八年级数学下册全套教案(共4篇 Word版 含解析) 新人教版

更新时间:2024-06-25 18:28:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

八年级数学下册全套教案(共4篇 Word版 含解析) 新人教版.doc

第十六章 分式.doc 第十七章 反比例函数.doc 第十八章 勾股定理.doc 第十九章 平行四边形.doc 第二十章 数据的分析.doc

第十六章 分式

16.1分式

16.1.1从分数到分式

一、 教学目标

1. 了解分式、有理式的概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点

1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法

难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别. 三、例、习题的意图分析

本章从实际问题引出分式方程

100=60,给出分式的描述性的定义:像这样分20?v20?v母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.

1.本节进一步提出P4[思考]让学生自己依次填出:10,s,200,v.为下面的

7a33s[观察]提供具体的式子,就以上的式子分数有什么相同点和不同点?

100,60,sa20?v20?vAB,v,有什么共同点?它们与

s可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.

希望老师注意:分式比分数更具有一般性,例如分式除的商(除式不能为零),其中包括所有的分数 .

2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式

A 可以表示为两个整式相BA 才有意义. B3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.

4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补

1分母不能充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解. 为零;○

四、课堂引入

1.让学生填写P4[思考],学生自己依次填出:10,s,200,v.

7a33s2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程.

设江水的流速为x千米/时. 轮船顺流航行100千米所用的时间为时,所以

100=60. 20?v20?v100,60,sa20?v20?v100小时,逆流航行60千米所用时间60小

20?v20?v3. 以上的式子和不同点? 五、例题讲解

,v,有什么共同点?它们与分数有什么相同点

sP5例1. 当x为何值时,分式有意义.

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x的取值范围.

[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

(补充)例2. 当m为何值时,分式的值为0? 2(1) (2) (3)

mm?1m?2m?3m?1m?1..

1分母不能为零;○2分子为[分析] 分式的值为0时,必须同时满足两个条件:○

零,这样求出的m的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习

1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4, 8y?3,1

x205y2x?92. 当x取何值时,下列分式有意义? (1) (2) (3)

3. 当x为何值时,分式的值为0?

5x21?3x3x?2x?53?2x2x?5x2?4x?77x(1) (2) (3) x2?1x2?x 七、课后练习

1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x与y的差于4的商是 .

x2?12.当x取何值时,分式 无意义?

3x?2x?13. 当x为何值时,分式 的值为0?

x2?x八、答案:

六、1.整式:9x+4, 9?y, m?4 分式: 7 , 8y?3,1

20532xy2x?92.(1)x≠-2 (2)x≠ (3)x≠±2 3.(1)x=-7 (2)x=0 (3)x=-1

80x七、1.18x, ,a+b,

s,x?y; 整式:8x, a+b, x?y;

a?b44分式:80, s

xa?b 2. X = 3. x=-1

2316.1.2分式的基本性质

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形. 二、重点、难点

1.重点: 理解分式的基本性质.

2.难点: 灵活应用分式的基本性质将分式变形. 3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形. 三、例、习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.

3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入

1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?

2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解

3415209243834152092438

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

?6b, ?x, 2m??n?5a3y, ??7m, ??3x。

6n?4y[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

解:

?6b6b2m2m?xx= , =?,?=, ?5a5a?nn3y3y??7m7m?3x3x= , ?=。 6n6n?4y4y六、随堂练习

1.填空:

??2x26a3b23a3(1) 2= (2) = 3x?3xx?38b????b?1x2?y2x?y(3) = (4) = 2a?can?cn???x?y?

2.约分:

3a2b8m2n2(x?y)3?4x2yz3(1) (2) (3) (4)

2mn26ab2cy?x16xyz5

3.通分: (1)

12ba和 (2)和 32222ab5abc2xy3x(3)

3ca11?和 (4)和

2ab28bc2y?1y?14.不改变分式的值,使下列分式的分子和分母都不含“-”号.

