线性代数知识点框架

更新时间:2024-06-25 05:34:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

线性代数知识点框架(一)

线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。

线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。

关于线性方程组的解,有三个问题值得讨论:(1)、方程组是否有解,即解的存在性问题;(2)、方程组如何求解,有多少个解;(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:(1)、把某个方程的k倍加到另外一个方程上去;(2)、交换某两个方程的位置;(3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。

任意的线性方程组都可以通过初等变换化为阶梯形方程组。

由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。

对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。

可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。

系数矩阵和增广矩阵。

高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。

阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。

对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r

在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。

常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。

齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。

利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。

对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。

通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。

用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。

总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。

线性代数知识点框架(二)

在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。

数域上的n元有序数组称为n维向量。设向量a=(a1,a2,...,an),称ai是a的第i个分量。

n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。

矩阵与向量通过行向量组和列向量组相联系。

对给定的向量组,可以定义它的一个线性组合。线性表出定义的是一个向量和另外一组向量之间的相互关系。

利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。同时要注意这个结论的双向作用。

从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。

通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。

从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。

部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。

回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,...,an线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到答案:b, a1, a2, ..., an线性相关。如果这个向量组本身是线性相关的,则需进一步探讨。

任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。

如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。如果A和B能互相线性表出,称A和B等价。

一个向量组可能又不止一个极大线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。

注意到一个重要事实:一个线性无关的向量组不能被个数比它更少的向量组线性表出。这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。

一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。

向量线性无关的充分必要条件是它的秩等于它所含向量的数目。等价的向量组有相同的秩。

有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。

向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。

线性代数知识点框架(三)

为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。

对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数

目,并且主元所在的列构成列向量组的一个极大线性无关组。

矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。

任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。

通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。

考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。总而言之,初等变换不会改变矩阵的秩。因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。

矩阵的秩,同时又可定义为不为零的子式的最高阶数。

满秩矩阵的行列式不等于零。非满秩矩阵的行列式必为零。

既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。另外,有唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r

齐次线性方程组的解的结构问题,可以用基础解系来表示。当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。

通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。

非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。

线性代数知识点框架(四)

在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。

矩阵的加法和数乘,与向量的运算类同。

矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。即可以把一个矩阵看作是一种线性变换在数学上的表述。

矩阵的乘法,反映的是线性变换的叠加。如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。

矩阵乘法的特点:若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。需要主义的是矩阵乘法不满足交换律,满足结合律。

利用矩阵乘积的写法,线性方程组可更简单的表示为:Ax=b。

对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。

关于矩阵乘积的另外一个重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。

一些特殊的矩阵:单位阵、对角阵、初等矩阵。尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。

每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。

若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。

第一种求逆阵的方法:伴随阵。这种方法的理论依据是行列式的按行(列)展开。

矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。

单位阵和初等矩阵都是可逆的。

若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。

可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。

由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。

矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然适用。将矩阵看成一些列行向量组或列向量组的形式,实际也就是一种最常见的对矩阵进行分块的方式。

首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。

为什么第一章如此重要? 各个章节本质上都是极限, 是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面

首先 对 极限的总结 如下

极限的保号性很重要 就是说在一定区间内 函数的正负与极限一致

1 极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)

2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)

1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记

(x趋近无穷的时候还原成无穷小)

2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!) 必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)

必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他 法则分为3中情况

1 0比0 无穷比无穷 时候 直接用

2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了 3 0的0次方 1的无穷次方 无穷的0次方

对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)

3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)

E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助

4面对无穷大比上无穷大形式的解决办法 取大头原则 最大项除分子分母!!!!!!!!!!!

看上去复杂处理很简单 !!!!!!!!!!

5无穷小于有界函数的处理办法

面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!

6夹逼定理(主要对付的是数列极限!)

这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。

7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限) 可以使用待定系数法来拆分化简函数

9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化

10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式 (地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)

11 还有个方法 ,非常方便的方法 就是当趋近于无穷大时候

不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!

x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!

当x趋近无穷的时候 他们的比值的极限一眼就能看出来了

12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中

13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的

14还有对付数列极限的一种方法,

就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。

15单调有界的性质

对付递推数列时候使用 证明单调性!!!!!!

16直接使用求导数的定义来求极限 ,

(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见

了有特别注意)

(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!)

(从网上发现,谢谢总结者)

高等数学:掌握四点诀窍,有阶段进行复习

http://www.kaoyan.com 2010-03-04 万学·海文

考研中考数学的考生,数学是十分关键的,如何学好数学成了一个大问题,数学分为高等数学,概率论与数理统计和线性代数三个科目,一般而言线性代数都会认为比较简单,概率论的比例次于高等数学,重头戏就是高等数学了,那么如何在数学中的高等数学得高分呢,每个人都有不同的学习方法,也许适合你,也许还需要自己在学习中总结,总归到最后,就是适合自己的学习方法才是好方法,下面就为大家讲解一下高数的学习方法,仅供参考,希望能对2011年考研的同学有所帮助。

高等数学确实是一门比较难的课程。极限的运算、无穷小量、一元微积分学、多元微积分学、无穷级数等章节都有比较大的难度。

很多人对“怎样才能学好这门课程?”感到困惑。我们根据教研室老师们多年教学经验和学员的学习经验总结,要想学好高等数学,要做到以下几点:

第一,要理解概念。

数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。

第二,要掌握定理。

定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。

第三,在弄懂例题的基础上作适量的习题。

要特别提醒学习者的是,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。

第四,理清脉络。

要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。

高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的。(当然在他们之前就已有微积分的应用,但不够系统)

数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。

其实数学是基础性学科,解题能力的提高,是一个长期积累的过程,因而复习时间就应适当提前,循序渐进。大致在三、四月分开始着手进行复习,如果数学基础差可以将复习的时间适当提前。复习一定要有一个可行的计划,通过计划保证复习的进度和效果。一般可以将复习分成四个阶段,每个阶段的起止时间和所要完成的任务考生应给予明确规定,以保证计划的可行性。 第一个阶段是按照考试大纲划分复习范围,在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。这个时间段一般划定为六月前。第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。一般从七月到十月。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,可以视情况而灵活掌握,这样省出时间来看更多的题。所选试题可以是历年真题,也可以是书上的练习题,但真题一定要做,而且要严格按照实考的要求去做,把握真题的特点和解题思路及运算步骤。第三个阶段是实战训练阶段,从十一月到十二月的中旬,这也是临考前非常重要的阶段。考生要对大纲所要求的知识点做最后的梳理,熟记公式,系统地做几套模拟试卷,进行实战训练,自测复习成果。在做模拟题前先要系统记忆掌握基本公式,做题要讲究质量,既要有速度,又要有严格的步骤、格式和计算的准确性。最后阶段是考前冲刺,从十二月下旬到考试。针对在做模拟试题过程中出现的问题作最后的补习,查缺补漏,以便以最佳的状态参加考试。 学好数学是一个长期的过程,来不得半点的投机取巧,所以考前突击,临时抱佛脚的做法是不足取的,只有按照自己的计划,踏踏实实的进行准备,才能以不变应万变,只要自己的综合能力提高了,不管考试如何变化,都能取得好的成绩。 数学的学习一定要每天都有个进度,每天都要有题量,我们不应该搞题海战术,但是通过做题提高实战经验也是必须的,首先有个大的学习框架,然后计划到每天,怎么去学习,每天做那方面的题,定期的查漏补缺,这样的学习才真正的有效果。

最后,预祝所有准备考研的学子都能榜上有名,考上理想的学校!

