心电图知识讲座
更新时间:2024-06-24 10:40:01 阅读量: 综合文库 文档下载
心电图知识讲座
1. 为什么要学心电图?β
在我国随着人们生活水平的不断提高,心血管疾病有逐年增高的趋势,当前我们虽然
拥有许多高精尖的心血管病诊断技术,但体表心电图仍然是诊断心血管病的重要方法之一。这不仅因为心电图检查对一些心血管病的诊断有较大的准确性,而且它简便易行,花费少,在患者床边即可进行,几分钟内可以作出诊断,由于这些优点,而广泛应用于临床重症监护、危重病人的抢救,无论内,外、妇、儿等临床科室,还是急诊室、监护室无不使用心电图。是临床医师所不可缺少的一门学问。故要求学习心电图知识、提高心血管病诊治技术的人员越来越多。特别是对于即将走向临床的医学生来讲,了解并掌握一定心电 图知识尤其重要,为今后的临床独立工作打下牢固的基础。 2. 什么是心电图呢?
临床心电图学就是把身体表面变动着的电位记录下来,给予适当的解释,以辅助临床诊断的一门学问。
3. 心电图的临床使用价值及限度
常规心电图对诊断急性心肌梗塞、心肌缺血、房室肥大、某些电解质紊乱和各种心律失常都有较大的价值,结合临床资料,对不明原因的胸痛、心悸、昏厥、休克、不易解释的某些部位的疼痛和较弱无力等都有不同的诊断价值。但常规心电图也有其诊断限度:
(1)首先它不能反映心脏的储备功能,也不能为临床提供病源诊断,如病人有严重的甚至休克,而心电图可能正常或所记录的心电图与发病前表现一样。相反,当心电图出现束支传导阻滞、T波倒置、心室肥厚等图形,而临床上并无心功能减退的迹象。因此,心电图记录的结果不能完全反映当时的心脏储备功能。还有绝大多数心电图形只是反映心脏病变的某一具体现象,而不能说明病变的原因。如心电图表现为左心室肥厚,只能帮助我们发现病人有左心室肥厚病变的存在。但引起的原因不能从心电图上找到解答。 (2)另外一些局限性表现在,有一些心脏病包括严重心脏病心电图可无表现,因此心电图正常决不能排除心脏病。约有20%的急性心肌梗塞心电图可正常或不典型;约有50%
1
左右的陈旧型心肌梗塞心电图上不遗留坏死性Q波;还有约60%的冠心病患者休息时心电图正常;有明显的左右心室肥大(超声心动图)心电图可无表现。此外阵发性心律失常,如早搏、阵发性心动过速等,有时常规心电图很难捕捉。所以临床医生不仅应掌握心电图的应用范围,更应了解其诊断限度。这样才能扬长避短发挥体表心电图的诊断作用。
心电图只是一种协助诊断工具,因同一种疾病可有不同类型的心电图变化,而不同的疾病可有相似的心电图表现。因此发现心电图有异常改变,必须紧密结合临床,才能正确判断其临床意义。孤立地依靠心电图只能得到一些片面的认识,甚至造成误诊。
第一章 心电图产生原理
生物细胞无论在静息或活动状态下,都伴随着电的变化,称为生物电现象。生物电现象主要表现为细胞内外的电位变化,这种电位变化是跨膜离子活动所造成的。 一、静息电位(跨膜电位)
心肌细胞在静息状态下,细胞膜内外存在着不同的离子差别,造成膜外带正电,膜内带负电,且其电位差为-90mv(以膜外电位为0为准),也就是说,细胞在静息状态下,膜内电位比膜外电位低90mv。这种静息状态下细胞内外的电位差别称之为:静息电位或跨膜电位,这种状态称之为:极化状态。
那么静息电位是如何产生的呢?是由于细胞膜内外离子分布和浓度不同以及细胞膜对各种离子的通透性不一致所造成。我们知道细胞膜内的主要阳离子为K+,其浓度要比细胞外的K+高30倍;细胞外的主要阳离子为Na+;其浓度要比细胞内的Na+高15倍
离子的转移受两种力的支配:
(1) 化学梯度:高浓度向低浓度渗透。 (2) 电学引矩:同电荷相排斥,异电荷相吸引。
由于静息状态下,细胞对K+有较大的通透性,因此K+有内向外扩散,同时由于膜内的蛋白质离子不能透过细胞膜,但对K+有吸引作用,有阻止K+向膜外扩散的倾向,当上述两种力达到平衡时,K+外流就停止了,结果膜外带正电,膜内带负电,且膜内比膜外低-90mv。
2
有上述可见,静息电位是K+外流所形成的平衡电位。其大小决定于膜对钾离子的通透性和膜内、外钾离子浓度差。
膜对钾离子的通透性下降或膜内、外钾离子浓度差减小,皆可使静息电位减小(膜内电位负值减小)。 二、心肌的除极与复极
如果这时给静息状态下的心肌细胞以刺激(阈刺激),会发现细胞膜内带正电,这种极化状态下的消除,称之为除极。这种有刺激引起的电位变化,称之为动作电位。
心肌细胞除极后,由于细胞的自身代谢过程,细胞重新使之恢复到静息状态下的电位(即进入膜内的阳离子移至膜外),这个过程称之为复极。
心肌细胞的除极与复极实际上就是细胞膜静息电位的消失与恢复,每一次静息电位的消失与恢复过程便称为一次动作电位。
其主要机理是由于细胞膜受刺激后引起膜对钾、钠、氯、钙等离子的通透性发生改变所致。特别是膜对钠离子的通透性增加;使膜内、外正负离子分布发生逆转。
我们把细胞从受到刺激产生的动作电位电位变化的过程,可用曲线表达出来,称之为动作电位曲线,并把它分成0、1、2、3、4五个时相,
每个时相的发生都与离子的内外流动有关。
0相:为细胞的除极化阶段。大量钠离子内流进入细胞内,电位升至+30mv。
1相:为复极的快速阶段;钠离子内流急剧衰减,而膜外的氯离子内流使细胞内的电位快速下降,并伴少量钾离子外流。
2相:为复极的缓慢阶段;缓慢而持久的钙离子内流与钾离子少量外流,使电位保持稳定,形成平台,故又称之为平台期。
3相:为复极化的最后阶段,钾离子外流加速,带出大量的正点荷,使膜电位趋于静息水平。
4相:为静息期,膜电位保持稳定于静息水平,故呈水平线。 总结:(1)除极迅速,复极缓慢。
3
(2)除极为0相,复极包括1、2、3相。
(3)心肌细胞要在动作电位出现数毫秒后才发生收缩,即心脏在发生机械收
缩之前,先发生电激动,而电激动的基础就是心肌细胞的动作电位。
(3) 电位0、1、2、3相,相当于心肌的收缩期,4相相当于舒张期。
三、电偶学说
细胞的除极先从一点开始,以后迅速向周围扩展,直到整个细胞除极完毕为止。复极过程也是如此,先除极的部位先开始复极。其除极过程和复极过程是用一对电偶来说明的。
那么什么是电偶呢?有两个带电量相等,距离很近的正负电荷所组成的一个整体,称之为电偶。正电荷叫电荷的电源;负电荷叫做电荷的电穴。
其连线的中点称为电偶中心。
除极和复极的扩展犹如一对电偶在移动。不同点为:除极时电源在前,电穴在后;而复极时电源在后,电穴在前。