?x3y?a3?5a?(a?b)2(1) ? (2) ? (3) (4) 222m?17b?13x3ab七、课后练习

1.判断下列约分是否正确: (1)

a?ca1x?y= (2)2= b?cbx?y2x?ym?n=0 m?n(3)

2.通分: (1)

12x?1x?1和 (2)和 3ab27a2bx2?xx2?x3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)八、答案:

六、1.(1)2x (2) 4b (3) bn+n (4)x+y

2.(1)

?2a?b?x?2y (2)?

?a?b3x?ya4mx (2) (3)?2 (4)-2(x-y)2 2bcn4z3.通分: (1)

15ac4b2= , = 22323235abc10abc2ab10abcba3ax2by= 2, 2= 2

3x2xy6xy6xy(2)

3caab12c3?(3)= = 2222222ab8bc8abc8abc(4)

1y?11y?1= = y?1(y?1)(y?1)y?1(y?1)(y?1)x3ya35a(a?b)24.(1) (2) ? (3) (4) ? 222m3ab17b13x

16.2分式的运算

16.2.1分式的乘除(一)

一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点

1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 3. 难点与突破方法

分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实. 三、例、习题的意图分析

1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是效率是小拖拉机的工作效率的?vm?,大拖拉机的工作abn?ab???倍.引出了分式的乘除法的实际存在的意义,进mn??一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.

2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.

3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.

4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)=a-2a+1

四、课堂引入

1.出示P13本节的引入的问题1求容积的高是小拖拉机的工作效率的?2

2

2

2

2

vm?,问题2求大拖拉机的工作效率abn?ab???倍. ?mn?[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.

1. P14[观察] 从上面的算式可以看到分式的乘除法法则.

3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则? 类似分数的乘除法法则得到分式的乘除法法则的结论.

五、例题讲解

P14例1.

[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.

P15例2.

[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.

P15例.

[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是500、500,还要判断出以上两个分2a?1?a?1?2式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a2-2a+1

计算

c2a2b2n24m2 (3)y?2? (1) (2)???????abc2m5n37x?x?22a?4a?1 (6)y2?6y?92y (4)-8xy? (5)2?2?(3?y)

5xa?2a?1a?4a?4y?2七、课后练习

计算

1? (2)5b???10bc? (3)12xy???8x2y? (1)x2y?????3????2x?y?3ac?21a?5a22a?4bab (5)x2?x42(x2?y2)?x2(4) (6) ??(4?x)?3a?2b3ab2x?1x35(y?x)八、答案:

六、(1)ab (2)?2m (3)?y (4)-20x2 (5)(a?1)(a?2)

5n14(a?1)(a?2)(6)3?y

y?2七、(1)?1 (2)?7b (3)?3 (4)a?2b

x2c210ax3b

(5)x (6)6x(x?y)

1?x5(x?y)2

16.2.1分式的乘除(二)

一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点

1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 3.认知难点与突破方法:

紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则.

三、例、习题的意图分析

1. P17页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.

教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.

2, P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.

四、课堂引入

计算

(1)y?x?(?y) (2) 3x?(?3x)?(?xyx4yy1 )2x五、例题讲解

(P17)例4.计算

[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.

(补充)例.计算

3ab28xy3x(1)3?(?2)?

(?4b)2xy9ab3ab28xy?4b=3?(?2)? (先把除法统一成乘法运算) 2xy9ab3x3ab28xy4b=3?2? (判断运算的符号) 2xy9ab3x16b2= (约分到最简分式) 9ax3 (2)

2x?6(x?3)(x?2)?(x?3)? 23?x4?4x?4x=

2x?61(x?3)(x?2)?? (先把除法统一成乘法运算)

3?x4?4x?4x2x?3=

2(x?3)1(x?3)(x?2)?? (分子、分母中的多项式分解因式) 23?x(2?x)x?3=

2(x?3)1(x?3)(x?2) ???(x?3)(x?2)2x?32 x?2=?