目 录

一、函数与极限 2 1、集合的概念 2 2、常量与变量 3 2、函数 4

3、函数的简单性态 4 4、反函数 5 5、复合函数 6 6、初等函数 6

7、双曲函数及反双曲函数 7 8、数列的极限 8 9、函数的极限 9

10、函数极限的运算规则 11

一、函数与极限 1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、??表示集合,用小写拉丁字母a、b、c??表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。记作 ,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A

②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。

即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集

合为全集。通常记作U。

②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CUA。 即CUA={x|x∈U,且x A}。 集合中元素的个数 ⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。 ⑶、一般地,对任意两个集合A、B,有 card(A)+card(B)=card(A∪B)+card(A∩B) 我的问题:

1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。 2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。

3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立?

4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?

5、无限集合A={1,2,3,4,?,n,?},B={2,4,6,8,?,2n,?},你能设计一种比较这两个集合中元素个数多少的方法吗? 2、常量与变量

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 ⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。

区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示

闭区间 a≤x≤b [a,b] 开区间 a<x<b (a,b) 半开区间 a<x≤b或a≤x<b (a,b]或[a,b)

以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作\负无穷大\和\正无穷大\它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数

⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母\、\表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法

a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:

3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的.

⑵、函数的单调性:如果函数 在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有 ,则称函数 在区间(a,b)内是单调增加的。如果函数 在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有 ,则称函数 在区间(a,b)内是单调减小的。

例题:函数 =x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。 ⑶、函数的奇偶性

如果函数 对于定义域内的任意x都满足 = ,则 叫做偶函数;如果函数 对于定义域内的任意x都满足 =- ,则 叫做奇函数。

注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。 ⑷、函数的周期性

对于函数 ,若存在一个不为零的数l,使得关系式 对于定义域内任何x值都成立,则 叫做周期函数,l是 的周期。

注:我们说的周期函数的周期是指最小正周期。

例题:函数 是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。 4、反函数

⑴、反函数的定义:设有函数 ,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即 ,那末变量x是变量y的函数.这个函数用 来表示,称为函数 的反函数.

注:由此定义可知,函数 也是函数 的反函数。

⑵、反函数的存在定理:若 在(a,b)上严格增(减),其值域为 R,则它的反函数必然在R上确定,且严格增(减).

注:严格增(减)即是单调增(减)

例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=± .若我

们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求x≥0,则对y≥0、x= 就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).

⑶、反函数的性质:在同一坐标平面内, 与 的图形是关于直线y=x对称的。

例题:函数 与函数 互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:

5、复合函数

复合函数的定义:若y是u的函数: ,而u又是x的函数: ,且 的函数值的全部或部分在 的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数 及 复合而成的函数,简称复合函数,记作 ,其中u叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。 例题:函数 与函数 是不能复合成一个函数的。

因为对于 的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使 都没有定义。

6、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下: 函数名称 函数的记号 函数的图形 函数的性质 指数函数

a):不论x为何值,y总为正数; b):当x=0时,y=1. 对数函数

a):其图形总位于y轴右侧,并过(1,0)点

b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增. 幂函数 a为任意实数

这里只画出部分函数图形的一部分。 令a=m/n a):当m为偶数n为奇数时,y是偶函数; b):当m,n都是奇数时,y是奇函数; c):当m奇n偶时,y在(-∞,0)无意义. 三角函数 (正弦函数) 这里只写出了正弦函数

a):正弦函数是以2π为周期的周期函数 b):正弦函数是奇函数且 反三角函数 (反正弦函数) 这里只写出了反正弦函数

a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值. ⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数. 例题: 是初等函数。 7、双曲函数及反双曲函数

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述) 函数的名称 函数的表达式 函数的图形 函数的性质 双曲正弦

a):其定义域为:(-∞,+∞); b):是奇函数;

c):在定义域内是单调增 双曲余弦

a):其定义域为:(-∞,+∞); b):是偶函数;

c):其图像过点(0,1); 双曲正切

a):其定义域为:(-∞,+∞); b):是奇函数;

c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增; 我们再来看一下双曲函数与三角函数的区别: 双曲函数的性质 三角函数的性质

shx与thx是奇函数,chx是偶函数 sinx与tanx是奇函数,cosx是偶函数

它们都不是周期函数 都是周期函数 双曲函数也有和差公式:

⑵、反双曲函数:双曲函数的反函数称为反双曲函数. a):反双曲正弦函数 其定义域为:(-∞,+∞); b):反双曲余弦函数 其定义域为:[1,+∞); c):反双曲正切函数 其定义域为:(-1,+1); 8、数列的极限

我们先来回忆一下初等数学中学习的数列的概念。

⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,?,依次排列下去,使得任何一个正整数n对应着一个确定的数an,那末,我们称这列有次序的数a1,a2,?,an,?为数列.数列中的每一个数叫做数列的项。第n项an叫做数列的一般项或通项.

注:我们也可以把数列an看作自变量为正整数n的函数,即:an= ,它的定义域是全体正整数

⑵、极限:极限的概念是求实际问题的精确解答而产生的。 例:我们可通过作圆的内接正多边形,近似求出圆的面积。

设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为An)可得一系列内接正多边形的面积:A1,A2,A3,?,An,?,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,?,An,? 当n→∞(读作n趋近于无穷大)的极限。

注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。

⑶、数列的极限:一般地,对于数列 来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切 不等式 都成立,那末就称常数a是数列 的极限,或者称数列 收敛于a . 记作: 或

注:此定义中的正数ε只有任意给定,不等式 才能表达出 与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

⑷、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列 极限为a的一个几何解释:将常数a及数列 在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式 与不等式 等价,故当n>N时,所有的点 都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。

注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。

⑸、数列的有界性:对于数列 ,若存在着正数M,使得一切 都满足不等式│ │≤M,则称数列 是有界的,若正数M不存在,则可说数列 是无界的。 定理:若数列 收敛,那末数列 一定有界。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,?,(-1)n+1,? 是有界的,但它是发散的。 9、函数的极限

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取 1→∞内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢 ?

下面我们结合着数列的极限来学习一下函数极限的概念! ⑴、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数 ,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式 的一切x,所对应的函数值 都满足不等式

那末常数A就叫做函数 当x→∞时的极限,记作: 下面我们用表格把函数的极限与数列的极限对比一下: 数列的极限的定义 函数的极限的定义 存在数列 与常数A,任给一正数ε>0,总可找到一正整数N,对于n>N的所有 都满足 <ε则称数列 ,当x→∞时收敛于A记: 。

存在函数 与常数A,任给一正数ε>0,总可找到一正数X,对于适合 的一切x,都满足 ,函数 当x→∞时的极限为A,记: 。 从上表我们发现了什么 ??试思考之

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数 ,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

从中我们可以看出x→1时, →2.而且只要x与1有多接近, 就与2有多接近.或说:只要 与2只差一个微量ε,就一定可以找到一个δ,当 <δ时满足 <δ定义:设函数 在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0< <δ时, <ε则称函数 当x→x0时存在极限,且极限为A,记: 。

注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢? a):先任取ε>0;

b):写出不等式 <ε;

c):解不等式能否得出去心邻域0< <δ,若能;

d):则对于任给的ε>0,总能找出δ,当0< <δ时, <ε成立,因此 10、函数极限的运算规则

前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。 ⑴、函数极限的运算规则

若已知x→x0(或x→∞)时, . 则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。 例题:求 解答: 例题:求

此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。 解答: 注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。 函数极限的存在准则

学习函数极限的存在准则之前,我们先来学习一下左、右的概念。 我们先来看一个例子: 例:符号函数为

对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。

定义:如果x仅从左侧(x<x0)趋近x0时,函数 与常量A无限接近,则称A为函数 当 时的左极限.记:

如果x仅从右侧(x>x0)趋近x0时,函数 与常量A无限接近,则称A为函数 当 时的右极限.记:

注:只有当x→x0时,函数 的左、右极限存在且相等,方称 在x→x0时有极限 函数极限的存在准则

准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有 ≤ ≤ ,且 , 那末 存在,且等于A

注:此准则也就是夹逼准则.

