初三数学试题2008年黄石市初中毕业生数学学业考试试题(含答案)
更新时间:2023-12-28 14:49:01 阅读量: 教育文库 文档下载
- 初三数学初三试题推荐度:
- 相关推荐
资料由大小学习网收集 www.dxstudy.com
黄石市2008年初中毕业生学业考试
数学试卷
(闭卷 考试时间:120分钟 满分120分)
一、单项选择题(本大题共12个小题,每小题3分,满分36分) 1.?3的相反数是( ) A.?1 3B.
1 3C.3
D.??3
2.在实数?A.1个
2,0,2,?,9中,无理数有( ) 3B.2个
C.3个
D.4个
??3.如图,AB∥CD,AD和BC相交于点O,?A?35,?AOB?75, 则?C等于( ) A.35
?A O B B.75
?C.70
?D.80
?C D 4.下列图形中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D. 5.若不等式组?A.m≤?5?3x≥0有实数解,则实数m的取值范围是( )
?x?m≥0B.m?5 35 3C.m?5 3D.m≥5 36.在反比例函数y?a2中,当x?0时,y随x的增大而减小,则二次函数y?ax?ax的xy O O x B.
C. y x y O x D.
图象大致是下图中的( )
y O A.
x 7.下面左图所示的几何体的俯视图是( )
B.
D.
A. C.
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
8.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是( )
A
B
C A.
B.
C.
D.
9.若一组数据2,4,x,6,8的平均数是6,则这组数据的方差是( ) A.22
B.8
C.210
D.40
10.若2a?3b?1?3a?2b,则a,b的大小关系为( ) A.a?b B.a?b C.a?b D.不能确定 11.已知a,b是关于x的一元二次方程x?nx?1?0的两实数根,则式子( ) A.n?2
22ba?的值是abB.?n?2
2C.n?2
?2
D.?n?2
B M A
P
N
C
212.如图,在等腰三角形ABC中,?ABC?120,点P是底 边AC上一个动点,M,N分别是AB,BC的中点,若 PM?PN的最小值为2,则△ABC的周长是( ) A.2
B.2?3
C.4
D.4?23 二、填空题(本大题共6个小题,每小题3分,满分18分) 13.分解因式:ax?16a? .
14.已知y是x的一次函数,右表列出了部分对应值, 则m? .
2x y 1 3 0 2 5 m ?15.如图,在Rt△ABC中,?BAC?90,BC?6,点D为BC中点,将△ABD绕点A??D?,则点D在旋转过程中所经过的路程按逆时针方向旋转120得到△AB为 .(结果保留?)
D D? B
A
B?
C C
A D O B
?16.如图,AB为?O的直径,点C,D在?O上,?BAC?50,则?ADC? .
17.下图是根据某初中为地震灾区捐款的情况而制作的统计图,已知该校在校学生有2000人,请根据统计图计算该校共捐款 元.
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
人均捐款数(元) 15 13 10 初一 初二 初三 年级
初一 初二 32% 33%
初三 35%
人数统计
218.若实数a,b满足a?b?1,则2a?7b的最小值是 . 三、解答题(本大题共9个小题,满分66分) 19.(本小题满分6分) 计算?8?(?1)9?2cos60??(2?3)2?27.
20.(本小题满分6分)
如图,D是AB上一点,DF交AC于点E,AE?EC,CF∥AB. 求证:AD?CF.
A
E F D
B C
21.(本小题满分6分)先化简后求值.