六、随堂练习

计算

3b2bc2a5c20c362?2?(?) (2)24?(?6abc)?(1) 31016a2ab2ab30abx2?2xy?y2x?y3(x?y)2924(3) (4)(xy?x)??2 ?(x?y)?xyy?xx(y?x)3

七、课后练习

计算

a2?6a?93?aa23xx2y??(1)?8xy? ?(?) (2)

2?b3a?94?b26z4y624y2?4y?4112?6yx2?xyxy(3) (4) ???(x?y)?2222y?6y?39?yx?xyy?xy

八、答案:

53a2(x?y)4六.(1)? (2)?4 (3) (4)-y

4c38c2?y1a236xz七. (1)3 (2) (3) (4)?

12xb?2y

16.2.1分式的乘除(三)

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点

1.重点:熟练地进行分式乘方的运算.

2.难点:熟练地进行分式乘、除、乘方的混合运算. 3.认知难点与突破方法

讲解分式乘方的运算法则之前,根据乘方的意义和分式乘法的法则,计算

a2aaa?aa2a3aaaa?a?aa3()=?==2,()=??==3,??

bbb?bbbbbb?b?bbbb顺其自然地推导可得:

n个

n个

anaaaa?a????aananan()=?????==,即()=n. (n为正整数)

bbbb?b????bbnbbb

n个

n个

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方. 三、例、习题的意图分析

1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判

断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..

2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.

四、课堂引入

计算下列各题: (1)()2=

ababaaaaaa?=( ) (2) ()3=??=( ) bbbbbbaaaa???=( ) bbbbab(3)()4=

[提问]由以上计算的结果你能推出()n(n为正整数)的结果吗? 五、例题讲解 (P17)例5.计算

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.

六、随堂练习

1.判断下列各式是否成立,并改正.

?3b2?9b2b32b5)=(1)()=2 (2)( 22a2a2a4a2y38y33x29x2)=3 (4)()=2(3)( ?3xx?bx?b29x2.计算

3a2b35x22a32ay3)(1) ( (3)) (2)(()?(?) ?2c33y3xy22x2x2y3?x32x2y24)?()(4)( 5)(?)?(?)?(?xy) 2z?zyx

(6)(?y23x3x2)?(?)3?(?) 2x2y2ay

七、课后练习

计算

2b23a22(1) (?3) (2) (?n?1)

aba?b2?a3c32c42a)?()?(a2?b2) (3)(2)?(3)?()4 (4) (abb?acabab八、答案:

?3b29b2b32b6)=2 六、1. (1)不成立,()=2 (2)不成立,(2a2a4a4a2y38y3)=?(3)不成立,( (4)不成立,?3x27x33x29x2()=2 2x?bx?2bx?b

27a6b3y325x48a3x42. (1) (2)? (3)? (4)?4 9228cz9y9y1a3y2 (5)2 (6)

x4x2

?8b6a4七、(1) ? (2) 2n?2a9ba?bc2 (3)2 (4)

ba

16.2.2分式的加减(一)

一、教学目标:(1)熟练地进行同分母的分式加减法的运算.

(2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点

1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 3.认知难点与突破方法

进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转

化为同分母的分式加减法,,然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所出现的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.

异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式. 三、例、习题的意图分析

1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的

11?.这样引出分式的加减法的实际背景,问题4的目的与问nn?3题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.

2. P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.

3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;

第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.

(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, ?, Rn的关系为1?1?1?????1.若知道这个公式,就比较容易地用含有R1

RR1R2Rn的式子表示R2,列出1?1?RR11,下面的计算就是异分母的分式加法的运算了,得

R1?50到1?2R1?50,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物

RR1(R1?50)理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.

四、课堂堂引入

1.出示P18问题3、问题4,教师引导学生列出答案.

引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.

2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗? 3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则? 4.请同学们说出母的确定方法吗? 五、例题讲解

(P20)例6.计算

[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.