准则二:单调有界的函数必有极限. 注:有极限的函数不一定单调有界 两个重要的极限 一:

注:其中e为无理数,它的值为:e=2.718281828459045... 二:

注:在此我们对这两个重要极限不加以证明.

注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们. 例题:求

解答:令 ,则x=-2t,因为x→∞,故t→∞, 则

注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0.

无穷大量和无穷小量 无穷大量

我们先来看一个例子:

已知函数 ,当x→0时,可知 ,我们把这种情况称为 趋向无穷大。为此我们可定义如下:设有函数y= ,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当

时, 成立,则称函数当 时为无穷大量。

记为: (表示为无穷大量,实际它是没有极限的)

同样我们可以给出当x→∞时, 无限趋大的定义:设有函数y= ,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当 时, 成立,则称函数当x→∞时是无穷大量,记为: 无穷小量

以零为极限的变量称为无穷小量。

定义:设有函数 ,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式 (或 )的一切x,所对应的函数值满足不等式 ,则称函数 当 (或x→∞)时 为无穷小量. 记作: (或 )

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的. 关于无穷小量的两个定理

定理一:如果函数 在 (或x→∞)时有极限A,则差 是当 (或x→∞)时的无穷小量,反之亦成立。

定理二:无穷小量的有利运算定理

a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较

通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是 时的无穷小量,且β在x0的去心领域内不为零, a):如果 ,则称α是β的高阶无穷小或β是α的低阶无穷小; b):如果 ,则称α和β是同阶无穷小;

c):如果 ,则称α和β是等价无穷小,记作:α∽β(α与β等价) 例:因为 ,所以当x→0时,x与3x是同阶无穷小; 因为 ,所以当x→0时,x2是3x的高阶无穷小; 因为 ,所以当x→0时,sinx与x是等价无穷小。 等价无穷小的性质 设 ,且 存在,则 .

注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。 例题:1.求

解答:当x→0时,sinax∽ax,tanbx∽bx,故: 例题: 2.求 解答: 注:

注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。

函数的一重要性质——连续性

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性

在定义函数的连续性之前我们先来学习一个概念——增量

设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x即:△x=x2-x1 增量△x可正可负.

我们再来看一个例子:函数 在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+△x时,函数y相应地从 变到 ,其对应的增量为:

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,即: ,那末就称函数 在点x0处连续。 函数连续性的定义:

设函数 在点x0的某个邻域内有定义,如果有 称函数 在点x0处连续,且称x0为函数的 的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数 在区间(a,b]内有定义,如果左极限 存在且等于 ,即: = ,那末我们就称函数 在点b左连续.设函数 在区间[a,b)内有定义,如果右极限 存在且等于 ,即: = ,那末我们就称函数 在点a右连续.

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续. 注:连续函数图形是一条连续而不间断的曲线。 通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点 函数的间断点

定义:我们把不满足函数连续性的点称之为间断点.

它包括三种情形: a): 在x0无定义; b): 在x→x0时无极限; c): 在x→x0时有极限但不等于 ;下面我们通过例题来学习一下间断点的类型:

例1: 正切函数 在 处没有定义,所以点 是函数 的间断点,因 ,我们就称 为函数 的无穷间断点;

例2:函数 在点x=0处没有定义;故当x→0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数 的振荡间断点;

例3:函数 当x→0时,左极限 ,右极限 ,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:

间断点的分类

我们通常把间断点分成两类:如果x0是函数 的间断点,且其左、右极限都存在,我们把x0称为函数 的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点. 可去间断点

若x0是函数 的间断点,但极限 存在,那末x0是函数 的第一类间断点。此时函数不连续原因是: 不存在或者是存在但 ≠ 。我们令 ,则可使函数 在点x0处连续,故这种间断点x0称为可去间断点。

连续函数的性质及初等函数的连续性 连续函数的性质

函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论: a):有限个在某点连续的函数的和是一个在该点连续的函数; b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零); 反函数的连续性

若函数 在某区间上单调增(或单调减)且连续,那末它的反函数 也在对应的区间上单调增(单调减)且连续 例:函数 在闭区间 上单调增且连续,故它的反函数 在闭区间[-1,1]上也是单调增且连续的。 复合函数的连续性

设函数 当x→x0时的极限存在且等于a,即: .而函数 在点u=a连续,那末复合函数 当x→x0时的极限也存在且等于 .即: 例题:求 解答:

注:函数 可看作 与 复合而成,且函数 在点u=e连续,因此可得出上述结论。

设函数 在点x=x0连续,且 ,而函数 在点u=u0连续,那末复合函数 在点x=x0也是连续的

初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的. 闭区间上连续函数的性质

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连

续函数有几条重要的性质,下面我们来学习一下:

最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)

例:函数y=sinx在闭区间[0,2π]上连续,则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]上其它各点出的函数值;则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函数值。

介值定理 在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即: ,μ在α、β之间,则在[a,b]间一定有一个ξ,使

推论: 在闭区间连续的函数必取得介于最大值最小值之间的任何值。 二、导数与微分 导数的概念

在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。例:设一质点沿x轴运动时,其位置x是时间t的函数, ,求质点在t0的瞬时速度?我们知道时间从t0有增量△t时,质点的位置有增量 ,这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: .若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下:

导数的定义:设函数 在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量 ,若△y与△x之比当△x→0时极限存在,则称这个极限值为 在x0处的导数。记为: 还可记为: ,

函数 在点x0处存在导数简称函数 在点x0处可导,否则不可导。若函数 在区间(a,b)内每一点都可导,就称函数 在区间(a,b)内可导。这时函数 对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数 的导函数。

注:导数也就是差商的极限 左、右导数

前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限 存在,我们就称它为函数 在x=x0处的左导数。若极限 存在,我们就称它为函数 在x=x0处的右导数。

注:函数 在x0处的左右导数存在且相等是函数 在x0处的可导的充分必要条件 函数的和、差求导法则 函数的和差求导法则

法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为: 。其中u、v为可导函数。 例题:已知 ,求 解答:

例题:已知 ,求 解答:

函数的积商求导法则

常数与函数的积的求导法则

法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 例题:已知 ,求 解答:

函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 例题:已知 ,求 解答:

注:若是三个函数相乘,则先把其中的两个看成一项。 函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 例题:已知 ,求 解答:

复合函数的求导法则

在学习此法则之前我们先来看一个例子! 例题:求 =?

解答:由于 ,故 这个解答正确吗?

这个解答是错误的,正确的解答应该如下:

我们发生错误的原因是 是对自变量x求导,而不是对2x求导。 下面我们给出复合函数的求导法则 复合函数的求导规则 规则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数。用公式表示为: ,其中u为中间变量 例题:已知 ,求

解答:设 ,则 可分解为 , 因此

注:在以后解题中,我们可以中间步骤省去。 例题:已知 ,求 解答: 反函数求导法则

根据反函数的定义,函数 为单调连续函数,则它的反函数 ,它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):

定理:若 是单调连续的,且 ,则它的反函数 在点x可导,且有: 注:通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。注:这里的反函数是以y为自变量的,我们没有对它作记号变换。

即: 是对y求导, 是对x求导 例题:求 的导数.

解答:此函数的反函数为 ,故 则:

例题:求 的导数.