静息时,细胞膜表面无电位差,也无电流产生。
当心肌除极完了时,细胞表面亦无电位差,亦不形成电偶,故无电流产生。只有除极
4
过程或复极过程中,细胞表面才产生电位差,形成电偶,产生电流。示图如下:
由此可知,心脏激动的传播,是先从受激动的部位形成电穴,它前面的便形成电源。此后电源变成电穴,更前面的部分又形成电源,正如一系列电偶向前移动。电源在前,电穴在后。当电源对着探查电极时,描记出向上的波
形,即正向波。而当电穴对着探查电极时,描记出向下的负向波。 四、容积导电
由于我们描记心电图时,不可能把电极置于心脏表面,而是通过人体的体表引导出来。为了更能说明上述过程,我们先做个试验:容积导电。
把一对电偶放于一盆稀释的生理盐水中,由于盐水可导电,便有电流从正极流向负极,电流就分布于整个盐水中,这种导电方式称之为容积导电。心脏周围组织都可导电。因而人体也可看作一个容积导体,导体都有强弱不同的电流在流动,因而导体中各点存在着不同的电位差。(图)
五、心电向量
物理学上把既有大小又有方向的量称之为矢量或向量,电偶亦有大小和方向,故称之为心电向量。心肌细胞除极或复极过程中产生的电力(电偶),具有一定的方向、大小和极性,可用向量来表示。
通常规定电偶正极所指的方向称之为电偶的方向。心房肌、心室肌是有大量的心肌细胞组成的;一块心肌的除极和复极必然伴随着许多心肌细胞的除极于复极,在其除极或复极过程中,每一瞬间产生无数的心电向量,由于心肌细胞排列各不相同,其产生的心电向
5
量朝向四面八方。这些方向不同的向量通过物理的平行四边形法则,可形成一个瞬时综合向量。心室除极或复极按一定的顺序进行,每一瞬间除极或复极的心肌数目和方向均不相同,因此,其产生的瞬时综合心电向量方向、大小亦不相同。
心房、心室除极或复极过程中,产生许多方向、大小不同的瞬时综合向量,构成一个环状轨迹,称为心电向量环,由于心脏是立体的,所构成的环为立体向量环,分别称为P向量(心房除极向量);QRS(心室除极向量)和T向量(心室除极向量)。即P环、QRS环、T环。
六、心电图产生的原理
概括地说,心电图的产生是由立体心电向量环经过两次投影产生的。上讲中,我们对心电图的发生原理有了初步的了解,但我们怎样把心肌发生的电位活动描记或用什么形式表达出来呢?为此先前的工作者做了大量的工作 ,怎样才能将心脏产生的立体向量环在书本上表达出来呢,即心电向量与心电图的关系,立体向量是怎样还原成心电图的。
既然是立体的,就存在着三维空间,我们用三个平面来表达:(图) 额面:x+y(横轴与垂直轴) 侧面:Z+Y(前后轴与垂直轴) 横面:X+Z(横轴与前后轴)
一个立体向量环,经过两次投影,第一次投影把立体向量图 投影在额面、平面上,成为平面向量图,这便是目前心电向量图 学中习用的平面向量图学;再把额平面向量图以平行光线自不同
角度投影在某移动着的心电图纸上(速度为25mm/s)就是为肢体导联心电图;
把横面向量图也以平行光线自不同角度投影在移动着的心电图纸上,就形成了心前导联心电图。
第一节 电极与导联
将电极置于体表任何两点,再用导线与心电图机的正负两极相连,就可构成电路,次种连接方式和装置成为导联。
6
临床对电极安放部位及连接方式作了,作了统一规定,那么这种规定的理论依据又是什么呢?在上节课中大家已了解了平面向量图的由来,但必然对平面向量图以不同角度投影在“不同的轴线上”一词, 还有些疑问 。因为无论在那个平面上都可以画出无数个轴线;以平面向量图投影法则来考虑,便因轴线的角度不同,可以画出无数形态的心电图,这将如何处理呢?以前的心电图工作者早已为我们固定了额平面及横面上的这些轴线。如EINTHOVEN这位学者在1905~1906年,便确定了额平面上的三条轴线,因一直延用至今,便称之为“标准导联”的Ⅰ、Ⅱ、Ⅲ,30~40年代 ,又有人创建了单极导联,又在此面上增加了三条轴线,综合起来,便是目前的肢体导联:Ⅰ、Ⅱ、Ⅲ、avR、avF、avL这六个导联轴。也就是说我们在心电图学上经常描记的六个肢体导联的心电图就是额平面心电向量环在这六个轴线上的垂直投影而来。同样,在横面上又制定了六个轴线,即V1~V6导联。
一、肢体导联各导联之间的相互关系
按照Einthoven的设想,三个标准导联轴在额平面上组成一个等边三角形,而心脏正位于等边三角形的中心。尽管上述假说与事实有出入,但为临床心电图学所接受,并以此为基础形成三轴系统。如图所示:
导联轴正负极所在方位取决于电极正负极所在部位。
Ⅱ、Ⅲ、avF导联的正极均在下肢,而其负极则位于六轴系统上方;Ⅰ、avL导联正极均位于左上肢,故其正极位于六轴系统左上方,负极位于右下方。avR导联正极位于右上方,负极位于左下方。
明确了各肢体导联轴的方向及正负性后,应用向量环投影的概念,便不难理解额平面心电向量环在各导联的投影将产生什么样的波形。为了便于表明着6个导联轴之间的关系,将6个导联轴平移至O点,构成一个所谓的“六轴系统”,顺钟向侧的角度为正,逆钟向的角度为负。此对测定心电图的额面心电轴颇有帮助。
心电图波形形成的三条基本法则:(图) 二、胸导联各导联之间的相互关系
7
胸导联反映横面或水平面心电向量的变化,牢记各导联的方位及正负极方向,对了解正常心电图各波的形成和病理心电图波形的变化十分重要。胸导联不象肢体导联那样分布规律,其夹角如图
胸导联心电图相当于横面心电向量在相应导联轴上的投影。 肢体导联心电图相当于额面心电向量图在相应导联轴上的投影。 导联的连接(位置)
(1) 肢体导联的连接:Ⅰ、Ⅱ、Ⅲ、avR、avL、avF
红夹(右上肢);黄夹(左上肢);绿夹(左下肢);黑夹(右下肢)
(2) 胸导联的连接:V1~V6
将探查电极置于胸壁的不同部位,负极与中心电站相连,就构成胸导联。胸导联为单极导联。 V1、V2导联电极位于右心室之上; V4、V5、V6导联位于左室之上 V3导联位于室间隔之上
导联 位置
V1 电极置于胸骨右缘第四肋间 V2 电极置于胸骨左缘第四肋间 V3 电极置于V2与V4连线的中点
V4 电极置于左锁骨中线与第五肋间相交处 V5 电极置于左腋前线与V4水平处 V6 电极置于左腋中线与V4水平处 V7 电极置于左腋后线与V4水平处 V8 电极置于左肩胛线与V4水平处 V9 电极置于左脊旁线与V4水平处 V3R~V9R 电极置于右胸壁相当于V3~V6的部位
8
改良的CL导联(MCL导联)
