中考数学2018年二轮培优计划 试题 含答案 :阅读理解型问题
更新时间:2024-04-26 05:41:01 阅读量: 综合文库 文档下载
中考数学
二轮培优计划
2018版
专题诠释 中考数学二轮复习真题演练 阅读理解型问题
1
二轮复习真题演练
阅读理解型问题
1.(2018?义乌)在义乌市中小学生“我的中国梦”读数活动中,某校对部分学生做了一次主题为:“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图
请你结合图中信息,解答下列问题: (1)本次共调查了 名学生;
(2)被调查的学生中,最喜爱丁类图书的学生有 人,最喜爱甲类图书的人数占本次被调查人数的 %; (3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人? 1.解:(1)共调查的学生数: 40÷20%=200(人);
(2)最喜爱丁类图书的学生数:200-80-65-40=15(人); 最喜爱甲类图书的人数所占百分比:80÷200×100%=40%; (3)设男生人数为x人,则女生人数为1.5x人,由题意得: x+1.5x=1500×20%, 解得:x=120,
当x=120时,5x=180.
答:该校最喜爱丙类图书的女生和男生分别有180人,120人. 2.(2018?天门)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
2
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在抽样数据中,产生的有害垃圾共 吨; (3)调查发现,在可回收物中塑料类垃圾占
1,每回收1吨塑料类垃圾可获得0.7吨二5级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料? 2.解:(1)观察统计图知:D类垃圾有5吨,占10%, ∴垃圾总量为5÷10%=50吨, 故B类垃圾共有50×30%=15吨, 故统计表为:
(2)∵C组所占的百分比为:1-10%-30%-54%=6%, ∴有害垃圾为:50×6%=3吨; (3)5000×54%×
1×0.7=378(吨), 5答:每月回收的塑料类垃圾可以获得378吨二级原料. 3.(2018?河北)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽
3
查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数、中位数;
(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
①小宇的分析是从哪一步开始出现错误的?
②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵. 3.解:(1)D错误,理由为:20×10%=2≠3; (2)众数为5,中位数为5; (3)①第二步;②x=
4?4?5?8?6?6?7?2=5.3,
20估计260名学生共植树5.3×260=1378(颗). 4.(2018?海南)如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC关于y轴对称的△A1B1C1; (2)画出△ABC关于原点O对称的△A2B2C2;
?C(3)点C1的坐标是 ;点C2的坐标是 ;过C、C1、C2三点的圆的圆弧CC12的长是 (保留π
4
4.解:(1)△A1B1C1如图所示;
(2)△A2B2C2如图所示;
(3)C1(1,4),C2(1,-4), 根据勾股定理,OC=1?4?17,
22?C的长=17π. 过C、C1、C2三点的圆的圆弧是以CC2为直径的半圆,CC12故答案为:(1,4);(1,-4);17.
5.(2018?龙岩)如图①,在矩形纸片ABCD中,AB=3+1,AD=3.
(1)如图②,将矩形纸片向上方翻折,使点D恰好落在AB边上的D′处,压平折痕交CD于点E,则折痕AE的长为 ;
(2)如图③,再将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′,B′C′交AE于点F,则四边形B′FED′的面积为 ;
5
(3)如图④,将图②中的△AED′绕点E顺时针旋转α角,得△A′ED″,使得EA′恰好经过顶点B,求弧D′D″的长.(结果保留π)
5.解:(1)∵△ADE反折后与△AD′E重合, ∴AD′=AD=D′E=DE=3, ∴AE=
(2)∵由(1)知AD′=3,
∴BD′=1,
∵将四边形BCED′沿D′E向左翻折,压平后得四边形B′C′ED′, ∴B′D′=BD′=1,∵由(1)知AD′=AD=D′E=DE=3, ∴四边形ADED′是正方形, ∴B′F=AB′=3-1, ∴S梯形B′FED′=
(3)∵∠C=90°,BC=3,EC=1, ∴tan∠BEC=
AD?2?D?E2?(3)2?(3)2?6;
111(B′F+D′E)?B′D′=(3-1+3)×1=3-; 222BC?3, CE∴∠BEC=60°,
由翻折可知:∠DEA=45°, ∴∠AEA′=75°=∠D′ED″,
??D??=∴D7553??2π?3=. 360121. 2故答案为:6;3- 6.(2018?北京)第九届中国国际园林博览会(园博会)已于2018年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.