(补充)例.计算 (1)

111的最简公分母是什么?你能说出最简公分,,234222xy3xy9xyx?3yx?2y2x?3y ??x2?y2x2?y2x2?y2

[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:

x?3yx?2y2x?3y ??x2?y2x2?y2x2?y2(x?3y)?(x?2y)?(2x?3y)

x2?y22x?2y 22x?y2(x?y)

(x?y)(x?y)2 x?y11?x6??2 x?36?2xx?9=

=

=

=

(2)

[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:

11?x6??2 x?36?2xx?9=

11?x6?? x?32(x?3)(x?3)(x?3)2(x?3)?(1?x)(x?3)?12

2(x?3)(x?3)=

?(x2?6x?9)= 2(x?3)(x?3)?(x?3)2= 2(x?3)(x?3)=?x?3 2x?6六、随堂练习

计算

(1)

3a?2ba?bb?am?2nn2m???? (2)

n?mm?nn?m5a2b5a2b5a2b(3)

163a?6b5a?6b4a?5b7a?8b?2??? (4) a?3a?9a?ba?ba?ba?b七、课后练习

计算 (1)

5a?6b3b?4aa?3b??3a2bc3ba2c3cba2 (2)

3b?aa?2b3a?4b??

a2?b2a2?b2b2?a2b2a2113x??a?b?1 (4) (3) ??22a?bb?a6x?4y6x?4y4y?6x八、答案:

四.(1)

5a?2b3m?3n1 (2) (3) (4)1

n?ma?35a2b五.(1)

2a?3b1 (2) (3)1 (4) 222aba?b3x?2y16.2.2分式的加减(二)

一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算. 二、重点、难点

1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法

教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按

从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 三、例、习题的意图分析

1. P21例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.

例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.

2. P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.

四、课堂引入

1.说出分数混合运算的顺序.

2.教师指出分数的混合运算与分式的混合运算的顺序相同. 五、例题讲解

(P21)例8.计算

[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.

(补充)计算 (1)(x?2x?14?x?)?

xx2?2xx2?4x?4[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: (x?2x?14?x?)? 22xx?2xx?4x?4=[x?2x?1x ?]?2x(x?2)(x?2)?(x?4)=[(x?2)(x?2)x(x?1)x ?]?x(x?2)2x(x?2)2?(x?4)x2?4?x2?xx= ?2?(x?4)x(x?2)=?1 2x?4x?42xyx4yx2(2) ??4?242x?yx?yx?yx?y[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.

xyx4yx2解: ??4?242x?yx?yx?yx?y2xyx4yx2?y2= ??2?2222x?yx?y(x?y)(x?y)xxy2x2y= ??(x?y)(x?y)x2?y2=

2xy(y?x)

(x?y)(x?y)xy x?y=?六、随堂练习 计算

ab11x24x?2?)?(?) ?)?(1) ( (2)(a?bb?aabx?22?x2x(3)(

七、课后练习 1.计算

31221?2)?(?) a?2a?4a?2a?2(1) (1?yx)(1?) x?yx?y(2) (a?2a?1a?24?a?)??2 22aa?2aa?4a?4a(3) (?1x11xy ?)?yzxy?yz?zx114?)?2,并求出当a?-1的值. a?2a?2a2.计算(八、答案:

六、(1)2x (2)

ab (3)3 a?b111a2xy?七、1.(1)2 (2) (3) 2.,- 22a?2z3a?4x?y

16.2.3整数指数幂

一、教学目标:

1.知道负整数指数幂a?n=

1(a≠0,n是正整数). an2.掌握整数指数幂的运算性质. 3.会用科学计数法表示小于1的数. 二、重点、难点

1.重点:掌握整数指数幂的运算性质. 2.难点:会用科学计数法表示小于1的数.

3.认知难点与突破方法

复习已学过的正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an?am?n(m,n是正整数); (2)幂的乘方:(am)n?amn(m,n是正整数); (3)积的乘方:(ab)n?anbn(n是正整数);

(4)同底数的幂的除法:am?an?am?n( a≠0,m,n是正整数,

m>n);

anan(5)商的乘方:()?n(n是正整数);

bb0指数幂,即当a≠0时,a0?1. 在学习有理数时,曾经介绍过1纳米=10-9

米,即1纳米=

1米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒109数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法则.

学生在已经回忆起以上知识的基础上,一方面由分式的除法约分可知,当a≠0

1a3a3时,a?a=5=32=2;另一方面,若把正整数指数幂的运算性质

aa?aa35am?an?am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3?a5=a3?5=a?2.于是得到a?2=

是正整数时,a?n=

1(a≠0),就规定负整数指数幂的运算性质:当na21(a≠0),也就是把am?an?am?n的适用范围扩大了,这个运na算性质适用于m、n可以是全体整数.