322b??a2?b2??a?2?,其中a??1?3,b??1?3. ????1?2ab?ba?ab2ab???? 22.(本小题满分7分)
如图,甲船在港口P的北偏西60方向,距港口80海里的A处,沿AP方向以12海里/时的速度驶向港口P.乙船从港口P出发,沿北偏东45方向匀速驶离港口P,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,参考数据2≈1.41,3≈1.73)
A
北
??45? 60? P
东
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
23.(本小题满分7分)
某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品? 24.(本小题满分7分)
在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是
3. 5(1)求n的值;
(2)把这n个球中的两个标号为1,其余分别标号为2,3,…,n?1,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率. 25.(本小题满分8分)
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
甲店 乙店 A型利润 200 160 B型利润 170 150 (1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
26.(本小题满分9分)
如图,?ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE?AD,垂足为E,连结CE,过点E作EF?CE,交BD于F. (1)求证:BF?FD;
(2)?A在什么范围内变化时,四边形ACFE是梯形,并说明理由; (3)?A在什么范围内变化时,线段DE上存在点G,满足条件DG?由. 27.(本小题满分10分)
1DA,并说明理4A
E C B
F
D M
0),B(4,0),与y轴交于点C(0,8). 如图,已知抛物线与x轴交于点A(?2,(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? y
C B A O x 黄石市2008年初中毕业生学业考试 数学试卷答案及评分标准
一、单项选择题(每小题3分,满分36分) 题号 答案 1 C 2 B 3 C 4 B 5 A 6 A 7 D 8 B 9 B 10 A 11 D 12 D 二、填空题(每小题3分,满分18分) 13.a(x?4)(x?4) 16.40
?14.1
15.2π 18.2
17.25180
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
三、解答题(本大题共9小题,满分66分)
19.解:原式??2?(?1)?1?2?6?········································································· (4分) 27 ·
17?2 ···································································································· (5分) 62 ?2. ······································································································· (6分) 20.证明:?AB∥CF,??A??ECF. ······························································ (2分)
又??AED??CEF,AE?CE, ?△AED≌△CEF. ··············································································· (5分) ?AD?CF. ····························································································· (6分)
??ab?2ab?a2?b221.解:原式?? ???2ab?b(a?b)a(a?b)?a2?b22ab ? ·············································································· (2分) ?ab(a?b)(a?b)2 ?(a?b)(a?b)2ab?
ab(a?b)(a?b)2 ?2. ·································································································· (4分) a?b当a??1?3,b??1?3时, 原式?2??1. ·························································································· (6分) ?222.依题意,设乙船速度为x海里/时,2小时后甲船在点B处,乙船在点C处,作PQ?BC于Q,则BP?80?2?12?56海里,PC?2x海里.
A 在Rt△PQB中,?BPQ?60,
?北 Q B 东 C ?P 1?PQ?BPcos60?56??28. ············································································ (2分)
2在Rt△PQC中,?QPC?45,
??PQ?PC?cos45??2?2x?2x. ······································································ (4分) 22x?28, x?142.
?x?19.7.
答:乙船的航行速度约为19.7海里/时. ······································································ (7分)
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
23.设改进操作方法后每天生产x件产品,则改进前每天生产(x?10)件产品. 依题意有
2220?100100??4. ·············································································· (3分) xx?10整理得x?65x?300?0.
解得x?5或x?60. ···································································································· (5分)
?x?5时,x?10??5?0,?x?5舍去. ?x?60.
答:改进操作方法后每天生产60件产品.··································································· (7分) 24.(1)依题意
n?23??n?5. ··············································································· (3分) n5(2)当n?5时,这5个球两个标号为1,其余标号分别为2,3,4.
两次取球的小球标号出现的所有可能的结果如下表:
第2个球的标号
4 (1,4) (1,4) (2,4) (3,4)
(1,3) (1,3) (2,3) (4,3) 3
(1,2) (1,2) (3,2) (4,2) 2
(1,1) (2,1) (3,1) (4,1) 1
1 1 (1,1) 1 (2,1) (3,1) 2 3 (4,1) 4 第1个球的标号
?由上表知所求概率为P?9. ················································································· (7分) 2025.依题意,甲店B型产品有(70?x)件,乙店A型有(40?x)件,B型有(x?10)件,则 (1)W?200x?170(70?x)?160(40?x)?150(x?10)
?20x?16800.
?x≥0,?70?x≥0,?由?解得10≤x≤40. ·············································································· (2分)
40?x≥0,???x?10≥0.(2)由W?20x?16800≥17560, ?x≥38.
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
?38≤x≤40,x?38,39,40.
?有三种不同的分配方案.
①x?38时,甲店A型38件,B型32件,乙店A型2件,B型28件. ②x?39时,甲店A型39件,B型31件,乙店A型1件,B型29件. ③x?40时,甲店A型40件,B型30件,乙店A型0件,B型30件. (3)依题意:
W?(200?a)x?170(70?x)?160(40?x)?150(x?10) ?(20?a)x?16800.
①当0?a?20时,x?40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大.
②当a?20时,10≤x≤40,符合题意的各种方案,使总利润都一样.
③当20?a?30时,x?10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大. ··································································································· (8分)
?AC?BC,?CE?26.(1)在Rt△AEB中,
1?CB?CE,??CEB??CBE.AB,
2A
E C G ??CEF??CBF?90?, ??BEF??EBF,?EF?BF.
??BEF??FED?90?,?EBD??EDB?90?,
??FED??EDF. B D M F H ?EF?FD. ?BF?FD. ················································································································ (3分) (2)由(1)BF?FD,而BC?CA, ?CF∥AD,即AE∥CF.