这是常用的监护导联,MCL1导联正极置于V1位置也是我们临床常用的导联,负极位于左肩附近;MCL6导联正极位于V6位置,负极位于左肩附近,地线均连于右肩附近。MCL1导联的波形类似于V1导联MCL6导联的波形类似于V6导联。
一分完整的12导联体表心电图应包括Ⅰ、Ⅱ、Ⅲ、avR、avL、avF、V1~V6。也是我们临床常用的导联,根据需要增加附加导联。
第二章 正常心电图各波组成及其测量
正常的心脏激动过程虽然在不同的个体中必然存在着一些差别,但总的来说,若心脏中激动的发生、激动的传递程序以及心脏本身的组织或其厚薄不超出正常的范围,则所产
9
生的心电综合向量也仅能在一定的“正常范围”内 变异,从而使各导联心电图所反映的心律或各波的时间及高低具有一个正常范围。正向学习其他门科学一样,有些常数和规律是必须牢记的。同样在临床心电图学习中也必须对反映综合向量环的各导联的波形形状、时间长短等的正常范围,只有充分的了解并予以牢记。本章的主要内容便是说明心电图的“正常范围”。熟悉了这章的主要内容,在评阅一幅心电图时便可以初步掌握如何对各导联心电图波形进行必要的测量和分析,首先判定心电图是否在“正常范围”。若不在正常范围内,则应根据以后个章的内容进一步分析出不正常的性质和意义,从而作出有助于临床诊断的“心电图”诊断。所谓正常心电图应包括定量分析和形态分析。
另外还要注意的是:在正常心电图与病理心电图之间还有变异心电图。所谓正常变异心电图,其心电图图形不同于正常心电图,但其产生的机理不是由于病理情况,而是由于一些生理情况的变化引起的。如体型、体位、呼吸状态、植物神经功能变化等。其易与病理心电图发生混淆,要注意鉴别学习。
第一节
心电图的测量
10
一、心电图的测量方法
正常心电图每个心动周期有以下几部分组成:(图)
P波、QRS综合波、T波、u波、S-T段、P-R段、P-R间期、Q-T间期、P-J间期。 1、心电图纸上电压和时间的表示方法(图)
横坐标表示时间;纵坐标表示电压;最小格为1mm×1mm正方形,规定:标准电压1mv=10mm,走纸速度为25mm/s,由此算出:每个小方格的纵格为0.1mv;横格表示时间为0.04s;每个大方格为0.5mv;横格为0.2s。特殊情况下纸速可以调快(50mm/s);标准电压可增大,但心电图上须注明。
2、波幅和时间的测量方法
(1)波幅的测量:凡向上的波(正向波),按垂直距离有等电位线的上缘量至波顶;测量负向波的振幅(深度)时,应从等电位线的下缘量至波底,等电位线一般以T-P段为标准。
描写一个波形的振幅时,可用mm或mv,一般教科书习用mm。
(2)各波、段时间的测量:测量各波的时间时,在等电位线的上缘,自该波起始部
11
分的内缘量至终了部分内缘。应选择振幅最大、波形清楚的导联进行测量。P-R间期测量一般选择标准导联进行测量;Q-T间期测量一般选择QRS波起试点清楚而T波较高的导联进行测量,以T波为例: 3、 率的测量 当心率规整时:
(1)公式法:心率(次/分)=60/P-P或R-R时间(秒)=1500/P-P或R-R间小格数 (2)查表法:据P-P或R-R间小格数立即查出每分钟心率数,免去了上述的麻烦。 (3)目测法:临床常用,粗略估计,心率=300/P-P或R-R之间的大格数。 R-R间期为1大格(0.2秒) 300次/分 R-R间期为2大格(0.4秒) 150次/分 R-R间期为3大格(0.6秒) 100次/分 R-R间期为4大格(0.8秒) 75次/分 R-R间期为5大格(1.0秒) 60次/分
相邻的QRS波群之间的间距为R-R间期,正常情况下R-R间期与间期相等P-P。 窦性心率不齐时,应测量6~10个R-R间期或P-P间期,然后取其平均值;再算出心率较为准确。当心率不规正时,如心房纤颤时,测定6秒(30个大格)内的P波数(作为起点的P波或R波数不算在内)乘10,即为每分钟的心房率或心室率。 二、心电轴与心电位
将额面向量环各瞬间的向量综合起来成为一个总的向量即为平均向量。(左右心室除极过程的总方向,正常时大多与其最大向量相一致。心电图中称之为心电轴。)
心电轴是指心脏电激动投影在额面、横面、侧面上的平均向量。虽然P、QRS、T、在三个平面上有各自的电轴。但我们在临床上通常所说的心电轴是指QRS波在额面上的平均向量,用此向量的方向与Ⅰ导联正电段的夹角来表示的。
正常人左室除极向量占优势,故正常心电图QRS电轴在额平面上方向朝左下,位于0°~90°之间。
12
心电轴的测量方法:
QRS电轴的测量方法很多 ,常用的有坐标法、三角系统法和目测法。下面介绍几种临床常用的方法。
(1)快速目测法 根据标准导联Ⅰ和Ⅲ的QRS主波方向粗略估计。 口诀:电轴偏看Ⅰ、Ⅲ,背道而驰是左偏,针锋相对为右偏。 (2)绘图法(坐标法)
先求出Ⅰ、Ⅲ导联上各自QRS复合波的代数和(向上的波为正,向下的波为负),或者是向上波的高度减去向下波的幅度;然后在肢导的六轴系统坐标中,找出各点在某导联轴上的位置,再分别做各点和其导联轴的垂直线,两条垂直线的相交点。此点与O点的连线与Ⅰ导联正电段的夹角即为心电轴的度数如: 用量角器测出度数为-30°,
OE即为心室除极心电轴,-30°便是心电轴的偏移度数。以Ⅰ导为基准,凡顺时针方向所形成的角度为正角,逆时针方向形成的角为负。 正常人的平均心电轴可变动于0°~90°; 0°~-30°电轴轻度左偏 -30°~-90°电轴左偏 +90°~+110°电轴轻度右偏
大于+110°电轴右偏,注意牢记-30°~+110°电轴的诊断标准很重要,因-30°以左反映电轴显著左偏;而+110°以右在成人多为电轴异常右偏,多有病理意义。
13
三、心电轴偏移的临床意义
心电轴明显偏移多见于病理状态,但偶见于正常人,必须结合临床资料与年龄进行分析、判断。一般的规律是婴幼儿电轴右偏,正常儿童电轴有时可达+120°;随着年龄增长电轴逐渐左偏。正常老年人,电轴有时可达-30。
(1)电轴显著左偏(-30°以上):多属病理状态,常见的病因有①左前分枝阻滞②左室肥厚③慢性阻塞性肺气肿④下壁心肌梗塞⑤预激综合征。
(3) 电轴异常右偏(+110°以上):常见于①儿童②左后分枝阻滞③右室肥厚④慢性
阻塞性肺气肿⑤侧壁心梗⑥预激综合征。
(3)“无人区”电轴(-90°±180°):既可能反映电轴显著左偏,也可能反映电轴显著右偏,临床常见病因有慢性阻塞性肺气肿及先天型心脏病引起的右室显著肥厚、室性节律等。 四、心脏的钟向转位
