原子物理习题答案

更新时间:2023-06-08 19:02:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高等教育出版社原子物理课后习题答案

原子物理学习题解答

刘富义 编

临沂师范学院物理系 理论物理教研室

高等教育出版社原子物理课后习题答案

第一章 原子的基本状况

1.1 若卢瑟福散射用的 粒子是放射性物质镭C'放射的,其动能为7.68 106电子伏特。散射物质是原子序数Z 79的金箔。试问散射角 150 所对应的瞄准距离b多大?

解:根据卢瑟福散射公式:

ctg

得到:

2 4 0

Mv

22

2Ze

b 4 0

K Ze

2

b

b

Zectg

2

2

4 0K

12

2

79 (1.60 10)ctg

(4 8.85 10

12

192

) (7.68 10 10

15026

19

)

3.97 10

15

式中K

Mv是 粒子的功能。

1.2已知散射角为 的 粒子与散射核的最短距离为

rm (

14 0

)

2ZeMv

2

2

(1

1sin

2

) ,试问上题 粒子与散射的金原子核之间的最短

距离rm多大?

解:将1.1题中各量代入rm的表达式,得:rmin (

14 0

)

)

2ZeMv

2

2

(1

1sin

2

)

9 10

9

4 79 (1.60 10

6

19

)

2

7.68 10 1.60 10

14

19

(1

1sin75

3.02 10

1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 e电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?

解:当入射粒子与靶核对心碰撞时,散射角为180。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:

12Mv

2

K

p

Ze

2

4 0rmin

19

,故有:rmin

Ze

2

4 0K

p

9 10

9

79 (1.60 10

6

)

2

10 1.60 10

19

1.14 10

13

由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为1.14 10

13

米。

高等教育出版社原子物理课后习题答案

1.4 钋放射的一种 粒子的速度为1.597 107米/秒,正面垂直入射于厚度为10 7米、密度为

4

1.932 10公斤/米的金箔。试求所有散射在 90的 粒子占全部入射粒子数的百分比。已知金

3

的原子量为197。

解:散射角在 d 之间的 粒子数dn与入射到箔上的总粒子数n的比是:

dnn

Ntd

其中单位体积中的金原子数:N /mAu N0/AAu 而散射角大于90

的粒子数为:dn dn nNt d

2

'

dn

所以有:

'

n

Nt d

2

N0

AAu

t (

14 0

) (

2

2ZeMu

22

)

2

90

180

cossin

3

d 2

等式右边的积分:I 90

180

cossin

3

d 2 180

902

dsinsin

3

1

2

dnn

'

N0

AAu

t (

6

14 0

) (

2

2ZeMu

22

)

2

8.5 10

7

8.5 10

40

0 4

即速度为1.597 10米/秒的 粒子在金箔上散射,散射角大于90以上的粒子数大约是8.5 10

( 15)1.5 粒子散射实验的数据在散射角很小时与理论值差得较远,时什么原因?

答: 粒子散射的理论值是在“一次散射“的假定下得出的。而 粒子通过金属箔,经过好多原子核的附近,实际上经过多次散射。至于实际观察到较小的 角,那是多次小角散射合成的结果。既然都是

小角散射,哪一个也不能忽略,一次散射的理论就不适用。所以, 粒子散射的实验数据在散射角很小时与理论值差得较远。

1.6 已知 粒子质量比电子质量大7300倍。试利用中性粒子碰撞来证明: 粒子散射“受电子的影响是微不足道的”。

'

证明:设碰撞前、后 粒子与电子的速度分别为:v,v',0,ve。根据动量守恒定律,得:

' 'Mv Mv mve

高等教育出版社原子物理课后习题答案

由此得:v

'

v

mM

'

ve

17300

2

've

…… (1)

'2

又根据能量守恒定律,得:1

2

2

Mv

'2

12

Mv

2

12

mv

'2e

v v

mM

'

ve ……(2)

将(1)式代入(2)式,得:

v v

2

'2

'2

7300(v v )

2

2''

整理,得:v (7300 1) v (7300 1) 2 7300v v cos 0

7300 1

'2

上式可写为:7300(v v ) 0 '

v v 0

即 粒子散射“受电子的影响是微不足道的”。

1.7能量为3.5兆电子伏特的细 粒子束射到单位面积上质量为1.05 10粒子与银箔表面成60 角。在离L=0.12米处放一窗口面积为6.0 10

5

2

2

公斤/米的银箔上,

2

米的计数器。测得散射进此窗

口的 粒子是全部入射 粒子的百万分之29。若已知银的原子量为107.9。试求银的核电荷数Z。

解:设靶厚度为t'。非垂直入射时引起

t',而是

t t/sin60,如图1-1所示。

'