三、例、习题的意图分析

1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质. 2. P24观察是为了引出同底数的幂的乘法:am?an?am?n,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.

3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.

4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.

5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.

6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.

7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数. 四、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an?am?n(m,n是正整数); (2)幂的乘方:(am)n?amn(m,n是正整数); (3)积的乘方:(ab)n?anbn(n是正整数);

(4)同底数的幂的除法:am?an?am?n( a≠0,m,n是正整数,

m>n);

anan(5)商的乘方:()?n(n是正整数);

bb2.回忆0指数幂的规定,即当a≠0时,a0?1. 3.你还记得1纳米=10米,即1纳米=

-9

1米吗? 1091a3a34.计算当a≠0时,a?a=5=32=2,再假设正整数指数幂的运算性质

aa?aa35am?an?am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么

a3?a5=a3?5=a?2.于是得到a?2=

是正整数时,a?n=五、例题讲解

(P24)例9.计算

1(a≠0),就规定负整数指数幂的运算性质:当na21(a≠0). an[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.

(P25)例10. 判断下列等式是否正确?

[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.

(P26)例11.

[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数. 六、随堂练习 1.填空

(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2.计算

(1) (xy) (2)xy 2(xy)

七、课后练习

1. 用科学计数法表示下列各数:

0.000 04, -0. 034, 0.000 000 45, 0. 003 009 2.计算

(1) (3310-8)3(43103) (2) (2310-3)2÷(10-3)3 八、答案:

3

-22

2-2

-2

3

(3)(3xy) ÷(xy)

2-2 2-23

六、1.(1)-4 (2)4 (3)1 (4)1(5)

11 (6)? 88yx69x102.(1)4 (2)4 (3) 7

xyy七、1.(1) 4310-5 (2) 3.4310-2 (3)4.5310-7 (4)3.009310-3

2.(1) 1.2310 (2)4310

-5

3

16.3分式方程(一)

一、教学目标:

1.了解分式方程的概念, 和产生增根的原因.

2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根. 二、重点、难点

1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.

2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.

3.认知难点与突破方法

解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法.

要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母.

要让学生掌握解分式方程的一般步骤:

三、例、习题的意图分析

1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.

2.P32的归纳明确地总结了解分式方程的基本思路和做法.

3. P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.

4. P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?

5. 教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.

四、课堂引入

1.回忆一元一次方程的解法,并且解方程2.提出本章引言的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程

x?22x?3??1 4610060?. 20?v20?v像这样分母中含未知数的方程叫做分式方程.

五、例题讲解

(P34)例1.解方程

[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根

这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便. (P34)例2.解方程

[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根. 六、随堂练习

解方程 (1)

32236???2 (2) xx?6x?1x?1x?1(3)

x?142xx?2?1 (4)??2 x?1x?12x?1x?2七、课后练习

1.解方程 (1)

2164x?7??0 (2) ?1? 5?x1?x3x?88?3x(3)

234153???0??? (4) 222x?12x?24x?xx?xx?12x?912??的值等于2? x?3x?3x2.X为何值时,代数式八、答案:

六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=

4 5七、1. (1) x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=

3 216.3分式方程(二)

一、教学目标:

1.会分析题意找出等量关系.

2.会列出可化为一元一次方程的分式方程解决实际问题. 二、重点、难点

1.重点:利用分式方程组解决实际问题.

2.难点:列分式方程表示实际问题中的等量关系. 3.认知难点与突破方法

设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,正确地理解问题情境,分析其中的等量关系是设未知数、列方程的基础. 可以多角度思考,借助图形、表格、式子等进行分析,寻找等量关系,解分式方程应用题必须双检验:(1)检验方程的解是否是原方程的解;(2)检验方程的解是否符合题意.

三、例、习题的意图分析

本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.

P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,

完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s

千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.

这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.

教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力. 四、例题讲解

P35例3

分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率3工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.

