothankJ.Rasmussenforcommentsonthemanuscript,andH.Kisilevsky,E.H.SaidiandA.Sebbarfordiscussionsandscienti chelp.
M-theory on G_2 manifolds and the method of (p,q) brane webs
References
[1]S.Kachru,C.Vafa,ExactResultsforN=2Compacti cationsofHeteroticStrings,Nucl.
Phys.B450(1995)69,hep-th/9505105.
[2]A.Klemm,W.Lerche,P.Mayr,K3–FibrationsandHeterotic-TypeIIStringDuality,
Phys.Lett.B357(1995)313,hep-th/9506112.
[3]P.S.Aspinwall,M.Gross,Heterotic-HeteroticStringDualityandMultipleK3Fibrations,
Phys.Lett.B382(1996)81,hep-th/9602118.
[4]P.S.Aspinwall,EnhancedGaugeSymmetriesandCalabi-YauThreefolds,Phys.Lett.
B371(1996)231,hep-th/9511171.
[5]S.Katz,A.Klemm,C.Vafa,GeometricEngineeringofQuantumFieldTheories,Nucl.
Phys.B497(1997)173,hep-th/9609239.
[6]S.Katz,C.Vafa,MatterFromGeometry,Nucl.Phys.B497(1997)146,hep-th/9606086.
[7]S.Katz,P.Mayr,C.Vafa,Mirrorsymmetryandexactsolutionof4dN=2gaugetheories
I,Adv.Theor.Math.Phys.1(1998)53.
[8]P.Mayr,GeometricconstructionofN=2ofGaugeTheories,Fortsch.Phys.47(1999)39.
[9]A.Belhaj,A.E.Fallah,E.H.Saidi,Onthenon-simplymirrorgeometriesintypeIIstrings,
ClassicalQuantumGravity17(2000)515.
[10]A.Belhaj,E.H.Saidi,ToricGeometry,EnhancednonSimplyLacedGaugeSymmetries
inSuperstringsandF-theoryCompacti cations,hep-th/0012131.
[11]M.Cvetic,G.Shiu,A.M.Uranga,ChiralFour-DimensionalN=1Supersymmetric
TypeIIAOrientifoldsfromIntersectingD6-Branes,Nucl.Phys.B615(2001)3,hep-th/0107166.
[12]M.Cvetic,G.Shiu,A.M.Uranga,Three-FamilySupersymmetricStandard-likeModels
fromIntersectingBraneWorlds,Phys.Rev.Lett.87(2001)201801,hep-th/0107143.
[13]C.E.Beasley,M.R.Plesser,ToricDualityIsSeibergDuality,JHEP0112(2001)001,
hep-th/010905.
M-theory on G_2 manifolds and the method of (p,q) brane webs
[14]A.Hanany,A.Iqbal,QuiverTheoriesfromD6-branesviaMirrorSymmetry,JHEP0204
(2002)009,hep-th/010813.
[15]B.Feng,A.Hanany,Y-H.He,A.Iqbal,Quivertheories,solitonspectraandPicard-
Lefschetztransformations,hep-th/0206152.
[16]S.Franco,A.Hanany,Geometricdualitiesin4d eldtheoriesandtheir5dinterpretation,
hep-th/0207006.
[17]S.Franco,A.Hanany,ToricDuality,SeibergDualityandPicard-LefschetzTransforma-
tions,hep-th/0212299.
[18]B.Feng,S.Franco,A.Hanany,Y-H.He,SymmetriesofToricDuality,JHEP0212(2002)
076,hep-th/0205144.
[19]B.Feng,A.Hanany,Y-H.He,A.M.Uranga,ToricDualityasSeibergDualityandBrane
Diamonds,JHEP0112(2001)035,hep-th/0109063.
[20]A.M.Uranga,Chiralfour-dimensionalstringcompacti cationswithintersectingD-branes,
hep-th/0301032.
[21]A.M.Uranga,Localmodelsforintersectingbraneworlds,JHEP0212(2002)058,
hep-th/0208014.
[22]D.Cremades,L.E.Ibanez,F.Marchesano,MoreabouttheStandardModelatIntersecting
Branes,hep-ph/0212048.
[23]A.Hanany,J.Walcher,OnDualityWallsinStringTheory,hep-th/0301231.
[24]D.Cremades,L.E.Ibanez,F.Marchesano,YukawacouplingsinintersectingD-brane
models,hep-th/0302105.
[25]B.Acharya,E.Witten,ChiralFermionsfromManifoldsofG2Holonomy,
hep-th/0109152.
