为什么用DSP做数字信号处理

更新时间:2024-06-16 18:46:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

为什么用DSP做数字信号处理

DSP的特点

对于没有使用过DSP的初学者来说,第一个困惑就是DSP其他的嵌入式处理器究竟有什么不同,它和单片机,ARM有什么区别。事实上,DSP也是一种嵌入式处理器,它完全可以完成单片机的功能。

唯一的重要的区别在于DSP支持单时钟周期的\乘-加\运算。这几乎是所有厂家的DSP芯片的一个共有特征。几乎所有的DSP处理器的指令集中都会有一条MAC指令,这条指令可以把两个操作数从RAM中取出相乘,然后加到一个累加器中,所有这些操作都在一个时钟周期内完成。拥有这样一条指令的处理器就具备了DSP功能。

具有这条指令就称之为数字信号处理器的原因在于,所有的数字信号处理算法中最为常见的算术操作就是\乘-加\。这是因为数字信号处理中大量使用了内积,或称\点积\的运算。无论是FIR滤波,FFT,信号相关,数字混频,下变频。所有这些数字信号处理的运算经常是将输入信号与一个系数表或者与一个本地参考信号相乘然后积分(累加),这就表现为将两个向量(或称序列)进行点积,在编程上就变成将输入的采样放在一个循环buffer里,本地的系数表或参考信号也放在一个buffer里,然后使用两个指针指向这两个buffer。这样就可以在一个loop里面使用一个MAC指令将二者进行点积运算。这样的点积运算对与处理器来说是最快的,因为仅需一个始终周期就可以完成一次乘加。

了解DSP的这一特点后,当我们设计一个嵌入式系统时,首先要考虑处理器所实现的算法中是否有点积运算,即是否要经常进行两个数组的乘加,(记住数字滤波,相关等都表现为两个数组的点积)如果有的话,每秒要做多少次,这样就能够决定是否采用DSP,采用多高性能的DSP了。

浮点与定点

浮点与定点也是经常是初学者困惑的问题,在选择DSP器件的时候,是采用浮点还是采用定点,如果用定点是16位还是32位?其实这个问题和你的算法所要求的信号的动态范围有关。

定点的计算不过是把一个数据当作整数来处理,通常AD采样来的都是整数,这个数相对于真实的模拟信号有一个刻度因子,大家都知道用一个16位的AD去采样一个0到5V的信号,那么AD输出的整数除以2^16再乘以5V就是对应的电压。在定点DSP中是直接对这个16位的采样进行处理,并不将它转换成以小数表示的电压,因为定点DSP无法以足够的精度表示一个小数,它只能对整数进行计算。

而浮点DSP的优势在于它可以把这个采样得到的整数转换成小数表示的电压,并不损失精度(这个小数用科学记数法来表示),原因在于科学记数法可以表示很大的动态范围的一个信号。

不同的数字格式

定点与浮点DSP的基本差异在于它们各自对数据的数字表示法不同。定点硬件严格执行整数运算,而浮点 DSP 既支持整数运算又支持实数运算,后者以科学计数法进行了标准化。字长为 16 位的定点 DSP 实现 (rovide) 64K 的精度,带符号整数值范围为 -215 至 215-1。

与此相对比,浮点DSP将数据路径分为两部分:一是可用作整数值或实数基数的尾数,二是指数。在支持业界标准单一精确运算的32位浮点DSP中,尾数为24位,指数为8位。由于其较长的字长与取幂范围,该器件支持 16M 的精度范围,这样的动态范围大大高于定点格式可提供的精确度。实施业界标准双精度(64 位,包括一个 53 位的尾数与 11 位的指数)的器件还可实现更高的精确度。

成本与方便易用性

浮点 DSP 提供的计算能力更高,这也是其区别于定点 DSP 功能的最大差异所在。但在浮点 DSP 刚刚出现的20世纪90年代初期,其它因素往往掩盖了基本的数学计算问题。浮点功能需要的内部电路多,而 32位数据路径比当时可用的定点器件要宽一倍。晶片面积越大,引脚数量就越多,封装也越大,这就大大提高了新款浮点器件的成本,因此数字化语音与电信集成卡(concentration card)等高产量应用仍更倾向于采用较低成本的定点器件。

当时,方便易用性抵消了成本问题带来的不利影响。浮点器件是最早支持 C 语言的 DSP 之一,而定点 DSP则仍须在汇编代码级上进行编程。此外,对浮点格式而言,实数运算可直接通过代码加入硬件运算中,而定点器件则必须通过软件才能间接执行实数运算,这就增加了算法指令并延长了开发时间。由于浮点 DSP 易于编程,因此其最初主要用于开发工作强度较大的情况,如研究、原型开发、影像识别、工作站的三维图像加速器以及雷达等军用系统。