等量关系是:甲队单独做的工作量+两队共同做的工作量=1 P36例4

分析:是一道行程问题的应用题, 基本关系是:速度=

路程.这题用字母表示已知时间数(量).等量关系是:提速前所用的时间=提速后所用的时间 五、随堂练习

1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.

2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?

3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度. 六、课后练习

1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快 ,结果于下午4时到达,求原计划行军的速度。

2.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的

152,求甲、乙两队单独完成各需多少天? 33.甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器个加入等量水,使它们的浓度相等,那么加入的水是多少升?

七、答案:

五、1. 15个,20个 2. 12天 3. 5千米/时,20千米/时 六、1. 10千米/时 2. 4天,6天 3. 20升

第十七章 反比例函数

17.1.1反比例函数的意义

一、教学目标

1.使学生理解并掌握反比例函数的概念

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点

1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:

(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

(2)注意引导学生对反比例函数概念的理解,看形式y?k,等号左边是函数y,x等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

(3)y?k(k≠0)还可以写成y?kx?1(k≠0)或xy=k(k≠0)的形式 x三、例题的意图分析

教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。 四、课堂引入

1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的? 2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析

例1.见教材P47

分析:因为y是x的反比例函数,所以先设y?出常数k,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数

k,再把x=2和y=6代入上式求x(1)y?x532 (2)y?? (3)xy=21 (4)y? (5)y??

x?22x3x(6)y?1?3 (7)y=x-4 xk(k为常数,kx分析:根据反比例函数的定义,关键看上面各式能否改写成y?≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是

y?1?3x,分子不是常数,只有(2)、(3)、(5)能写成定义的形式 x例2.(补充)当m取什么值时,函数y?(m?2)x分析:反比例函数y?3?m2是反比例函数?

k(k≠0)的另一种表达式是y?kx?1(k≠0),后一种写x法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。 解得m=-2

例3.(补充)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5 (1) 求y与x的函数关系式 (2) 当x=-2时,求函数y的值

分析:此题函数y是由y1和y2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y1、 y2与x的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。这里要注意y1与x和y2与x的函数关系中的比例系数不一定相同,故不能都设为k,要用不同的字母表示。

略解:设y1=k1x(k1≠0),y2?k2k(k2≠0),则y?k1x?2,代入数值求得k1=2, xxk2=2,则y?2x?六、随堂练习

2,当x=-2时,y=-5 x1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为 2.若函数y?(3?m)x8?m是反比例函数,则m的取值是 23.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为

4.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关系式是 ,

当x=-3时,y= 5.函数y??七、课后练习

已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值

答案:y=4

1中自变量x的取值范围是 x?2

17.1.2反比例函数的图象和性质(1)

一、教学目标

1.会用描点法画反比例函数的图象 2.结合图象分析并掌握反比例函数的性质

3.体会函数的三种表示方法,领会数形结合的思想方法 二、重点、难点

1.重点:理解并掌握反比例函数的图象和性质

2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质 3.难点的突破方法:

画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。反比例函数y?k(k≠0)自变量的取值范围是xx≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值

越多,画出的图象越精确。连线时要告诉学生用平滑的曲线连接,不能用折线连接。教学时,老师要带着学生一起画,注意引导,及时纠错。

在探究反比例函数的性质时,可结合正比例函数y=kx(k≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k的符号决定的;反之,双曲线的位置和函数性质也能推出k的符号,注意让学生体会数形结合的思想方法。

三、例题的意图分析

教材第48页的例2是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。

补充例1的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。

补充例2是一道典型题,是关于反比例函数图象与矩形面积的问题,要让学生理解并掌握反比例函数解析式y?四、课堂引入

提出问题:

1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?

2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 3.反比例函数的图象是什么样呢? 五、例习题分析

例2.见教材P48,用描点法画图,注意强调:

(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值

(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确

(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线

k(k≠0)中k的几何意义。 x(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴

例1.(补充)已知反比例函数y?(m?1)xm并指出在每个象限内y随x的变化情况?