解答:此函数的反函数为 ,故 则:

高阶导数

我们知道,在物理学上变速直线运动的速度v(t)是位置函数s(t)对时间t的导数,即: ,而加速度a又是速度v对时间t的变化率,即速度v对时间t的导数: ,或 。这种导数的导数 叫做s对t的二阶导数。下面我们给出它的数学定义:

定义:函数 的导数 仍然是x的函数.我们把 的导数叫做函数 的二阶导数,记作 或 ,即: 或 .相应地,把 的导数 叫做函数 的一阶导数.类似地,二阶导数的导数,叫做三阶导数,三阶导数的导数,叫做四阶导数,?,一般地(n-1)阶导数的导数叫做n阶导数. 分别记作: , ,?, 或 , ,?,

二阶及二阶以上的导数统称高阶导数。由此可见,求高阶导数就是多次接连地求导,所以,在求高阶导数时可运用前面所学的求导方法。 例题:已知 ,求 解答:因为 =a,故 =0 例题:求对数函数 的n阶导数。 解答: , , , , 一般地,可得

隐函数及其求导法则

我们知道用解析法表示函数,可以有不同的形式.若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.

一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,则我们就说方程F(x,y)=0在该区间上确定了x的隐函数y.把一个隐函数化成显函数的形式,叫做隐函数的显化。注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?下面让我们来解决这个问题! 隐函数的求导

若已知F(x,y)=0,求 时,一般按下列步骤进行求解:

a):若方程F(x,y)=0,能化为 的形式,则用前面我们所学的方法进行求导;

b):若方程F(x,y)=0,不能化为 的形式,则是方程两边对x进行求导,并把y看成x的函数 ,用复合函数求导法则进行。 例题:已知 ,求

解答:此方程不易显化,故运用隐函数求导法.两边对x进行求导, , ,故 =

注:我们对隐函数两边对x进行求导时,一定要把变量y看成x的函数,然后对其利用复合函数求导法则进行求导。

例题:求隐函数 ,在x=0处的导数

解答:两边对x求导 ,故 ,当x=0时,y=0.故 。

有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢?下面我们再来学习一种求导的方法:对数求导法 对数求导法

对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。注:此方法特别适用于幂函数的求导问题。 例题:已知 x>0,求

此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行求导,就比较简便些。如下

解答:先两边取对数: ,把其看成隐函数,再两边求导

因为 ,所以 例题:已知 ,求

此题可用复合函数求导法则进行求导,但是比较麻烦,下面我们利用对数求导法进行求导

解答:先两边取对数 再两边求导 因为 ,所以 函数的微分

学习函数的微分之前,我们先来分析一个具体问题:一块正方形金属薄片受温度变化的影响时,其边长由x0变到了x0+△x,则此薄片的面积改变了多少?

解答:设此薄片的边长为x,面积为A,则A是x的函数: 薄片受温度变化的影响面积的改变量,可以看成是当自变量x从x0取的增量△x时,函数A相应的增量△A,即: 。从上式我们可以看出,△A分成两部分,第一部分 是△x的线性函数,即下图中红色部分;第二部分 即图中的黑色部分, 当△x→0时,它是△x的高阶无穷小,表示为:

由此我们可以发现,如果边长变化的很小时,面积的改变量可以近似的用地一部分来代替。下面我们给出微分的数学定义:

函数微分的定义:设函数在某区间内有定义,x0及x0+△x在这区间内,若函数的增量可表示为 ,其中A是不依赖于△x的常数, 是△x的高阶无穷小,则称函数 在点x0可微的。 叫做函数 在点x0相应于自变量增量△x的微分,记作dy,即: = 。

通过上面的学习我们知道:微分 是自变量改变量△x的线性函数,dy与△y的差 是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。于是我们又得出:当△x→0时,△y≈dy.导数的记号为: ,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为: 由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。

微分形式不变性

什么是微分形式不边形呢? 设 ,则复合函数 的微分为: ,

由于 ,故我们可以把复合函数的微分写成

由此可见,不论u是自变量还是中间变量, 的微分dy总可以用 与du的乘积来表示, 我们把这一性质称为微分形式不变性。 例题:已知 ,求dy

解答:把2x+1看成中间变量u,根据微分形式不变性,则 通过上面的学习,我们知道微分与导数有着不可分割的联系,前面我们知道基本初等函数的导数公式和导数

的运算法则,那么基本初等函数的微分公式和微分运算法则是怎样的呢?

下面我们来学习———基本初等函数的微分公式与微分的运算法则基本初等函数的微分公式与微分的运算法则

基本初等函数的微分公式 由于函数微分的表达式为: ,于是我们通过基本初等函数导数的公式可得出基本初等函数微分的公式,下面我们用表格来把基本初等函数的导数公式与微分公式对比一下:(部分公式) 导数公式 微分公式

微分运算法则

由函数和、差、积、商的求导法则,可推出相应的微分法则.为了便于理解,下面我们用表格来把微分的运算法则与导数的运算法则对照一下: 函数和、差、积、商的求导法则 函数和、差、积、商的微分法则

复合函数的微分法则就是前面我们学到的微分形式不变性,在此不再详述。 例题:设 ,求 对x3的导数 解答:根据微分形式的不变性 微分的应用

微分是表示函数增量的线性主部.计算函数的增量,有时比较困难,但计算微分则比较简单,为此我们用函数的微分来近似的代替函数的增量,这就是微分在近似计算中的应用. 例题:求 的近似值。

解答:我们发现用计算的方法特别麻烦,为此把转化为求微分的问题

故其近似值为1.025(精确值为1.024695) 三、导数的应用 微分学中值定理

在给出微分学中值定理的数学定义之前,我们先从几何的角度看一个问题,如下: 设有连续函数 ,a与b是它定义区间内的两点(a<b),假定此函数在(a,b)处处可导,也就是在(a,b)内的函数图形上处处都由切线,那末我们从图形上容易直到,

差商 就是割线AB的斜率,若我们把割线AB作平行于自身的移动,那么至少有一次机会达到离割线最远的一点P(x=c)处成为曲线的切线,而曲线的斜率为 ,由于切线与割线是平行的,因此

成立。

注:这个结果就称为微分学中值定理,也称为拉格朗日中值定理 拉格朗日中值定理

如果函数 在闭区间[a,b]上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c,使 成立。 这个定理的特殊情形,即: 的情形,称为罗尔定理。描述如下:

若 在闭区间[a,b]上连续,在开区间(a,b)内可导,且 ,那末在(a,b)内至少有一点c,使 成立。

注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。 注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍 下面我们在学习一条通过拉格朗日中值定理推广得来的定理——柯西中值定理

柯西中值定理

如果函数 , 在闭区间[a,b]上连续,在开区间(a,b)内可导,且 ≠0,那末在(a,b)内至少有一点c,使 成立。 例题:证明方程 在0与1之间至少有一个实根 证明:不难发现方程左端 是函数 的导数:

函数 在[0,1]上连续,在(0,1)内可导,且 ,由罗尔定理 可知,在0与1之间至少有一点c,使 ,即

也就是:方程 在0与1之间至少有一个实根未定式问题

问题:什么样的式子称作未定式呢?

答案:对于函数 , 来说,当x→a(或x→∞)时,函数 , 都趋于零或无穷大

则极限 可能存在,也可能不存在,我们就把式子 称为未定式。分别记为 型 我们容易知道,对于未定式的极限求法,是不能应用\商的极限等于极限的商\这个法则来求解的,那么我们该如何求这类问题的极限呢?