因左右心室肥厚等原因,心脏能沿着心底部至心尖的长轴转位,称为钟向转位。从心脏的横隔面自下往上看,若其转动方向与时钟走行方向一致称为顺钟向转位,反之为逆钟向转位,无转位称无钟向转位。心脏的钟向转位是据胸导联的QRS变化来推断,其中主要看V3,并参考V4(即主要看过渡导联)。但须指出,心电图上的这种转位只提示心电位的
14
0
转位变化,并非都是心脏在解剖上转位的结果。
临床意义:顺钟向转位,右室大的表现 逆钟向转位,左室大之可能
口诀:钟向转位看V3;小r大S顺钟转;双向波群无旋转。
第二节 心电图各波、段代表的意义及正常范围
(一) P波:代表心房除极时的电位变化
(1) 时间(波宽):〈0.11秒,双峰间距〈0.04秒,P波较小无临床意义。 (2) 电压(振幅);肢导〈0.25mv,胸导〈0.2mv。
(3) 方向:正常窦性P额面电轴在+30°~+60°之间,故在Ⅰ、Ⅱ、avF、V4~V6
导联直立,波顶圆顿;avR导联上的P波倒置;Ⅲ、avL、V1~V3直立、平坦、双向或倒置。
注意:Ⅱ、avF导联P波直立,avR导联上的P波倒置是诊断窦性P的不可缺少的条
件。(只要Ⅱ导P波直立,avR导联上的P波倒置,就可肯定心房激动起源于窦房结,即所谓窦性P波。)
(4)形态:多为圆拱形,波顶圆顿,少数也可尖顶、扁平或顶部有轻度切迹、
双峰波形,但间距〈0.04秒。一般P波在Ⅱ导较清楚。如图:
(5) PV1终末电势:简写为ptfV1
将V1导联的P波分为前后两部分,把后一部分视为左房除极向量(特别是P波呈正负双向时),计算后一部分P波振幅及时间的乘积,叫做PV1的终末电势,简写为ptfV1。正常其深度与时间的乘积〈0.04mm*s(或大于—0.04mm*s),当左心房扩大明显、压力越高,ptfV1的负值越大,提示左心房肥大或左心房负荷过重。(P波只要呈双向,一定先直立,后倒置。正常情况下倒置部分浅而窄)。一般V1的P波倒置不明显,因此没有必要为每一个正常人测量ptfV1值,但一旦V1导的P波倒置明显,则应测量。
15
(二)P—R间期
由P波起点到QRS波群开始的间隔时间,它表示激动从心房到心室的传导时间。测量从P波开始量至QRS开始,应选P波最宽的导联,一般选二导联测量。其正常值与年龄及心率快慢有关,心率快P—R短;心率慢则P—R长。
(1) 正常值(成人):0.12~0.20秒。
(2) 意义:P—R短见于:结性心律、WPW、窦性心动过速、L—G—L。
P—R长见于:ⅠAVB
(三)QRS波群
代表心室肌除极时的电位变化。
一般情况下有三个波组成,也可一个波组成,或二个波组成。为此须对其命名。命名原则为:QRS波中第一个向下的波为Q波;第一个向上的波为R波;R波之后向下的波为S波;S波之后再次向上的波为R′波;R′波之后又向下的波为S′波;只有一个向下的波为QS
0
16
波;只有一个向上的波为R波。
振幅超过5mm其字母要大写;小于5mm字母要小写。另外每个波的成立要以其顶点是否超过基线为准。否则应称为切迹、挫折。
1、QRS时间(波宽):正常成人0.06~0.10秒;儿童0.04~0.08秒。一般测量肢体导联中最宽的心室波或在V3导测量每个波的测量如Q、R、S。
室壁激动时间:在胸导联中,QRS波起点至R波顶点的垂直线与基线交点时间叫做室壁激动时间 ,简写为VAT。
右室壁激动时间VATV1 0.01~0.03秒(小于0.03秒) 左室壁激动时间VATV5 0.02~0.05秒(小于0.05秒)
若有R′波或r′波,则应量至R′波或r′波的顶峰。
2、QRS电压(振幅)
(1)Q波:正常Q波的振幅应小于同导联R波的1/4,时间应小于0.04秒。否则应称为病理性Q波,但在正常心电图中,即无心脏疾患者由于心脏位置变化等因素可在某些导联出现异常Q波(即Q波时间≥0.04秒;及/或深度大于),称为位置性Q波。位置性Q波常易被误诊为心肌梗死。要注意鉴别。
A:正常情况下,Ⅰ、Ⅱ导联可有Q波,亦可无Q波;如果有其Q波深度应小于1/4R,时间小于0.04秒,否则应视为异常。
B: avL导联可有小q波,亦可有大Q波(即深度大于1/4 R,时间大于0.04秒),亦可全无Q波。
即Q波超过上述标准可能正常亦可能异常,其鉴别要点为:
少数正常人可在avL导联出现QS型或Qr型,其与前侧壁心肌梗死的鉴别要点为:(1)Ⅰ导和左胸导无异常Q波。(2)avL导不出现明显的ST-T改变,通常只出现T波倒置。(3)avL导联的P波常倒置。以上特点亦为L导联位置性Q波的特点或正常变异的特征。 C: Ⅲ、avF导联可有小q波、可全无Q波,亦可有大Q波,即超过标准的Q波,
而呈现QS、Qr、QR型。
17
Ⅲ导联单独出现异常Q波;很少为病理性,一般无重要意义,由于心脏位置的变化,有时在Ⅲ、avF导联均可出现异常Q波,其与下壁心肌梗塞的鉴别要点为:①Ⅱ导联通常不出现异常Q波②Ⅲ、avF导联无明显ST-T改变③吸气时Q波缩小或消失④aVR导联无起始的小r波而呈QR型或Qr型。
D: aVR导联正常情况下就应有大Q波,而呈QR、Qr。
E:V1、V2导联正常情况下绝无小q波,但可呈现QS波。也就是说无器质性心脏
病者有时在V1、V2导联出现QS波;其与前间壁心肌梗塞不同点为:①QS型一般只局限于V1、V2导联,罕见于V3导联②QS波光滑锐利,无顿挫或切迹③V1、V2导联无明显ST-T改变。
F:V4~V6导联正常可出现小q波,但其振幅应不超过1/4R,时间不超过0.04S。
总结一下:在Ⅰ、Ⅱ、V4~V6各导联中如有小q波,其振幅要小于1/4R;间小于0.04S,否则应视为异常。
在Ⅲ、avL、avF各导联中;可有小q波,可全无Q波,可有大Q波(即超过标准的Q波);如有大Q波也可能正常也可能异常。其鉴别的一般规律是:大Q波一般在这些导联单独出现,不合并其他导联出现,不伴有ST-T改变。aVR导联正常情况下就应呈QR、Qr型;V1、V2导联绝无小q波,但可呈QS波。
(2)R波:RV1小于1.0mV ; RV5<2.5mV ; Ravr<0.5Mv ; Ravl<1.2Mv ;
Ravf<2.0Mv; RⅠ<1.5Mv。
临床意义:
(3)S波:Ⅰ、Ⅱ、Ⅲ导联可有S波,也可无S波。一般V1的S波振幅<2.0Mv,V5
的S波<0.7 mV。
(4)QRS低电压:QRS波的电压在三个加压肢体导联或三个标准导联中,每一个导
联的R+S或Q+R电压之和都小于0.5 mV,称为QRS低电压。约见于1%的正常人,病理情况见于心包炎、肺气肿、肥胖等。