6
(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为 平方千米;
(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据; (3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).
第七届至第十届园博会游客量和停车位数量统计表: 日接待游客量 (万人次) 0.8 2.3 8(预计) 1. 9(预计) 单日最多接待游客量 (万人次) 6 8.2 20(预计) 7.4(预计) 停车位数量 (个) 约3000 约4000 约10500 约 第七届 第八届 第九届 第十届 6.解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%, 则牡丹园的面积为:15%×
0.04=0.03(平方千米); 20%(2)植物花园的总面积为:0.04÷20%=0.2(平方千米), 则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米), 第七、八界园博会的水面面积之和=1+0.5=1.5(平方千米), 则水面面积为1.5平方千米, 如图:
7
;
(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500, 则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3700. 故答案为:0.03;3700. 7.(2018?六盘水)(1)观察发现 如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.
如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 . (2)实践运用
如图(3):已知⊙O的直径CD为2,?,点B是?AC的度数为60°AC的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为 .
8
(3)拓展延伸 如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法. 7.解:(1)观察发现 如图(2),CE的长为BP+PE的最小值,
∵在等边三角形ABC中,AB=2,点E是AB的中点 ∴CE⊥AB,∠BCE=∴CE=3BE=3; 故答案为3;
(2)实践运用 如图(3),过B点作弦BE⊥CD,连结AE交CD于P点,连结OB、OE、OA、PB,
1∠BCA=30°,BE=1, 2
∵BE⊥CD,
∴CD平分BE,即点E与点B关于CD对称, ∵?,点B是?AC的度数为60°AC的中点, ∴∠BOC=30°,∠AOC=60°, ∴∠EOC=30°, ∴∠AOE=60°+30°=90°, ∵OA=OE=1, ∴AE=2OA=2,
∵AE的长就是BP+AP的最小值. 故答案为2; (3)拓展延伸 如图(4).
9
8.(2018?盐城)阅读材料
如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;
(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系; (3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出
BF的值(用含α的式子表示出来) CD
8.解:(1)猜想:BF=CD.理由如下: 如答图②所示,连接OC、OD.
∵△ABC为等腰直角三角形,点O为斜边AB的中点, ∴OB=OC,∠BOC=90°.
∵△DEF为等腰直角三角形,点O为斜边EF的中点, ∴OF=OD,∠DOF=90°. ∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF, ∴∠BOF=∠COD.
∵在△BOF与△COD中,
?OB?OC???BOF??COD, ?OF?OD?∴△BOF≌△COD(SAS), ∴BF=CD. (2)答:(1)中的结论不成立. 如答图③所示,连接OC、OD.
10
正在阅读:
中考数学2018年二轮培优计划 试题 含答案 :阅读理解型问题04-26
邮政营业员职业技能鉴定考试模拟试题108-19
可爱的小鸟作文200字06-14
汽车启动故障的主要原因和急救方法06-10
最新社区2016年工作思路02-08
安全生产管理协议09-22
深圳文化底蕴06-29
国际商法 复习题11-11
2016年贵州省重大工程和重点项目名单07-07
可爱的小鸟作文600字06-24
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 二轮
- 阅读理解
- 中考
- 试题
- 答案
- 数学
- 计划
- 问题
- 2018
- 互小分数乘整数说课稿
- 2010年贵阳市中考语文预测试题
- 第八章微生物遗传题库
- 煤矿毕业设计说明书(文档部分) - 图文
- 预应力砼T梁安全专项施工方案
- 翟敏新论文 最终(1)- 副本 - 图文
- 从老纪文章谈开去
- WCDMA开站手册 - 图文
- 公务员初任培训简报
- 2016年高考数学(文)五年真题 考点分类汇编:考点44 直线与圆锥
- 2014同济大学611综合化学真题与解析
- 第一章 教育的产生和发展
- 教师读书的重要意义
- 华为(嵌入式笔试)
- 金融资产管理公司资产处置公告管理办法(修订)(财金87号
- 非煤矿山作业行为安全防护措施
- 《高级财务会计》第03章在线测试
- 魔兽RPG《天龙八部》完全攻略秘籍
- 新东方阅读笔记
- 医院院感科医院感染试题及答案