下面我们来学习罗彼塔(L'Hospital)法则,它就是这个问题的答案 注:它是根据柯西中值定理推出来的。 罗彼塔(L'Hospital)法则

当x→a(或x→∞)时,函数 , 都趋于零或无穷大,在点a的某个去心邻域内(或当│x│>N)时, 与 都存在, ≠0,且 存在 则: =

这种通过分子分母求导再来求极限来确定未定式的方法,就是所谓的罗彼塔(L'Hospital)法则

注:它是以前求极限的法则的补充,以前利用法则不好求的极限,可利用此法则求解。 例题:求 解答:容易看出此题利用以前所学的法则是不易求解的,因为它是未定式中的 型求解问题,因此我们就可以利用上面所学的法则了。 例题:求

解答:此题为未定式中的 型求解问题,利用罗彼塔法则来求解

另外,若遇到 、 、 、 、 等型,通常是转化为 型后,在利用法则求解。

例题:求

解答:此题利用以前所学的法则是不好求解的,它为 型,故可先将其转化为 型后在求解,

注:罗彼塔法则只是说明:对未定式来说,当 存在,则 存在且二者的极限相同;而并不是 不存在时, 也不存在,此时只是说明了罗彼塔法则存在的条件破列。 函数单调性的判定法

函数的单调性也就是函数的增减性,怎样才能判断函数的增减性呢? 我们知道若函数在某区间上单调增(或减),则在此区间内函数图形上切线的斜率均为正(或负),也就是函数的导数在此区间上均取正值(或负值).因此我们可通过判定函数导数的正负来判定函数的增减性. 判定方法:

设函数 在[a,b]上连续,在(a,b)内可导.

a):如果在(a,b)内 >0,那末函数 在[a,b]上单调增加;

b):如果在(a,b)内 <0,那末函数 在[a,b]上单调减少. 例题:确定函数 的增减区间.

解答:容易确定此函数的定义域为(-∞,+∞) 其导数为: ,因此可以判出:

当x>0时, >0,故它的单调增区间为(0,+∞); 当x<0时, <0,故它的单调减区间为(-∞,0); 注:此判定方法若反过来讲,则是不正确的。 函数的极值及其求法

在学习函数的极值之前,我们先来看一例子:

设有函数 ,容易知道点x=1及x=2是此函数单调区间的分界点,又可知在点x=1左侧附近,函数值是单调增加的,在点x=1右侧附近,函数值是单调减小的.因此存在着点x=1的一个邻域,对于这个邻域内,任何点x(x=1除外), < 均成立,点x=2也有类似的情况(在此不多说),为什么这些点有这些性质呢?

事实上,这就是我们将要学习的内容——函数的极值, 函数极值的定义

设函数 在区间(a,b)内有定义,x0是(a,b)内一点.

若存在着x0点的一个邻域,对于这个邻域内任何点x(x0点除外), < 均成立, 则说 是函数 的一个极大值;

若存在着x0点的一个邻域,对于这个邻域内任何点x(x0点除外), > 均成立, 则说 是函数 的一个极小值.

函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 我们知道了函数极值的定义了,怎样求函数的极值呢? 学习这个问题之前,我们再来学习一个概念——驻点 凡是使 的x点,称为函数 的驻点。 判断极值点存在的方法有两种:如下 方法一:

设函数 在x0点的邻域可导,且 .

情况一:若当x取x0左侧邻近值时, >0,当x取x0右侧邻近值时, <0, 则函数 在x0点取极大值。

情况一:若当x取x0左侧邻近值时, <0,当x取x0右侧邻近值时, >0, 则函数 在x0点取极小值。

注:此判定方法也适用于导数在x0点不存在的情况。 用方法一求极值的一般步骤是: a):求 ;

b):求 的全部的解——驻点;

c):判断 在驻点两侧的变化规律,即可判断出函数的极值。 例题:求 极值点 解答:先求导数

再求出驻点:当 时,x=-2、1、-4/5 判定函数的极值,如下图所示 方法二:

设函数 在x0点具有二阶导数,且 时 .

则:a):当 <0,函数 在x0点取极大值; b):当 >0,函数 在x0点取极小值;

c):当 =0,其情形不一定,可由方法一来判定. 例题:我们仍以例1为例,以比较这两种方法的区别。

解答:上面我们已求出了此函数的驻点,下面我们再来求它的二阶导数。

,故此时的情形不确定,我们可由方法一来判定; <0,故此点为极大值点;

>0,故此点为极小值点。函数的最大值、最小值及其应用

在工农业生产、工程技术及科学实验中,常会遇到这样一类问题:在一定条件下,怎样使\产品最多\、\用料最省\、\成本最低\等。

这类问题在数学上可归结为求某一函数的最大值、最小值的问题。

怎样求函数的最大值、最小值呢?前面我们已经知道了,函数的极值是局部的。要求 在[a,b]上的最大值、最小值时,可求出开区间(a,b)内全部的极值点,加上端点 的值,从中取得最大值、最小值即为所求。

例题:求函数 ,在区间[-3,3/2]的最大值、最小值。 解答: 在此区间处处可导,

先来求函数的极值 ,故x=±1,

再来比较端点与极值点的函数值,取出最大值与最小值即为所求。 因为 , , ,

故函数的最大值为 ,函数的最小值为 。 例题:圆柱形罐头,高度H与半径R应怎样配,使同样容积下材料最省? 解答:由题意可知: 为一常数, 面积

故在V不变的条件下,改变R使S取最小值。

故: 时,用料最省。曲线的凹向与拐点

通过前面的学习,我们知道由一阶导数的正负,可以判定出函数的单调区间与极值,但是还不能进一步研究曲线的性态,为此我们还要了解曲线的凹性。 定义:

对区间I的曲线 作切线,如果曲线弧在所有切线的下面,则称曲线在区间I下凹,如果曲线在切线的上面,称曲线在区间I上凹。 曲线凹向的判定定理

定理一:设函数 在区间(a,b)上可导,它对应曲线是向上凹(或向下凹)的充分必要条件是: 导数 在区间(a,b)上是单调增(或单调减)。

定理二:设函数 在区间(a,b)上可导,并且具有一阶导数和二阶导数;那末: 若在(a,b)内, >0,则 在[a,b]对应的曲线是下凹的;

若在(a,b)内, <0,则 在[a,b]对应的曲线是上凹的; 例题:判断函数 的凹向

解答:我们根据定理二来判定。

因为 ,所以在函数 的定义域(0,+∞)内, <0, 故函数所对应的曲线时下凹的。 拐点的定义

连续函数上,上凹弧与下凹弧的分界点称为此曲线上的拐点。 拐定的判定方法

如果 在区间(a,b)内具有二阶导数,我们可按下列步骤来判定 的拐点。

(1):求 ;

(2):令 =0,解出此方程在区间(a,b)内实根;

(3):对于(2)中解出的每一个实根x0,检查 在x0左、右两侧邻近的符号,若符号相反,则此点是拐点,若相同,则不是拐点。 例题:求曲线 的拐点。 解答:由 ,

令 =0,得x=0,2/3

判断 在0,2/3左、右两侧邻近的符号,可知此两点皆是曲线的拐点。四、不定积分

不定积分的概念

原函数的概念

已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有

dF'(x)=f(x)dx, 则在该区间内就称函数F(x)为函数f(x)的原函数。 例:sinx是cosx的原函数。 关于原函数的问题

函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那末原函数一共有多少个呢?

我们可以明显的看出来:若函数F(x)为函数f(x)的原函数, 即:F\,

则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数, 故:若函数f(x)有原函数,那末其原函数为无穷多个. 不定积分的概念

函数f(x)的全体原函数叫做函数f(x)的不定积分, 记作 。 由上面的定义我们可以知道:如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分 就是函数族

F(x)+C. 即: =F(x)+C 例题:求: .