[26]P.Berglund,A.Brandhuber,MatterFromG(2)Manifolds,Nucl.Phys.B641(2002)351,
hep-th/0205184.
[27]S.Gukov,D.Tong,D-BraneProbesofSpecialHolonomyManifolds,JHEP0204(2002)
050,hep-th/0202126.
M-theory on G_2 manifolds and the method of (p,q) brane webs
[28]Y.-H.He,G2Quivers,JHEP0302(2003)023,hep-th/0210127.
[29]J.McKay,Graphs,Singularities,andFiniteGroups,ProcSymp.Pure.Math.Vo37
(1980)183.
[30]A.Belhaj,ManifoldsofG2HolonomyfromN=4SigmaModel,J.Phys.A35(2002)8903,
hep-th/0201155.
[31]W.Fulton,IntroductiontoToricvarieties,AnnalsofMath.Studies,No.131,Princeton
UniversityPress,1993.
[32]N.C.LeungandC.Vafa,Adv.Theor.Math.Phys.2(1998)91,hep-th/9711013.
[33]D.Cox,Thehomogeneouscoordinateringofatoricvariety,J.Alg.geom.4(1995)17.
[34]M.Kreuzer,H.Skarke,Re exivepolyhedra,weightsandtoricCalabi-Yau brations,
math.AG/0001106.
A.C.Avram,M.Kreuzer,M.Mandelberg,H.Skarke,ThewebofCalabi-Yauhypersur-facesintoricvarieties,Nucl.Phys.B505(1997)625,hep-th/9703003.
M.Kreuzer,H.Skarke,Calabi-Yau4-foldsandtoric brations,J.Geom.Phys.26(1998)272,hep-th/9701175.
[35]E.Witten,Nucl.Phys.B403(1993)159,hep-th/9301042.
[36]A.Belhaj,E.H.Saidi,Hyper-K¨ahlerSingularitiesinSuperstringsCompacti cation
and2dN=4ConformalFieldTheory,ClassicalQuantumGgravity,18(2001)57,hep-th/0002205.
A.Belhaj,E.H.Saidi,OnHyper-K¨ahlerSingularities;Mod.Phys.Lett.A,Vol.15,No.29(2000)1767,hep-th/0007143.
[37]K.Hori,C.Vafa,MirrorSymmetry,hep-th/0002222.
[38]K.Hori,A.Iqbal,C.Vafa,D-BranesAndMirrorSymmetry,hep-th/0005247.
[39]M.Aganagic,C.Vafa,MirrorSymmetry,D-branesandCountingHolomorphicDiscs,
hep-th/0012041.
M.Aganagic,C.Vafa,MirrorSymmetryandG2Flop,hep-th/0105225.
M.Aganagic,A.Klemm,C.Vafa,DiskInstantons,MirrorSymmetryandtheDualityWeb,hep-th/0105045.
正在阅读:
M-theory on G_2 manifolds and the method of (p,q) brane webs05-16
八极九槽无刷直流电动机01-19
老板计基习题与答案01-14
前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类04-05
河南永锦能源有限公司矿井瓦斯“零超限”目标管理制度(红头文件)06-22
小学英语词汇、句型课堂教学模式之构建05-31
19第六单元课题3二氧化碳和一氧化碳(第二课时)导学案.docx05-09
关于麻阳旅游开发的思考11-11
Differential-entrapment-of-charged-oil-New-insights-on-McMur03-21
物价上涨英语作文06-07
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- manifolds
- theory
- method
- brane
- webs
- CPI的时间序列分析
- 江西省南康中学2012届高三数学第四次大考 文 新人教A版
- 高中数学选修2-2数学归纳法同步练习2份
- 比例的意义和基本性质教学反思
- 第九章 土地面积量算
- 电工电子期末考试答案试卷及答案
- 2012年4月21日联考重庆行测真题
- (美容科)科室承包合同书
- 2011 2012 幼儿园安全工作计划
- 组织行为学试卷A附答案
- MC10EP016FAR2G,MC10EP016FAG,MC10EP016FAR2, 规格书,Datasheet 资料
- 2010年注册安全工程师考试真题:生产管理知识真题及答案
- 整车动力性经济性计算及速比匹配优化_邓业宝
- 2003年9月大学英语四级考试试题及参考答案
- 人教版四年级语文下册《将心比心》公开课完美版
- 安全标志及其使用导则
- 10.1《加强思想道德建设》教案(新人教必修3)
- 奶牛营养研究与饲料资源的利用
- 农村结婚庆典主持词
- “XXX创新工作室”管理制度(初稿)