逐渐趋同

目前,早先的成本与易用性间的差异已经不那么明显了。总体说来,定点DSP仍然在成本上有优势,而浮点 DSP 仍然在易用性上有优势,但差别已经缩小很多,因此上述因素已经不再起决定作用了。

成本日益成为片上系统(SoC)集成与产量的问题,而不是DSP内核本身大小的问题。在十年前还只能放置单个晶体管的空间,目前可放置数十个晶体管。目前,占据晶片面积最多的是存储器,而不是逻辑,而且许多基于DSP的产品都充分利用再扩展(rescaling)的优势,针对具体市场的需求集成了不只一个内核。定点DSP的成本仍然较低,因为其针对大众市场应用的产量很高;但是,如果大规模量产的需求出现,那么浮点器件也将受益于规模效益带来的同样的成本降低。

早期在易用性方面的差异也已经减小。高效的C编译程序与工具早已能支

持定点DSP,为代码执行带来了可视性。直接采用浮点硬件实施实数运算仍有优势;但目前先进的建模工具、完整的数学函数库以及现成的算法降低了为定点器件开发复杂应用的难度。

浮点的精确度

目前,选用定点DSP还是浮点DSP归根结底在于应用数据集是否需要浮点算术功能。总体说来,设计人员应解决两个问题:数据集要求多高的精确度?数据集的可预见度有多大?

三个因素影响着浮点格式的内在高精度。首先,浮点DSP的24位I/O字长在整数与实数值方面可实现比定点器件中常用的16 位字长更高的精确度。第二,取幂大幅提高了应用可用的动态范围,较大的动态范围对处理极大数据集以及难以方便预计数据集范围的情况相当重要。第三,浮点硬件内部的数据表示法比定点器件更为精确,这就保证了最终结果的精确度更高。

最后一点应稍做解释。在DSP的内部架构中,三种数据字长相当重要,应当考虑。第一是I/O信号字长,正如我们已经说过的那样,其就浮点而言为24位,就定点DSP而言通常为16位。第二就是用于乘法的系数字长。定点系数为16位,与信号数据相同;但浮点系数则可能为24位或53位,这取决于所用的是单宽度精度还是双宽度精度。如果指数表示有意义的零,则精确度实际上会超过上述位数。

最后,就是保存乘加器(MAC)运算中间结果的字长,通常称作寄存器文件。对单一16位乘以16位的乘法而言,将需要32位的乘积;而就单一24位乘以24位的尾数乘法而言,则需48位的乘积(指数有不同的数据路径)。但是,MAC 需要额外的位用于溢出空间 (overflow headroom)。在16位定点器件中,溢出空间通常为 8 位,这就使总的中间结果字长为 40 位(16 个信号+16 个系数+8 个溢出)。

将相同大小的溢出空间集成到浮点DSP中将需要60个中间结果位(24个信号+24个系数+12个溢出),这将超过大多数应用对精度的要求。但就取幂而言,我们将结果标准化,这样所有24位或53位都有效,溢出位就不必要了。TI的TMS320C67x系列等浮点DSP允许开发人员在双精度内部运算与单精度I/O结合的模式下优化精确度与性能。其结果是得到的精确度比定点或单精度浮点运算提供的精确度高得多,但又不会产生完全双精度 I/O 带来的周期问题。 由于AD转换器的位数限制,一般输入信号的动态范围都比较小,但在DSP的信号处理中,由于点积运算会使中间节点信号的动态范围增加,所以主要考虑信号处理流程中中间结果的动态范围,以及算法对中间结果的精度要求,来选择相应的DSP。另外就是浮点的DSP更易于编程,定点DSP编程中程序员要不断调整中间结果的P,Q值,实际就是不断对中间结果进行移位调整和舍入。

定点运算dsp 定点DSP无法以足够的精度表示一个小数,它只能对整数进行计算。 浮点运算dsp 浮点DSP的优势在于它可以把这个采样得到的整数转换成小数表示的电压,并不损失精度(这个小数用科学记数法来表示),原因在于科学记数法可以表示很大的动态范围的一个信号 32bit浮点运算DSP的动态范围可以作到1536dB 计算精度 动态范围 定点DSP的字长每增加1bit,动态范围扩大6dB。16bit字长的动态范围为96dB

本文来源:https://www.bwwdw.com/article/ta03.html

Top