解答:由于 ,故 = 不定积分的性质

1、函数的和的不定积分等于各个函数的不定积分的和; 即:

2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来, 即: 求不定积分的方法 换元法

换元法(一):设f(u)具有原函数F(u),u=g(x)可导,那末F[g(x)]是f[g(x)]g'(x)的原函数. 即有换元公式: 例题:求

解答:这个积分在基本积分表中是查不到的,故我们要利用换元法。

设u=2x,那末cos2x=cosu,du=2dx,因此:

换元法(二):设x=g(t)是单调的,可导的函数,并且g'(t)≠0,又设f[g(t)]g'(t)具有原函数φ(t),

则φ[g(x)]是f(x)的原函数.(其中g(x)是x=g(t)的反函数) 即有换元公式: 例题:求

解答:这个积分的困难在于有根式,但是我们可以利用三角公式来换元. 设x=asint(-π/2

关于换元法的问题

不定积分的换元法是在复合函数求导法则的基础上得来的,我们应根据具体实例来选择所用的方法,求不定积分不象求导那样有规则可依,因此要想熟练的求出某函数的不定积分,只有作大量的练习。 分部积分法

这种方法是利用两个函数乘积的求导法则得来的。

设函数u=u(x)及v=v(x)具有连续导数.我们知道,两个函数乘积的求导公式为: (uv)'=u'v+uv',移项,得

uv'=(uv)'-u'v,对其两边求不定积分得: , 这就是分部积分公式 例题:求

解答:这个积分用换元法不易得出结果,我们来利用分部积分法。

设u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部积分公式得:

关于分部积分法的问题

在使用分部积分法时,应恰当的选取u和dv,否则就会南辕北辙。选取u和dv一般要考虑两点:

(1)v要容易求得;

(2) 容易积出。几种特殊类型函数的积分举例

有理函数的积分举例

有理函数是指两个多项式的商所表示的函数,当分子的最高项的次数大于分母最高项的次数时称之为假分式, 反之为真分式。

在求有理函数的不定积分时,若有理函数为假分式应先利用多项式的除法,把一个假分式化成一个多项式和一个真分式之和的形式,然后再求之。 例题:求 解答:

关于有理函数积分的问题

有理函数积分的具体方法请大家参照有关书籍,请谅。 三角函数的有理式的积分举例

三角函数的有理式是指由三角函数和常数经过有限次四则运算所构成的函数。

例题:求 解答:

关于三角函数的有理式的积分的问题

任何三角函数都可用正弦与余弦函数表出,故变量代换u=tan(x/2)对三角函数的有理式的积分应用,在此我 们不再举例。

简单无理函数的积分举例 例题:求

解答:设 ,于是x=u2+1,dx=2udu,从而所求积分为: 五、定积分及其应用 定积分的概念

我们先来看一个实际问题———求曲边梯形的面积。

设曲边梯形是有连续曲线y=f(x)、x轴与直线x=a、x=b所围成。如下图所示:

现在计算它的面积A.我们知道矩形面积的求法,但是此图形有一边是一条曲线,该如何求呢?

我们知道曲边梯形在底边上各点处的高f(x)在区间[a,b]上变动,而且它的高是连续变化的,因此在很小的一段区间的变化很小,近似于不变,并且当区间的长度无限缩小时,高的变化也无限减小。因此,如果把区间[a,b]分成许多小区间,在每个小区间上,用其中某一点的高来近似代替同一个小区间上的窄曲变梯形的变高,我们再根据矩形的面积公式,即可求出相应窄曲边梯形面积的近似值,从而求出整个曲边梯形的近似值。

显然:把区间[a,b]分的越细,所求出的面积值越接近于精确值。为此我们产生了定积分的概念。

定积分的概念

设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点 a=x0

[x0,x1],...[xn-1,xn],

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,

并作出和 ,

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,

这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作 。 即: 关于定积分的问题

我们有了定积分的概念了,那么函数f(x)满足什么条件时才可积? 定理(1):设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。 (2):设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 定积分的性质

性质(1):函数的和(差)得定积分等于它们的定积分的和(差). 即:

性质(2):被积函数的常数因子可以提到积分号外面. 即:

性质(3):如果在区间[a,b]上,f(x)≤g(x),则 ≤ (a

注:此性质就是定积分中值定理。 微积分积分公式

积分上限的函数及其导数

设函数f(x)在区间[a,b]上连续,并且设x为[a,b]上的一点.现在我们来考察f(x)在部分区间[a,x]上的定积分 ,我们知道f(x)在[a,x]上仍旧连续,因此此定积分存在。

如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,记作φ(x):

注意:为了明确起见,我们改换了积分变量(定积分与积分变量的记法无关)

定理(1):如果函数f(x)在区间[a,b]上连续,则积分上限的函数 在[a,b]上具有导数, 并且它的导数是 (a≤x≤b)

(2):如果函数f(x)在区间[a,b]上连续,则函数 就是f(x)在[a,b]上的一个原函数。 注意:定理(2)即肯定了连续函数的原函数是存在的,又初步揭示了积分学中的定积分与原函数之间的联系。 牛顿--莱布尼兹公式

定理(3):如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则

注意:此公式被称为牛顿-莱布尼兹公式,它进一步揭示了定积分与原函数(不定积分)之间的联系。

它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数再去见[a,b]上的增量。因此它就

给定积分提供了一个有效而简便的计算方法。 例题:求

解答:我们由牛顿-莱布尼兹公式得:

注意:通常也把牛顿--莱布尼兹公式称作微积分基本公式。 定积分的换元法与分部积分法

定积分的换元法

我们知道求定积分可以转化为求原函数的增量,在前面我们又知道用换元法可以求出一些函数的原函数。因此,在一定条件下,可以用换元法来计算定积分。

定理:设函数f(x)在区间[a,b]上连续;函数g(t)在区间[m,n]上是单值的且有连续导数;当t在区间[m,n]上变化时,x=g(t)的值在[a,b]上变化,且g(m)=a,g(n)=b;则有定积分的换元公式:

例题:计算

解答:设x=asint,则dx=acostdt,且当x=0时,t=0;当x=a时,t=π/2.于是:

注意:在使用定积分的换元法时,当积分变量变换时,积分的上下限也要作相应的变换。

定积分的分部积分法

计算不定积分有分部积分法,相应地,计算定积分也有分部积分法。

设u(x)、v(x)在区间[a,b]上具有连续导数u'(x)、v'(x),则有(uv)'=u'v+uv',分别求此等式两端在[a,b]上的定积分,并移向得: 上式即为定积分的分部积分公式。 例题:计算

解答:设 ,且当x=0时,t=0;当x=1时,t=1.由前面的换元公式得:

再用分部积分公式计算上式的右端的积分。设u=t,dv=etdt,则du=dt,v=et.于是:

故: 广义积分

在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数在积分区间上具有无穷间断点的积分,它们已不属于前面我们所学习的定积分了。为此我们对定积分加以推广,也就是———广义积分。

一:积分区间为无穷区间的广义积分

设函数f(x)在区间[a,+∞)上连续,取b>a.如果极限 存在,

则此极限叫做函数f(x)在无穷区间[a,+∞)上的广义积分, 记作: , 即: = .

此时也就是说广义积分 收敛。如果上述即先不存在,则说广义积分 发散,此时虽然用同样的记号,但它已不表示数值了。

类似地,设函数f(x)在区间(-∞,b]上连续,取a

则此极限叫做函数f(x)在无穷区间(-∞,b]上的广义积分, 记作: , 即: = .

此时也就是说广义积分 收敛。如果上述极限不存在,就说广义积分 发散。

如果广义积分 和 都收敛,则称上述两广义积分之和为函数f(x)在无穷区间(-∞,+∞)上的广义积分,

记作: , 即: =

上述广义积分统称积分区间为无穷的广义积分。 例题:计算广义积分

解答: 二:积分区间有无穷间断点的广义积分 设函数f(x)在(a,b]上连续,而 .取ε>0,如果极限

存在,则极限叫做函数f(x)在(a,b]上的广义积分, 仍然记作: . 即: = ,

这时也说广义积分 收敛.如果上述极限不存在,就说广义积分 发散。 类似地,设f(x)在[a,b)上连续,而 .取ε>0,如果极限 存在, 则定义 = ; 否则就说广义积分 发散。

又,设f(x)在[a,b]上除点c(a0)

解答:因为 ,所以x=a为被积函数的无穷间断点,于是我们有上面所学得公式可得: 六、空间解析几何 空间直角坐标系

空间点的直角坐标系

为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示)

三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。

例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示) 坐标为x,y,z的点M通常记为M(x,y,z).