3、QRS波的形态:
18
在肢体导联中:avR主要以向下波为主,呈QS、QR、Qr、rS、rSr形,且R/S或R/Q<1,即主要以Q波或S波为主波。其余肢体导联可随心电轴及心电位的变化而变化,常见类型为:qR、Rs、或rS。(从以上可以看出,额面QRS向量环的位置变动范围相当大,因而avL、avF的QRS波群是基本向上的,但在另一些正常人其QRS都是基本向下的。其原因,正是由于正常人的额面上QRS综合向量轴的方向变动范围相当大的缘故)。
在胸导联中:V1、V2以向下波为主(即以S波为主),呈rS、QS,即R/S<1,但不应有小q波;V5、V6导联以向上波为主(以R波为主),呈qR、qRs、Rs、或R型,即R/S>1;V3、V4导联的R波和S波大致相等。所以胸导联的正常QRS波的形态比较有规律,即从V1至V6,其R波逐渐升高;S波逐渐降低。病理情况下,上述形态可发生变化,如R波不能逐渐升高,称为R波递增不良(可能是正常变异,也可能是异常。)次可见于7%的正常人。 (四)J点:J点为QRS波群终了与ST段开始处的交接点。正常J点在等电位线上,上下偏移不超过0.1 mV。在早复极综合症时,J点发生于QRS波群尚未终了时,致使J点上移,形成J波。这是由于心室除极尚未完全结束时,部分心肌已开始复极之故。
(五)ST段:从J点到T波开始这一段时间称为ST段,代表心室除极完毕到复极开始的一段时间,观察ST段有无变化要从J点后0.04S为准。测量ST段的方法:ST段抬高应从等电位线上缘量至ST段上缘;ST段压低时则应从等电位线下缘量至ST段下缘。通常以T-P段作为等电位线;心动过速时,T、P波可能重叠,此时要以两个相邻心博的Q波起点之间连线作为等电位线。
正常ST段压低(向下偏移),在任何导联均不应超过0.05 mV;ST段抬高(向上偏移)
在肢体导联及V5、V6导联不超过0.1 mV,在V1、V2、V3导联不超过0.3 mV,且正常ST段抬高的形态是弓背向下的。(画模式图)
ST段异常的意义:ST段下移:缺血、损伤;ST段抬高:心梗、心包炎、损伤。 (六)T波:代表心室肌的复极。
(1)形态:正常T波双肢不对称,升肢比较缓,降肢比较陡;顶(底)端圆钝。
病理情况下T波双肢对称,顶(底)端变尖,称“冠状T”。
19
(2)方向:正常T波的方向一般与QRS波的主波方向一致。在以R波为主的导联
中(呈qR、R、qRs、Rs型),T波通常是直立的;在以负向波为主时(呈rS、Qr、QS型),T波通常是倒置的。 正常T波在avR导联必定倒置;
Ⅰ、Ⅱ、V4、V5、V6的T波均直立(不论年龄大小); Ⅲ、avL、avF、V1、V2、V3可倒置,可直立,可正负双向; 在正常情况下,若TV1倒置,则TV2、TV3可倒置,可不倒置。
若TV1直立,则TV2、TV3绝不能倒置,否则应视为异常。
(3) 振幅:在以R波为主的导联中,T波应>1/10R波,否则应视为低平或异常。
正常人胸导联T波虽可≥1.0 mV,但T波高于R波多为病理性,此外,应注意患者有无临床症状,是否伴有ST段偏移和高耸T波的形态。
(七)Q-T间期:指心室除极和复极过程总共所需时间。测量应从QRS波群起点量至T波结束,应选QRS波起点清楚,T波高大的导联测量。如Ⅱ导联。Q-T值可随心率而变化:当HR↓,Q-T长;当HR↑,Q-T短。当心率在60~100次/分时,Q-T为0.32~0.44S。为消除心率的影响,校正后称为Q-Tc,其正常值应<0.44S。Q-Tc=Q-T间期/R-R。
(八)u波:是T波后0.02~0.04S出现的低平波,其方向与T波方向一致。正常心电图中u波常不明显,在Ⅲ、V3导联u波相对明显易见。
第三章 心房、心室肥大
房室肥厚和房室扩大的心电图改变大体相似,主要表现为房室除极向量增大和除极时间延长。心电图诊断房室肥大的准确性远不如超声心动图检查。有相当程度的假阴性和假阳性,也就是说,已有房室肥大者心电图可无改变,而某些心电图表现符合房室肥大诊断标准者,事实上并无房室肥大。若将心电图改变与临床资料紧密结合,则可提高心电图诊断的准确性。
第一节 心房肥大
P波代表心房除极,而右房先除极,而左房比右房晚0.01S左右,故P波前半部分代表
20
右房,后半部分代表左房。心房肥大心电图改变除反映心房肥厚、扩大外,还可能反映心房内传导延迟。
一、右房肥大的心电图特征
(1) 在肢体导联中P波振幅>0.25 mV;胸导联中≥0.25 mV。
(2) P波异常高尖(Ⅱ、Ⅲ、avF导联明显),P波时限正常(<0.12S)。
因上述形态常见于肺心病,故也称“肺性P波”。
二、左房肥大的心电图特征
左房大示意图
三、双房肥大的心电图特征
(1)Ⅰ、Ⅱ导联P波时限>0.12S,并出现切迹。
21
(2) ptfV1≤-0.04mms.
(3)Ⅱ导及/或右胸导电压>0.25 mV。
第二节 心室肥大
心室肥大可由于压力负荷或容量负荷过度所致,其心电图改变为QRS电压增高、时间延长,室壁激动时间延长及继发性复极变化。 一、左室肥大的心电图特征
左室肥大时,左室向左后的除极向量增大,其心电图改变与正常心电图相比,并无质的变化,而只是量的变化。
(1) QRS电压增高,以下任何单一导联电压超过正常即有意义:
RV5或V6>2.5mv;
RV5+SV1>4.0mv; RⅠ>1.5mv; RⅠ+SⅢ>2.5mv; RavL>1.2mv; RavF>2.0mv; (2) QRS>时限增宽达0.10S~0.12S,VATV5>0.05S (3) 电轴左偏,大多在-10°~-30°之间。
22
(4) 继发性ST-T改变(ST压低,T波倒置);出现于V5、V6、Ⅰ、avL导联。 临床上将左室电压增高合并ST段压低及T波倒置、低平者,诊断为左室肥大伴劳损。 一般来说,上述符合条件愈多、QRS电压超过正常范围愈大,则诊断的把握就愈大(在左心室高电压的基础上,结合其他阳性指标之一,一般可成立左室肥大的诊断)。符合率仅85%左右。
【左室肥大的机制】左心室的位置在心脏的左后方,当其肥厚时,则向左后方的除极面增大,右室除极向量对抗力量减少,由此而产生向左的综合向量大。故相应导联的R波电压增高。另外左室肥厚使左室除极时间延长,故QRS时限延长,VATV5增宽。复极程序的改变或本身的相对缺血,造成了ST-T改变。 二、右心室肥大的心电图特征
