盾构推进液压缸刚度有限元分析

更新时间:2023-03-20 18:14:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

(a)球铰结构示意图(b)轴向变形位移

图1球铰

图2球铰的刚度与载荷的对应关系刚

·

4.5×106

4×106

3.5×106

3×106

2.5×106

2×106

力/MN

图6液压缸轴向应力云图

图5液压缸轴向位移云图

图7

液压缸截面图上的关键点

图4

活塞杆

l h

图3推进液压缸结构示意图

2705

3330

625

175

Φ385

d n

-.01801

-.01407

-.010038

-.006006

-.001974

.343E+07.105E+09.208E+09.310E+09.412E+09

2011年第4期

机械工程与自动化(School of Mechanical and Electrical Engineering ,East China Jiaotong University ,Nanchang 330013,China)

Abstract :Taking actual shield thrusting hydraulic cylinder as investigated subject ,this paper established the 3D model of the hydraulic cylinder by Pro/E software ,and set up the finite element model for the stiffness of the spheric hinge and hydraulic cylinder by use of contact analysis of ANSYS software.The analysis results show the hydraulic cylinder stiffness is directly proportional to load.This study proivdes basis for the design of shield thrusting mechanism and its stiffness analysis.Key words :shield ;ANSYS ;hydraulic cylinder ;stiffness

Finite Element Analysis of Shield

Thrusting Hydraulic Cylinder Stiffness

YUAN Yong-sheng

表2

不同载荷下关键位置变形

1.87.3437.4957.5787.7787.7427.7887.8787.7437.805

2.19.7459.93710.05510.25010.29210.30410.17210.09210.138

2.412.31912.55712.31912.94112.98812.99612.98612.88712.908

2.714.73214.98315.16415.47915.52715.52315.47915.52715.646

3.0

17.07117.35817.57017.92517.97517.97117.98718.05818.110

载荷(MN)E 1E 2E 3E 4E 5E 6B 1B 2B 3

图8

液压缸在不同载荷作用下的刚度变化

刚度/(N·mm-1)

载荷/MN

(School of Mechatronic Engineering ,North University of China ,Taiyuan 030051,China)

Abstract :The two-dimensional model of the muzzle flow field for numerical simulation was set up in the paper.By coupling the moving boundary of a large displacement deformation and non-structural dynamic mesh,the N-S equation of compressible flow was solved,the muzzle flow field structure and the development process were analyzed,and the parameters and distribution of the muzzle flow field consisting of the muzzle blast and the surrounding jet structure were obtained.Key words :projectile ;large caliber artillery ;muzzle flow field ;numerical simulation

Flow Field Numerical Simulation of Large Caliber

Artillery Muzzle with Moving Projectile

FANG Ju-peng ,LI Qiang ,ZHAO Jun-guan ,XU Zhi-zhang

mm

度主要为油液的刚度。随着载荷的增大,球铰末端位移变化缓慢增加,可以得出液压缸在不同载荷作用下刚度的变化,如图8所示。

当活塞轴向位移x =526mm 时,根据式(3),可得液压缸在载荷3×106N 作用下的刚度为1.481×105N/mm ,ANSYS仿真结果显示轴端位移为18.11mm ,刚度为1.657×105N/mm ,与计算值有误差。这是因为在ANSYS接触分析中考虑了液压缸的接触应力与摩擦,且油液刚度并非定值。但从分析结果可以看出这种有限元模型接近液压缸在实际工作过程中的运动状态。3结论

通过盾构液压缸在ANSYS中的接触分析[3],得出接触应力与摩擦对液压缸的刚度会产生影响,刚度与载荷成线性比例关系。盾构液压缸的刚度主要表现为油液的刚度,为盾构推进机构的刚度分析和推进系统的设计提供了一定的基础。

参考文献:

[1]庄欠伟,龚国芳,杨华勇,等.盾构液压推进系统结构设计

[J].工程机械,2005(3):47-50.

[2]王林鸿,吴波,杜润生,等.液压缸运动的非线性动态特征

[J].机械工程学报,2007,43(12):12-19.

[3]尚晓江.ANSYS结构有限元高级分析方法与范例应用[M].

北京:中国水利水电出版社,2006.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(上接第63页)

66··

本文来源:https://www.bwwdw.com/article/t8ne.html

Top