这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。

注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.

例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 空间两点间的距离

设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式:

例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得:

由于 ,所以△ABC是一等腰三角形方向余弦与方向数

解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦

设有空间两点 ,若以P1为始点,另一点P2为终点的线段称为有向线段.记作 .通过原

点作一与其平行且同向的有向线段 .将 与Ox,Oy,Oz三个坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段 的方向角.其中0≤α≤π,0≤β≤π,0≤γ≤π. 关于方向角的问题

若有向线段的方向确定了,则其方向角也是唯一确定的。 方向角的余弦 称为有向线段 或相应的有向线段的方向余弦。 设有空间两点 ,则其方向余弦可表示为:

从上面的公式我们可以得到方向余弦之间的一个基本关系式:

注意:从原点出发的任一单位的有向线段的方向余弦就是其端点坐标。 方向数

方向余弦可以用来确定空间有向直线的方向,但是,如果只需要确定一条空间直线的方位(一条直线的两个方向均确定着同一方位),那末就不一定需要知道方向余弦,而只要知道与方向余弦成比例的三个数就可以了。这三个与方向余弦成比例且不全为零的数A,B,C称为空间直线的方向数,记作:{A,B,C}.即:

据此我们可得到方向余弦与方向数的转换公式: , ,

其中:根式取正负号分别得到两组方向余弦,它们代表两个相反的方向。 关于方向数的问题

空间任意两点坐标之差就是联结此两点直线的一组方向数。 两直线的夹角

设L1与L2是空间的任意两条直线,它们可能相交,也可能不相交.通过原点O作平行与两条直线的线段 .则线段 的夹角称为此两直线L1与L2的夹角. 若知道L1与L2的方向余弦则有公式为: 其中:θ为两直线的夹角。

若知道L1与L2的方向数则有公式为: 两直线平行、垂直的条件

两直线平行的充分必要条件为:

两直线垂直的充分必要条件为:

平面与空间直线

平面及其方程

我们把与一平面垂直的任一直线称为此平面的法线。

设给定点为Po(x0,y0,z0),给定法线n的一组方向数为{A,B,C}A2+B2+C2≠0,则过此定点且以n为法线的平面方程可表示为:

注意:此种形式的方程称为平面方程的点法式。

例题:设直线L的方向数为{3,-4,8},求通过点(2,1,-4)且垂直于直线L的平面方程.

解答:应用上面的公式得所求的平面方程为: 即 我们把形式为:

Ax+By+Cz+D=0.

称为平面方程的一般式。其中x,y,z的系数A,B,C是平面的法线的一组方向数。 几种特殊位置平面的方程 1、通过原点

其平面方程的一般形式为: Ax+By+Cz=0. 2、平行于坐标轴

平行于x轴的平面方程的一般形式为: By+Cz+D=0.

平行于y轴的平面方程的一般形式为: Ax+Cz+D=0.

平行于z轴的平面方程的一般形式为: Ax+By+D=0. 3、通过坐标轴

通过x轴的平面方程的一般形式为: By+Cz=0.

通过y轴和z轴的平面方程的一般形式为: Ax+Cz=0,Ax+By=0. 4、垂直于坐标轴

垂直于x、y、z轴的平面方程的一般形式为: Ax+D=0,By+D=0,Cz+D=0. 直线及其方程

任一给定的直线都有着确定的方位.但是,具有某一确定方位的直线可以有无穷多条,它们相互平行.如果要求直线再通过某一定点,则直线便被唯一确定,因而此直线的方程就可由通过它的方向数和定点的坐标表示出来。 设已知直线L的方向数为{l,m,n},又知L上一点Po(x0,y0,z0),则直线L的方程可表示为:

上式就是直线L的方程,这种方程的形式被称为直线方程的对称式。 直线方程也有一般式,它是有两个平面方程联立得到的,如下: 这就是直线方程的一般式。 平面、直线间的平行垂直关系

对于一个给定的平面,它的法线也就可以知道了。因此平面间的平行与垂直关系,也就转化为直线间的平行与垂直关系。平面与直线间的平行与垂直关系,也就是平面的法线与直线的平行与垂直关系。

总的来说,平面、直线间的垂直与平行关系,最终都转化为直线与直线的平行与垂直关系。在此我们就不列举例题了。 曲面与空间曲线

曲面的方程

我们知道,在平面解析几何中可把曲线看成是动点的轨迹.因此,在空间中曲面可看成是一个动点或一条动曲线(直线)按一定的条件或规律运动而产生的轨迹。 设曲面上动点P的坐标为(x,y,z),由这一条件或规律就能导出一个含有变量x,y,z的方程:

如果此方程当且仅当P为曲面上的点时,才为P点的坐标所满足。那末我们就用这个方程表示曲面,并称这个方程为曲面的方程,把这个曲面称为方程的图形。 空间曲线的方程

我们知道,空间直线可看成两平面的交线,因而它的方程可用此两相交平面的方程的联立方程组来表示,这就是直线方程的一般式。

一般地,空间曲线也可以象空间直线那样看成是两个曲面的交线,因而空间曲线的方程就可由此两相交曲面方程的联立方程组来表示。

设有两个相交曲面,它们的方程是 , ,那末联立方程组: 便是它们的交线方程。 两类常见的曲面 1、柱面

设有动直线L沿一给定的曲线C移动,移动时始终与给定的直线M平行,这样由动直线L所形成的曲面称为柱面,动直线L称为柱面的母线,定曲线C称为柱面的准线。 2、旋转面

设有一条平面曲线C,绕着同一平面内的一条直线L旋转一周,这样由C旋转所形成的曲面称为旋转面,曲线C称为旋转面的母线,直线L称为旋转面的轴。 下面我们再列举出几种常见的二次曲面 二次曲面的名称 二次曲面的方程

椭球面 单叶双曲面 双叶双曲面 椭圆抛物面 双曲抛物面 七、多元函数的微分学 多元函数的概念

我们前面所学的函数的自变量的个数都是一个,但是在实际问题中,所涉及的函数的自变量的个数往往是两个,或者更多。

例:一个圆柱体的体积 与两个独立变量r,h有关。`

我们先以二个独立的变量为基础,来给出二元函数的定义。 二元函数的定义

设有两个独立的变量x与y在其给定的变域中D中,任取一组数值时,第三个变量z就以某一确定的法则有唯一确定的值与其对应,那末变量z称为变量x与y的二元函数。 记作:z=f(x,y). 其中x与y称为自变量,函数z也叫做因变量,自变量x与y的变域D称为函数的定义域。

关于二元函数的定义域的问题

我们知道一元函数的定义域一般来说是一个或几个区间.二元函数的定义域通常是由平面上一条或几段光滑曲线所围成的连通的部分平面.这样的部分在平面称为区域.围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在内的区域称为闭域,不包括边界在内的区域称为开域。

如果一个区域D(开域或闭域)中任意两点之间的距离都不超过某一常数M,则称D为有界区域;否则称D为无界区域。常见的区域有矩形域和圆形域。如下图所示:

例题:求 的定义域.