若我们仔细考虑,以左室肥厚各项指标以及心电向量的改变,可以体会出左心室肥厚与正常的心电图相比,主要的差别是“量”的差别,也就是说,正常人的左室壁本来就比右室后几倍,当它再发生肥厚时,只是增加了原有的“厚薄”差别。表现为QRS环体向左后方加大,在心电图上就是某些导联QRS电压的增高,这些都属量上的差别。
正常时,右室壁较薄,厚度只有左室的1/3左右,由于左室向量占优势,所以左右心室的综合向量指向左后下。当单纯的右室肥厚时,有趋势要改变左右室厚度的比例,左右心室之间的心电向量对比就要发生改变,因而使QRS综合向量及心电图中QRS波群的形态产生了更明显的变化。所以,轻度的右室肥大仍然抵消不了左室向量占优势的局面,只有当右室肥大到相当程度时,才能较显著地使左右心室的综合心电向量偏向右前方,从而使心电图发生一系列特异的QRS波群变化及ST-T改变,这就是心电图诊断早期右室大不够敏感的原因。
右室肥厚时往往横面上的心电向量环的改变更为突出,因而诊断右室肥厚的一些重要依据更多地表现在胸导上。
23
(1)RV1≥1.0mv;V1呈qR或Rs、R型,且V1的R/S≥1。 (2)RavR>0.5mv(单独存在无诊断价值);或R>Q。 (3)RV1+SV5(V6) ≥1.2mv。
(4)V5、V6导联明显出现S波,即R/S<1。 (5)电轴右偏>+110°。
(6)VATV1>0.03S(QRS时限一般不延长)。
(7)ST段压低、T波倒置出现于V1~V3导联,有时T波深倒置。 注意:(1)心电图诊断右室大的敏感性低,而特异性高。
(2)诊断右室大需综合考虑,项目愈多,超出正常范围愈大,准确性愈高。
三、双室大的心电图特征
心电图诊断双室大准确性更差,这是因为一侧心室的除极向量可以抵消另一侧心室的除极向量。心电图可有以下几种现象。
1.只表现出一侧心室肥厚的心电图特征,而另一心室肥厚的图形被掩盖,由于左室壁较厚,因此仅显示单纯左室大的机会多,是临床相对常见的类型。
24
2.同时出现双侧心室肥厚的图形
(1) 胸导V1、V2示右室大;V4、V5示左室大;V3呈RS。
(2) 胸导表现左室大的改变;同时伴有avR中R/Q>1或V5的R/S<1及/或电轴右
偏在+90°以上。
3.近似正常的心电图:左右心室同时肥厚,两侧电势相互影响,可表现为正常心电图或既不呈右室大亦不呈左室大的非特异性改变。可结合临床考虑。
第四章 心室内传导阻滞
心脏传导系统包括:窦房节、结间束、房室结、房室束、左束枝和浦肯野氏纤维网。 发生在房室束以下的传导障碍称为心室内传导阻滞或束支阻滞,它包括右束支阻滞、左束支阻滞及左束支分支阻滞。束支阻滞可以是永久性的,也可以是间歇的。在临床上,右束支传导阻滞常见,其次是左前分支传导阻滞,左束支阻滞大多数是器质性心脏病的一种表现。
一、右束支传导阻滞
1.完全性右束支传导阻滞(RBBB)心电图特征
(1) V1、V2出现“M”型,即rsR′或宽大有切迹的R波。 (2) Ⅰ、avL、V5、V6的S波粗钝且增宽。 (3) QRS时限>0.12S。 (4) VATV1>0.03S
(5) AvR导联可出现qR或QR型,R波均粗钝。
(6) STV1降低、T波倒置,STV5可升高、T波直立等ST-T改变。
25
特点:(1)心肌的触极过程没有改变(QRS波群正常);但ST段及T波均显著异常。
(2)心肌的损伤是比较严重的,如损伤较轻仍是可逆的。
2、继续上述试验
若ECG出现“类单向曲线”时,我们仍不松钳,继续阻断血流,ECG表现为:QRS波群发生了改变,原来的R波变为完全倒置的QS波或出现大 Q波。
如出现上述的QRS改变立即松钳,发现不能使之恢复正常,这种心图改变称为“坏死性改变”。
特点:(1)心肌的触极过程与复极过程都受到了影响,受损处的电极描记出病理性Q
波。
(2) 心肌细胞受到的损伤严重,不能使其恢复正常,即产生不可逆行损害。 (3) 任何产生缺血性、损伤性的病因,若程度严重,均使心肌组织产生坏死。
反映在心电图上便出现Q波。
从以上实验可以看出,当冠脉供血阻断时,随着时间的发展会依次出现缺血性变化、损伤性变化及坏死性变化;在这三种变化中缺血性变化是供血不足的表现(但不具特异性),损伤性变化、坏死性变化是心梗的表现。 一、心肌缺血的基本图形
(一)ST段改变
1、ST段偏移:(1)ST段向下偏移(压低)为心肌缺血最重要的表现。在任何导
联,ST段下移幅度>0.05mv即有诊断价值。(其机理是心内膜下心肌缺血,由于ST向量朝向缺血部位,心内膜下心肌缺血时,面向心外膜的导联ST段呈压低。)(2)心肌缺血偶可表现为ST段抬高,反映透壁性心肌缺血,见于变异性心绞痛。 ST段下移有以下几种类型
2、 T段平直延长:正常 ST段位于等电位线的时间<0.12秒,然后逐渐与T波升肢
31
融合,ST段与T波升肢交接处较钝。如果ST段位于等电位线的时间>0.12秒, ST段与 T 波升肢交接处变锐,也提示心肌缺血。如图 (二) T波改变
主要表现为T 波低平、双向或倒置;典型的缺血性 T 波常呈“冠状T”。(由于 T 向量背向缺血部位,故心内膜下心肌缺血时,面向心外膜导联描记的 T 波常直立,心外膜下心肌缺血时描记的 T 波常倒置或低平。
T 波改变比 ST 段下移多见,但特异性不如 ST 段高,这是因为引起 T 波改变的因素较多,如心肌炎、电解质紊乱、左右室肥大、心肌病、洋地黄药物、神经紊乱、慢性心包炎等。因此必须结合临床做出诊断。
(三) u波倒置:和直立的T波方向相反,尤其出现在Ⅰ、Ⅱ、avL及V4~V6等,可见于心绞痛发作或运动实验后年,提示心肌缺血,但不是一个敏感的指标,而且特异性也较差,任何病因引起的左室大或高血压者血压升高时,均可出现 u 波倒置。 二、冠状动脉供血不足的心电图诊断
冠状动脉供血不足,最常见于冠状动脉粥样硬化引起狭窄及冠状动脉痉孪导致冠脉血流减少,心肌缺血缺氧,但还未导致心肌坏死。临床表现为无症状心肌缺血和各种类型的心绞痛发作。此外,一些非冠脉粥样硬化因素如主动脉瓣狭窄或关闭不全,梅毒性主动脉炎、严重低血压等亦可引冠状动脉供血不足。
1、 慢性冠状动脉供血不足:主要心电图表现为T波倒置及/或ST段压低通常不至于引起心肌坏死,因而QRS多无明显改变。此种改变并非冠状动脉供血不足所特有。这类改变还见于心肌炎、心肌病、心包炎等,还可以是有电解质紊乱、药物如洋地黄和抗心律失常药物;ST-T改变尚可继发于心室肥大、心肌老损及束支阻滞。还可见于正常人的变异。如早复极综合征。