若AC∥EF,则AC?EF,?BC?BF. ?BA?BD,?A?45?.
·························· (6分) ?当0???A?45?或45???A?90?时,四边形ACFE为梯形. ·(3)作GH?BD,垂足为H,则GH∥AB.
11DA,?DH?DB. 44又F为BD中点,?H为DF的中点. ?GH为DF的中垂线. ??GDF??GFD.
?点G在EDh上,??EFD≥?GFD. ?DG???EFD??FDE??DEF?180?, ??GFD??FDE??DEF≤180?. ?3?EDF≤180?.
资料由大小学习网收集 www.dxstudy.com
资料由大小学习网收集 www.dxstudy.com
??EDF≤60?.
又?A??EDF?90,
??30?≤?A?90?.
?当30?≤?A?90?时,DE上存在点G,满足条件DG?1DA. ······················ (9分) 48)代入得a??1. 27.(1)设抛物线解析式为y?a(x?2)(x?4),把C(0,?y??x2?2x?8??(x?1)2?9,
,9) ·顶点D(1···················································································································· (2分)
(2)假设满足条件的点P存在,依题意设P(2,t),
8)D(19),求得直线CD的解析式为y?x?8, 由C(0,,它与x轴的夹角为45,设OB的中垂线交CD于H,则H(2,10).
?则PH?10?t,点P到CD的距离为d?22PH?10?t. 22又PO?t2?22?t2?4. ······················································································ (4分)
?t2?4?210?t. 22平方并整理得:t?20t?92?0
t??10?83.
············································ (6分) ?存在满足条件的点P,P的坐标为(2,?10?83). ·
0)F(412),. (3)由上求得E(?8,,①若抛物线向上平移,可设解析式为y??x?2x?8?m(m?0). 当x??8时,y??72?m. 当x?4时,y?m.
C 2y F D H P E A O B x ??72?m≤0或m≤12. ?0?m≤72.························· (8分)
资料由大小学习网收集 www.dxstudy.com 资料由大小学习网收集 www.dxstudy.com
②若抛物线向下移,可设解析式为y??x2?2x?8?m(m?0).
?y??x2?2x?8?m由?, ?y?x?8有x?x?m?0.
21?△?1?4m≥0,?0?m≤.
41····························· (10分) ?向上最多可平移72个单位长,向下最多可平移个单位长.·
4
资料由大小学习网收集 www.dxstudy.com
正在阅读:
初三数学试题2008年黄石市初中毕业生数学学业考试试题(含答案)12-28
深度探索C++对象模型的读后感10篇12-12
外国人最爱吃的八大中国菜04-22
帮你攻克邮件营销投资回报率低的难题07-25
17春秋福师《幼儿园教育》在线作业二06-13
资产评估阶段测试11-27
加强制度落实监察 充分发挥制度保障功能05-03
2016新课标高考5月冲刺实验专题巩固03-15
ns2通信网仿真作业210-18
风电平台风电道路施工组织设计04-15
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 黄石市
- 数学试题
- 考试试题
- 初三
- 学业
- 毕业生
- 初中
- 答案
- 数学
- 2008
- 广西2015年下半年内审师《内部审计基础》:中小企业内部控制面临的问题考试试题
- 浅谈小学数学课堂提问的误区和对策
- 浙江省台州市高中生物第二章细胞的结构2.2细胞膜和细胞壁教案浙科版必修1
- 13.医学电子学
- 浅谈建筑电气安装施工中存在的问题及应对措施
- 斜视弱视与小儿眼科新进展学习班-汕头国际眼科中心
- 乘法的初步认识练习与答案-人教版数学二年级上第四章表内乘法(一)第1节
- 小学高级职称评审表
- 《混凝土强度检验评定标准》GBT 50107-2010试题
- 北京市丰台区2018年中考数学二模卷
- 演讲稿-新时期中学共青团组织对青少年学生加强思想政治教育的方法探讨 精品
- 煤气柜施工方案1
- 2016-2017学年四川省成都外国语学校高三(上)开学物理试卷(解析版)
- 七年级语文上册复习要点
- 普洱市人民政府关于对全市尾矿库隐患整改进行挂牌督办的通知
- 高考物理一轮复习7.1电流、电阻、电功与电功率课时强化作业
- 常州 心理健康与心理调适 试卷(83分 82分卷)
- 两学一做专题实践心得体会
- 计算机应用基础期末复习题
- 公司金融学 试题及答案