机器人逆运动学

更新时间:2024-06-21 12:46:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

clear; clc;

L1 = Link('d', 0, 'a', 0, 'alpha', pi/2); %Link 类函数 L2 = Link('d', 0, 'a', 0.5, 'alpha', 0,'offset',pi/2); L3 = Link('d', 0, 'a', 0, 'alpha', pi/2,'offset',pi/4); L4 = Link('d', 1, 'a', 0, 'alpha', -pi/2); L5 = Link('d', 0, 'a', 0, 'alpha', pi/2); L6 = Link('d', 1, 'a', 0, 'alpha', 0);

b=isrevolute(L1); %Link 类函数

robot=SerialLink([L1,L2,L3,L4,L5,L6]); %SerialLink类函数 robot.name='带球形腕的拟人臂'; %SerialLink属性值 robot.manuf='飘零过客'; %SerialLink属性值 robot.display(); %Link 类函数 theta=[0 0 0 0 0 0];

robot.plot(theta); %SerialLink类函数

theta1=[pi/4,-pi/3,pi/6,pi/4,-pi/3,pi/6]; p0=robot.fkine(theta); p1=robot.fkine(theta1); s=robot.A([4 5 6],theta); cchain=robot.trchain; q=robot.getpos();

q2=robot.ikine(p1); %逆运动学

j0=robot.jacob0(q2); %雅可比矩阵 p0 =

-0.7071 -0.0000 0.7071 1.4142 0.0000 -1.0000 -0.0000 -0.0000 0.7071 0.0000 0.7071 1.9142 0 0 0 1.0000 p1 =

0.9874 0.1567 0.0206 1.0098 0.0544 -0.4593 0.8866 1.8758 0.1484 -0.8743 -0.4621 0.0467 0 0 0 1.0000 >>s s =

1 0 0 0 0 1 0 0 0 0 1 2 0 0 0 1

cchain =

Rz(q1)Rx(90)Rz(q2)Tx(0.5)Rz(q3)Rx(90)Rz(q4)Tz(1)Rx(-90)Rz(q5)Rx(90)Rz(q6)Tz(1) q =

0 0 0 0 0 0 q2 =

1.0e+04 *

0.0003 0.0180 -0.0399 1.1370 0.0002 0.0536 j0 =

-0.1100 0.0707 0.3577 -0.0114 0.5092 0 -0.8329 -0.0448 -0.2267 -0.6224 0.1813 0 -0.0000 0.7623 0.3956 -0.1410 -0.8413 0 -0.0000 0.5354 0.5354 0.3374 -0.0178 -0.8605 0.0000 0.8446 0.8446 -0.2139 -0.9751 0.1275 1.0000 0.0000 0.0000 0.9168 -0.2209 -0.4933

作者:fly qq

链接:https://www.zhihu.com/question/41673569/answer/129670927 来源:知乎

著作权归作者所有,转载请联系作者获得授权。

matlab机器人工具箱求串联机器人运动学逆解一般是采用ikine()函数,所以刚打开matlab看了一下源码。

(貌似新版本还加了其他求解算法,这边先不说,先解决题主的问题。) 我把它的主要步骤和贴出: % 初始化

% 定义目标T,迭代次数,误差等;

% 初始化当前误差e,

while true % 计算误差

Tq = robot.fkine(q'); e(1:3) = transl(T - Tq); Rq = t2r(Tq);

[th,n] = tr2angvec(Rq'*t2r(T)); e(4:6) = th*n;

J = jacob0(robot, q); % 计算雅克比 % 根据末端误差求取关节变化 if opt.pinv % 雅克比伪逆法

dq = opt.alpha * pinv( J(m,:) ) * e(m); else % 雅克比转置法 dq = J(m,:)' * e(m); dq = opt.alpha * dq; end

% 更新关节值 q = q + dq';

% 判断误差是否小于容许误差tolerance nm = norm(e(m)); if nm <= opt.tol break end end

所以,很简单,Matlab工具箱就是采用雅克比矩阵伪逆(或转置)来确定迭代方向,并通过迭代的方法使关节值收敛至目标位置。这应该是串联机器人运动学逆解数值解的最常用方法。

?

再回答为什么这么简单就可以求解逆解?

首先,只要给了D-H参数,雅克比矩阵很容易就可以推导出来(如果不会请参考各种机器人学教材,推荐John Craig的Introduction to robotics: mechanics and control)。

src=\\

class=\

data-original=\097a_r.png\

它就是关节速度与末端速度的线性关系。

src=\\

class=\

data-original=\8499_r.png\

于是,世界坐标系中的运动可以近似用关节的运动叠加得到;

越小,线性关系越准确,迭代求解的轨迹越接近图中直线;

但是,我们并不关心求解过程的运动方向,只关心最后求解的误差大小。 所以,一般迭代求解会对求解的步长做处理,也即增加一个变量加快求解速度。

,这样可以

所以,雅克比伪逆的思路是让机械臂末端往目标点方向移动。使用伪逆是为了应对非6-dof情况。

当然,看上面的代码,matlab机器人工具箱似乎可以用雅克比的转置代替雅克比伪逆。

% 根据末端误差求取关节变化 if opt.pinv % 雅克比伪逆法

dq = opt.alpha * pinv( J(m,:) ) * e(m); else % 雅克比转置法 dq = J(m,:)' * e(m); dq = opt.alpha * dq; end

这也很有趣,而且可以从很多角度来解释: 1)从力的角度:

根据虚功原理,可以有如下关系:

src=\\

class=\

data-original=\7482_r.png\

本文来源:https://www.bwwdw.com/article/t4i3.html

Top