因此,不应仅凭心电图的 ST-T改变而轻易作出冠状动脉供血不足的诊断,须结合其他资料和检查综合考虑。
2、型心绞痛的心电图改变:典型心绞痛病历在休息时心电图可以正常或仅有轻微的
32
ST-T改变。心绞痛发作时可以出现短暂的心电图改变,主要表现为:(1)ST 段下移或平直延长。
(2)T波低平、双向或倒置。 (3)一过性 u波倒置。
(4)一过性心律失常,如早搏、传导阻滞。
心绞痛缓解后,心电图可恢复正常。应当指出,部分患者急性缺血发作时心电图可无明显改变,因此,不能因心绞痛发作时心电图正常而排除冠状动脉供血不足。
3、变异性心绞痛:基本病因是由于冠状动脉(外膜下输送血管)痉挛所致透壁性心肌缺血。患者冠状动脉可正常,也可有狭窄。此类患者多见于凌晨静息状态时发作。心电图表现为ST 段抬高伴有对应性导联ST段下移,T增高、增宽,可伴有心律失常。日后可在发生心肌缺血的部位出现心肌梗塞。 二、心电图运动试验
(一)运动试验原理 正常人由于冠状动脉储备较大,当需氧量增加时,可满足需要,但当冠状动脉有狭窄时,则氧供需失衡,心肌缺血、缺氧。病人出现症状,心电图出现ST-T改变、心律失常甚至猝死。
对临床疑有冠状动脉供血不足,而静息时心电图正常者可进行心电图负荷实验协助诊断。负荷实验的作用为增加心脏负荷,心率和血压增加,使心肌耗氧量增加,已有病变的冠状动脉不能相应地增加血流量,以满足心肌代谢的需要,就引起心肌缺血及一系列心电图改变。
心脏负荷试验包括运动负荷实验、药物负荷实验及心房调搏。常用的负荷方法为运动试验,如双倍二阶梯运动试验、活动平板试验和蹬车试验。 (二)运动试验的适应症
(1) 对不典型胸痛或可疑冠心病患者进行鉴别诊断。 (2) 进行冠心病筛选试验。 (3) 对冠心病患者进行劳动力鉴定。
33
(4) 评价冠心病的药物或手术治疗效果。
(三)运动试验的禁忌症
(1) 不稳定性心绞痛、心肌梗塞、心力衰竭患者。 (2) 中、重度心脏瓣膜病或先天性心脏病。 (3) 急性心肌炎、急性心包炎。
(4) 主动脉瓣狭窄、肥厚性梗阻型心肌病。 (5) 高血压患者血压≥170/105mmHg。
(四)运动试验的结果判断
(1) 运动中出现典型的心绞痛。
(2) 运动中心电图ST段呈下垂型或水平型下移≥0.1mV并持续2分钟者。
运动试验有假阴性和假阳性,应结合临床其他资料总合判断。
第二节 心肌梗塞
心肌梗塞是由于冠状动脉急性闭塞,使其相对应的心肌因严重而持久的供血中断发生局部坏死、缺血、损伤。产生一系列特征性心电图改变及心肌酶谱变化。临床上可表现为较长时间的心前区疼痛,并伴有严重并发症。心电图是诊断急性心肌梗塞的有效手段,并有助于早期确诊临床不典型心肌梗塞(无心前区疼痛史),熟悉各种典型及不典型心肌梗塞的图形对每个医生尤为重要。 一、典型急性心肌梗塞的心电图特征
1、损伤性ST段抬高和对应性ST段下移,其特点为:
(1) 局限于几个相关的导联,如下壁导联(Ⅱ、Ⅲ、avF)、侧壁导联(Ⅰ、avL)。 (2) ST段抬高的形态为弓背向上(即凸面向上)。
(3) ST段抬高的程度十分显著,且与Q波、T波共同形成类单向曲线。 (4) ST段抬高呈动态变化,一般于2周左右回至基线。
面向梗死部位的导联出现ST抬高,与其相对应的部位可出现ST段下移,称为对应性ST段下移。如急性下壁心梗时,与其对应的部位Ⅰ、avL导联可出现ST段下移;急性
34
后壁心梗时,与其对应的部位V1、V2导联可出现ST段下移。对应性ST段下移应限于相对应的部位,非对应部位的ST段下移则需用其他机理解释。
【ST段抬高的机理】
这是由于损伤区心肌细胞膜的极化受损,使受损区心肌细胞经常处于极化不完全状态所致。
损伤区心肌的细胞膜外电位,在复极完毕时较未受损区心肌低,在除极完毕时则较未受损心肌高,因而损伤区心肌与邻近未受损心肌之间在复极完毕后(静息期)和除极完毕后均产生损伤电流。复极完毕后T-P段向量背离损伤区;除极完毕后ST段向量指向损伤区,这两种向量的改变分别使面向损伤区导联的T-P段下移或ST段抬高。
2、出现坏死性Q波(病理性Q波)
病理性Q波是指Q波时限>0.04秒,振幅大于同导联的1/4R波或Q波有切迹,但要排除以下几种情况:
(1) 正常心电图中,avR导联可以呈Qr或QS型,不要误当病理性Q波。 (2) 左室肥大时,V1、V2导联可呈QS波,要注意排除。 (3) 左束支传导阻滞或预激综合征时,某些导联可以呈QS波。
35
(4) 肺气肿时,心脏顺钟向转位,V1、V2可以呈QS波。 (5) 少部分正常人在V1、V2可以呈QS波。
(6) 某些导联易出现位置性Q波。如avL导联呈QS、Qr型,Ⅲ、avF可出现
QS、Qr或QR型。
(7) 心内膜下心肌梗塞时无异常Q波。 3、 缺血型T波
其特征是T波倒置,当呈“冠状T时”,则具有诊断意义。
缺血性T波的特点:
(1) 升肢与降肢基本对称,波形变窄。 (2) 顶端变的高耸,呈箭头状。 (3) T波由直立变为倒置。
缺血性T波的机理
使缺血区心肌延迟复极所致。当正常心肌复极完毕,膜外电位为正时,缺血区
心肌尚未复极完毕,膜外电位仍然呈相对的负性,故T向量背离缺血区,使其与QRS向量相反。
注意:T波改变固然可以反映缺血,但这种心电图改变不具有特异性,因为心
室肥大、束支传导阻滞、心肌缺血、心肌炎、瓣膜病、药物作用、电解质紊乱及植物神经紊乱都可以引起T波改变。因此单凭T波改变不能作为急性心肌梗塞的诊断依据。
二、AMI演变过程及分期
AMI的心电图演变过程分为三个阶段。 1、AMI的急性期(超急性期)
急性心肌梗塞后数分钟内,首先出现短暂的心内膜下心肌缺血,在心电图上产生巨大高耸的T波,以后迅速出现ST段抬高,ST-T也可连成单向曲线,但尚未出现坏死性Q波,相对应的导联可有ST下移及T波倒置倒置的相反改变。
36
(1) 巨大高耸的T波,或斜型抬高的ST段。 (2) ST-T偶可成单向曲线,但尚未出现坏死性Q波。
(3) 急性损伤阻滞,VAT及QRS波时间轻度延长,QRS振幅可增高。 上述特征可持续数小时。
2、急性期(充分演变期)
坏死、损伤与缺血的特征于此期中均同时出现,心电图表现为
(1) 开始出现坏死性Q波,并逐渐加深加宽。QRS振幅可降低或被QS 型波所
代替。
(2) 面向损伤区导联的ST段抬高逐渐加重,呈弓背向上状,并与T波相连呈
“类单向曲线”。
(3) T波有直立变为倒置(一般在ST开始下降时),且倒置的程度逐渐加深,
呈典型的“冠状T”.