解答:该函数的定义域为:x≥ ,y≥0. 二元函数的几何表示

把自变量x、y及因变量z当作空间点的直角坐标,先在xOy平面内作出函数z=f(x,y)的定义域D;再过D域中得任一点M(x,y)作垂直于xOy平面的有向线段MP,使其值为与(x,y)对应的函数值z;

当M点在D中变动时,对应的P点的轨迹就是函数z=f(x,y)的几何图形.它通常是一张曲面,

其定义域D就是此曲面在xOy平面上的投影。 二元函数的极限及其连续性

在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。对于二元函数z=f(x,y)我们同样可以学习当自变量x与y趋向于有限值ξ与η时,函数z的变化状态。

在平面xOy上,(x,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。如果当点(x,y)以任意方式趋向点(ξ,η)时,f(x,y)总是趋向于一个确定的常数A,

那末就称A是二元函数f(x,y)当(x,y)→(ξ,η)时的极限。 这种极限通常称为二重极限。

下面我们用ε-δ语言给出二重极限的严格定义: 二重极限的定义

如果定义于(ξ,η)的某一去心邻域的一个二元函数f(x,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,凡是满足 的一切(x,y)都使不等式

成立,

那末常数A称为函数f(x,y)当(x,y)→(ξ,η)时的二重极限。 正像一元函数的极限一样,二重极限也有类似的运算法则: 二重极限的运算法则

如果当(x,y)→(ξ,η)时,f(x,y)→A,g(x,y)→B. 那末(1):f(x,y)±g(x,y)→A±B; (2):f(x,y).g(x,y)→A.B;

(3):f(x,y)/g(x,y)→A/B;其中B≠0

像一元函数一样,我们可以利用二重极限来给出二元函数连续的定义: 二元函数的连续性

如果当点(x,y)趋向点(x0,y0)时,函数f(x,y)的二重极限等于f(x,y)在点(x0,y0)处的函数值f(x0,y0),那末称函数f(x,y)在点(x0,y0)处连续.如果f(x,y)在区域D的每一点都连续,那末称它在区域D连续。

如果函数z=f(x,y)在(x0,y0)不满足连续的定义,那末我们就称(x0,y0)是f(x,y)的一个间断点。

关于二元函数间断的问题

二元函数间断点的产生与一元函数的情形类似,但是二元函数间断的情况要比一元函数复杂,它除了有间断点,还有间断线。

二元连续函数的和,差,积,商(分母不为零)和复合函数仍是连续函数。 例题:求下面函数的间断线

解答:x=0与y=0都是函数 的间断线。偏导数

在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的\变化率\。然而,由于自变量多了一个,情况就要复杂的多.在xOy平面内,当变点由(x0,y0)沿不同方向变化时,函数f(x,y)的变化快慢一般说来时不同的,因此就需要研究f(x,y)在(x0,y0)点处沿不同方向的变化率。

在这里我们只学习(x,y)沿着平行于x轴和平行于y轴两个特殊方位变动时f(x,y)的变化率。

偏导数的定义

设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数

z=f(x,y)有增量(称为对x的偏增量)

△xz=f(x0+△x)-f(x0,y0). 如果△xz与△x之比当△x→0时的极限 存在,

那末此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数。 记作:f'x(x0,y0)或 关于对x的偏导数的问题

函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数

同样,把x固定在x0,让y有增量△y,如果极限 存在,

那末此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数. 记作f'y(x0,y0)或 偏导数的求法

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时, 我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导, 那末称函数f(x,y)在域D可导。

此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,

称为f(x,y)对x(对y)的偏导函数。简称偏导数。 例题:求z=x2siny的偏导数

解答:把y看作常量对x求导数,得 把x看作常量对y求导数,得

注意:二元函数偏导数的定义和求法可以推广到三元和三元以上函数。 例题:求 的偏导数。

解答:我们根据二元函数的偏导数的求法来做。 把y和z看成常量对x求导,得 . 把x和z看成常量对y求导,得 . 把x和y看成常量对z求导,得 . 高阶偏导数

如果二元函数z=f(x,y)的偏导数f'x(x,y)与f'y(x,y)仍然可导, 那末这两个偏导函数的偏导数称为z=f(x,y)的二阶偏导数。 二元函数的二阶偏导数有四个:f\,f\,f\,f\

注意:f\与f\的区别在于:前者是先对x求偏导,然后将所得的偏导函数再对y求偏导;后者是先对y求偏导再对x求偏导.当f\与f\都连续时,求导的结果于求导的先后次序无关。

例题:求函数 的二阶偏导数. 解答: , , 全微分

我们已经学习了一元函数的微分的概念了,现在我们用类似的思想方法来学习多元函数的的全增量,从而把微分的概念推广到多元函数。 这里我们以二元函数为例。 全微分的定义

函数z=f(x,y)的两个偏导数f'x(x,y),f'y(x,y)分别与自变量的增量△x,△y乘积之和 f'x(x,y)△x+f'y(x,y)△y 若该表达式与函数的全增量△z之差,

当ρ→0时,是ρ( ) 的高阶无穷小,

那末该表达式称为函数z=f(x,y)在(x,y)处(关于△x,△y)的全微分。 记作:dz=f'x(x,y)△x+f'y(x,y)△y

注意:其中△z=f'x(x,y)△x+f'y(x,y)△y+αρ,(α是当ρ→0时的无穷小) 注意:在找函数相应的全增量时,为了使△z与偏导数发生关系,我们把由(x0,y0)变到(x0+△x,y0+△y)的过程分为两部:先由点(x0,y0)变到点(x0,y0+△y),再变到点(x0+△x,y0+△y).其过程如下图所示:

例题:求 的全微分 解答:由于 , 所以 关于全微分的问题

如果偏导数f'x(x,y),f'y(x,y)连续,那末z=f(x,y)一定可微。 多元复合函数的求导法

在一元函数中,我们已经知道,复合函数的求导公式在求导法中所起的重要作用,对于多元函数来说也是如此。下面我们来学习多元函数的复合函数的求导公式。我们先以二元函数为例:

多元复合函数的求导公式 链导公式:

设 均在(x,y)处可导,函数z=F(u,v)在对应的(u,v)处有连续的一阶偏导数, 那末,复合函数 在(x,y)处可导,且有链导公式:

例题:求函数 的一阶偏导数 解答:令 由于

由链导公式可得:

其中

上述公式可以推广到多元,在此不详述。

一个多元复合函数,其一阶偏导数的个数取决于此复合函数自变量的个数。在一阶偏导数的链导公式中,项数的多少取决于与此自变量有关的中间变量的个数。 全导数

由二元函数z=f(u,v)和两个一元函数 复合起来的函数 是x的一元函数. 这时复合函数的导数就是一个一元函数的导数 ,称为全导数. 此时的链导公式为:

例题:设z=u2v,u=cosx,v=sinx,求 解答:由全导数的链导公式得:

将u=cosx,v=sinx代入上式,得: 关于全导数的问题

全导数实际上是一元函数的导数,只是求导的过程是借助于偏导数来完成而已。 多元函数的极值

在一元函数中我们看到,利用函数的导数可以求得函数的极值,从而可以解决一些最大、最小值的应用问题。多元函数也有类似的问题,这里我们只学习二元函数的极值问题。 二元函数极值的定义

如果在(x0,y0)的某一去心邻域内的一切点(x,y)恒有等式: f(x,y)≤f(x0,y0)

成立,那末就称函数f(x,y)在点(x0,y0)处取得极大值f(x0,y0);如果恒有等式: f(x,y)≥f(x0,y0)

成立,那末就称函数f(x,y)在点(x0,y0)处取得极小值f(x0,y0).

极大值与极小值统称极值.使函数取得极值的点(x0,y0)称为极值点. 二元可导函数在(x0,y0)取得极值的条件是: . 注意:此条件只是取得极值的必要条件。

凡是使 的点(x,y)称为函数f(x,y)的驻点.可导函数的极值点必为驻点,但驻点却不一定是极值点。

二元函数极值判定的方法

设z=f(x,y)在(x0,y0)的某一邻域内有连续的二阶偏导数.如果 ,那末函数f(x,y)在(x0,y0)取得极值的条件如下表所示: △=B2-AC f(x0,y0)

△<0 A<0时取极大值 A>0时取极小值 △>0 非极值 △=0 不定

其中

例题:求 的极值。

本文来源:https://www.bwwdw.com/article/t2x3.html

Top