分析:此题要考虑两个方面,一是反比例函数的定义,即y?kx?1(k≠0)自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件

略解:∵y?(m?1)xm2?32?3的图象在第二、四象限,求m值,

是反比例函数 ∴m2-3=-1,且m-1≠0

又∵图象在第二、四象限 ∴m-1<0 解得m??2且m<1 则m??2

例2.(补充)如图,过反比例函数y?1(x>0)的x图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小,可得( )

(A)S1>S2 (B)S1=S2

(C)S1<S2 (D)大小关系不能确定

k(k≠0)的图象上任一点P(x,y)向x轴、y轴作垂线x1段,与x轴、y轴所围成的矩形面积S?xy?k,由此可得S1=S2 = ,故选B

2分析:从反比例函数y?六、随堂练习

1.已知反比例函数y?3?k,分别根据下列条件求出字母k的取值范围 x(1)函数图象位于第一、三象限 (2)在第二象限内,y随x的增大而增大

2.函数y=-ax+a与y?

?a(a≠0)在同一坐标系中的图象可能是( ) x

3.在平面直角坐标系内,过反比例函数y?k(k>0)的图象上的一点分别作xx轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为 七、课后练习

1.若函数y?(2m?1)x与y?是

2.反比例函数y??是 ;

当x>-2时;y的取值范围是

ay?(a?2)x3. 已知反比例函数

23?m的图象交于第一、三象限,则m的取值范围x2,当x=-2时,y= ;当x<-2时;y的取值范围x?6,当x?0时,y随x的增大而增大,

求函数关系式

答案:3.a??5,y??5?2 x

17.1.2反比例函数的图象和性质(2)

一、教学目标

1.使学生进一步理解和掌握反比例函数及其图象与性质 2.能灵活运用函数图象和性质解决一些较综合的问题

3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 二、重点、难点

1.重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 2.难点:学会从图象上分析、解决问题 3.难点的突破方法:

在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。 三、例题的意图分析

教材第51页的例3一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式,复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由“数”到“形”,体会数形结合思想,加深学生对反比例函数图象和性质的理解。

教材第52页的例4是已知函数图象求解析式中的未知系数,并由双曲线的变化趋势分析函数值y随x的变化情况,此过程是由“形”到“数”,目的是为了提高学生从函数图象中获取信息的能力,加深对函数图象及性质的理解。

补充例1目的是引导学生在解有关函数问题时,要数形结合,另外,在分析反比例函数的增减性时,一定要注意强调在哪个象限内。

补充例2是一道有关一次函数和反比例函数的综合题,目的是提高学生的识图能力,并能灵活运用所学知识解决一些较综合的问题。 四、课堂引入

复习上节课所学的内容 1.什么是反比例函数?

2.反比例函数的图象是什么?有什么性质? 五、例习题分析

例3.见教材P51

分析:反比例函数y?k的图象位置及y随x的变化情况取决于常数k的符号,因x此要先求常数k,而题中已知图象经过点A(2,6),即表明把A点坐标代入解析式成立,所以用待定系数法能求出k,这样解析式也就确定了。

例4.见教材P52

例1.(补充)若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数y?<0)图象上,则a、b、c的大小关系怎样?

分析:由k<0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且-1>-2,故b>a>0;又C在第四象限,则c<0,所以 b>a>0>c

说明:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k<0时y随x的增大而增大,就会误认为3最大,则c最大,出现错误。

此题还可以画草图,比较a、b、c的大小,利用图象直观易懂,不易出错,应学会使用。

例2. (补充)如图, 一次函数y=kx+b的图象与反比例函数y?于A(-2,1)、B(1,n)两点

(1)求反比例函数和一次函数的解析式

(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围

分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式y??k(kxm的图象交x2,又B点在反比例函数的图象上,代入即x可求出n的值,最后再由A、B两点坐标求出一次函数解析式y=-x-1,第(2)问根据图象可得x的取值范围x<-2或0<x<1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。 六、随堂练习

1.若直线y=kx+b经过第一、二、四象限,则函数y?kb的图象在( ) x(A)第一、三象限 (B)第二、四象限

本文来源:https://www.bwwdw.com/article/tbo3.html

Top