3、恢复期(陈旧期)
(1) ST 段逐渐回至基线。
(2) T波由倒置逐渐变为直立或浅倒置而固定不变。 (3) Q 波较明显或变浅(及少一部分人 Q 波可消失)。 恢复期的心电图图形可长期不变称陈旧性心肌梗死。(画图)
三、 AMI 的定位诊断
上述的心肌梗塞图形出现于面向梗死部位的导联,故据心肌梗塞图形出现在那些导
联,即可做出定位诊断。
梗死部位 异常 Q 波反映导联
前间壁 V1、V2、V3 前 壁 V3、V4、V5
广泛前壁 V1~V6、Ⅰ、avL 前 侧 壁 Ⅰ、avL、V4~V6
37
下 壁 Ⅱ、Ⅲ、avF 后 侧 壁 V5~V6、Ⅰ、avL 正 后 壁 V7~V9
高 侧 壁 Ⅰ、avL、 V4~V6高一肋间
四、不典型心肌梗塞
(一)无Q 波心肌梗塞 上述讲的心肌梗塞为Q 波心肌梗塞,以往称为透壁性心肌梗塞,见于2/3AMI病例;约1/3AMI患者心电图上不出现病理性Q 波,仅表现为 ST-T 改变,以往称为心内膜下心肌梗塞。
近年来,大量的尸检资料表明;以病理性Q波的有无作为透壁性与心内膜下心肌梗塞鉴别诊断依据不敏感,亦不特异,故称为“有Q 波心梗”与“无Q 波心梗”更确切些。无Q 波心梗一般是坏死区局限于心内膜下,坏死区不超过室壁厚度的2/3。
心电图不出现坏死性无Q 波,急性心内膜下心梗时,损伤型 ST 向量指向梗塞区,缺血型 T 向量背离缺血区,故在相应的导联上有 ST 段下移,若缺血贯穿整个室壁时,则伴有 T 波倒置。心电图改变有三种类型:
(1) ST 段下移,部分或大部分导联ST 段下移≥0.1mv.
(2) T波倒置,部分或大部分导联 T 波倒置≥0.1mv,单纯T 波倒置者较少
见,多与ST 段下移并存。
(3) ST 段抬高,部分或大部分导联ST 段抬高≥0.1mv,可呈弓背状,多出现
于发病开始时,以后转为下移。
上述心电图改变一般要求持续24小时以上方有诊断价值;因心电图改变缺乏特异
性,故诊断时必须结合临床症状,如缺血性胸痛大于30分钟,酶学升高, CPK 及其同工酶增加1倍以上,且峰值提前。
(二)AMI早期心电图表现可不典型,未见ST 段抬高及病理性Q波,仅见R波降低或可见直立、双肢对称与高耸的T波。这时注意与发病前心电图的比较,并结合临床资料追踪观察心电图变化。
38
(三)前间壁心梗时,V1、V2并非为 QS型,可呈rS型,这个小r波振幅不一定很小,但占时很短,仅0.01秒左右,形成一直线状r波,这时不能排除前间壁心梗诊断。应结合临床,或做心电向量图。
(四)由于常规心电图导联仅12个导联,易造成正后壁心梗的漏诊。在发现V1、V2导联r波增高,R/S>1,时限增宽>0.04秒、 T 波高耸(可能为镜象改变);而心电图与临床又不支持右室大者,结合临床高度怀疑后壁心梗,要加做 V7~V9导联。往往可以发现病理性Q波及ST段抬高。 (五)特殊部位的梗死
1.右室梗死:很少单独发生,一般多与下壁心肌梗死并存,故下壁心肌梗死患者要常规做右胸导联,V4R~V6R。心电图改变如下:
(1)右胸导联 V3R~V6R 任一导联出现 ST 段抬高≥0.1mv即诊断意义。约有50%的患者上述右胸导联的ST 段抬高在24小时内消失,故遇到下壁心梗时,应及时描记V3R~V6R。
(2) V3R~V4R出现 QS或QR型,对右室MI的诊断亦有较大价值。但较ST抬高
价值低。
(3)V1~5导联ST均抬高,但抬高的幅度而是逐渐减低,也提示右室梗塞的存在。 (4)导与Ⅱ导ST抬高的比值>1;即ST抬高Ⅲ/Ⅱ>1可作为诊断右室梗塞的参考
条件。若Ⅱ导ST抬高,而Ⅲ导ST抬高>0.1mv,诊断特异性更高。但价值亦小于(1)。
2.心房梗死:心房梗死可单独存在,但多与心室梗死并存,常见心电图改变如下:
(1) P-R 段压低>0.1mv,抬高>0.05mv。 (2) 出现对应性 ST 段变化:
A:Ⅰ导P-R 段抬高>0.05mv伴Ⅱ、Ⅲ导P-R 段压低。
B: V5~V6导联P-R 段抬高>0.05mv伴V1 、V2导P-R 段压低。 (3) P 波增宽,出现切迹,呈 M型或W型,也可能出现一过性肺性P 波。 (4) 出现房性心律失常,如房颤、阵发性房速、也可出现窦房阻滞、AVB。
39
(六)ST抬高的鉴别诊断
1. 急性心包炎:心电图特点为
(1)ST抬高的部位广泛(除 V1、avR外)余均抬高。 (2)ST抬高的程度较轻,一般<0.5 mv。 (3)ST抬高的形态呈弓背向下,即凹面向上。 (4)无异常 Q 波出现。
2. 变异型心绞痛:其引起ST抬高呈一过性,只出现于几个相关的导联,如下壁导联、侧壁导联。含化硝酸甘油可使症状消失,心电图恢复正常。
3. 早复极综合征:约见于1%~2.5%的正常人。其发生机理一般是由于心室某一部分在整个心室除极尚未结束之前提前发生复极所致。心电图特点如下;
(1) ST抬高在V3~V5导联明显(过渡导联),抬高程度较轻(胸导≤0.2mv ;
肢导≤0.05mv),无对应性 ST 段压低。
(2) ST抬高形态呈凹面向上。
(3) 胸导联 T波高耸、对称,常可≥1.0mv。
(4) ST段起始部分可见到J波,J波表现为QRS远侧支出现切迹、粗钝。 (5) 以上心电图改变相对稳定,可持续长时间不变。
(6) 运动、注射阿托品使心率加快时,抬高的 ST 段可降至基线。
临床若遇到不易诊断的 ST 段抬高病历,可留观察24小时~48小时,若ST段无明显改变,则 AMI可以排除。 五、陈旧性心梗
心电图诊断 OMI 是以病理性Q波为主,其定位诊断亦是看出现异常Q波的导联,同AMI定位诊断一样。单应排除一些非心梗的情况。
1.V1、V2导联:当V1、V2导联出现QS波时,有相当数量的病人并非OMI,它可以是:(1)少数正常人。(2)高度肺气肿、心脏顺钟向转位。(3)左室肥厚、左束支阻滞。如何与陈旧性前间壁心梗相鉴别呢?
40
正在阅读:
心电图知识讲座06-24
高中数学人教a版高一必修3阶段质量检测(二)_word版含解析08-07
桥梁工程墩柱施工技术方案03-23
高三艺术部语法复习专题 特殊句式04-23
美丽的公鸡教学设计文档06-01
小学2年级我的妈妈作文06-13
《工程材料及成型技术》讲稿04-12
【物理】江苏省宿迁市泗阳县2022届高三上学期第一次统测试题04-17
投标用施工组织设计(暗标)04-27
描写挫折的好句好段02-08
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 心电图
- 讲座
- 知识
- 凤凰山煤矿35KV变电所毕业设计
- 八年级道德与法治上册第二单元遵守社会规则第四课第1框尊重他人
- 初一上汉译英句子
- 车床安全质量标准化
- 计算机应用类对口升学2013年11月考试题及答案
- 微生物名词解释
- 人教版化学九年级上册说课设计 4-4 化学式和化合价说课稿
- 5405工作面运输巷掘进作业规程
- 如何做好工程造价控制
- 中式烹调初级等级应知考试卷(A)(B)
- 字形复习检测题
- 论植物配置在园林景观设计中的重要性
- C语言总复习试题
- D10.5 对坐标的曲面积分
- Abb机器人调试步骤
- 苏教版语文二年级下13、学棋
- 全新版大学进阶英语第二册第二单元答案
- 背会这些你已掌握了7000个单词(新东方增强词汇100句)
- 徐立 - 论文
- 不锈钢楼梯栏杆及不锈钢扶手施工工艺