因为散射到 与 d 之间d 立体

角内的粒子数dn与总入射粒子数n的比为:

dnn

而d 为:

Ntd (1)

d (

14

)(

2

zeMv

22

)

2

d sin

4

2

(2)

把(2)式代入(1)式,得:

dnn Nt(

14

)(

2

zeMv

22

)

2

d sin

4

2

……(3)

2'0'0

式中立体角元d ds/L,t t/sin60 2t/3, 20

'

N为原子密度。Nt为单位面上的原子数,Nt /mAg (AAg/N0)

' 1

,其中 是单位面积式上的质

量;mAg是银原子的质量;AAg是银原子的原子量;N0是阿佛加德罗常数。

高等教育出版社原子物理课后习题答案

将各量代入(3)式,得:

dnn

2

N

3AAg

(

14

)(

2

zeMv

22

)

2

d sin

4

2

由此,得:Z=47

1.8 设想铅(Z=82)原子的正电荷不是集中在很小的核上,而是均匀分布在半径约为10 10米的球形原子内,如果有能量为106电子伏特的 粒子射向这样一个“原子”,试通过计算论证这样的 粒子不可能被具有上述设想结构的原子产生散射角大于900的散射。这个结论与卢瑟福实验结果差的很远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽略)。

解:设 粒子和铅原子对心碰撞,则 粒子到达原子边界而不进入原子内部时的能量有下式决定:

12Mv

2

2Ze

2

/4 0R 3.78 10

16

焦耳 2.36 10电子伏特

3

由此可见,具有106电子伏特能量的 粒子能够很容易的穿过铅原子球。 粒子在到达原子表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:F 2Ze2/4 0R2和F 2Ze2r/4 0R3。可见,原子表面处 粒子所受的斥力最大,越靠近原子的中心 粒子所受的斥力越小,而且瞄准距离越小,使 粒子发生散射最强的垂直入射方向的分力越小。我们考虑粒子散射最强的情形。设 粒子擦原

22

子表面而过。此时受力为F 2Ze/4 0R。可以认为 粒子只在原子大小的范围内受到原子中正电

荷的作用,即作用距离为原子的直径D。并且在作用范围D之内,力的方向始终与入射方向垂直,大小不变。这是一种受力最大的情形。

根据上述分析,力的作用时间为t=D/v, 粒子的动能为

t D/v D

M/2K

t

12

Mv

2

K,因此,v 2K/M,所以,

根据动量定理: Fdt p p Mv 0

而 Fdt 2Ze/4 0R

t

22

t

dt 2Zet/4 0R

22

22

所以有:2Zet/4 0R Mv

22

由此可得:v 2Zet/4 0RM

粒子所受的平行于入射方向的合力近似为0,入射方向上速度不变。据此,有:

tg

v v

2Zet/4 0RMv 2ZeD/4 0RMv

3

2

2

2

2

2

2.4 10

这时 很小,因此tg 2.4 10

3

弧度,大约是

8.2。

这就是说,按题中假设,能量为1兆电子伏特的 粒子被铅原子散射,不可能产生散射角 90

高等教育出版社原子物理课后习题答案

的散射。但是在卢瑟福的原子有核模型的情况下,当 粒子无限靠近原子核时,会受到原子核的无限大的排斥力,所以可以产生 900的散射,甚至会产生 1800的散射,这与实验相符合。因此,原子的汤姆逊模型是不成立的。

第二章 原子的能级和辐射

2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件,

p mvr n

可得:频率

h2

v2 a1

nh2 ma

15

21

h2 ma1

2

6.58 10

速度:v

赫兹

6

2 a1 h/ma1 2.188 10

v/r v/a1 9.046 10

2

2

米/秒

加速度:w

22

米/秒

2

2.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。

高等教育出版社原子物理课后习题答案

解:电离能为Ei E E1,把氢原子的能级公式En Rhc/n2代入,得:

Ei RHhc(

11

2

1

) Rhc=13.60电子伏特。

电离电势:Vi

Eie

13.60伏特

第一激发能:Ei RHhc(

E1e

11

2

12

2

)

34

Rhc

34

13.60 10.20电子伏特

第一激发电势:V1

10.20伏特

2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?

解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:

E hcR

H

(

11

2

1n1

2

) 其中hcR

H

13.6电子伏特

E1 13.6 (1 E2 13.6 (1 E3 13.6 (1

21314

2

) 10.2电子伏特 ) 12.1电子伏特 ) 12.8电子伏特

2

2

其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有12.5电子伏特能量的电子不足以把基态氢原子激发到n 4的能级上去,所以只能出现n 3的能级间的跃迁。跃迁时可能发出的光谱线的波长为:

1

1

RH(

12

2

13

2

) 5RH/36

1 6565A

1

2

RH(

11

2

12

2

)

34

RH

2 1215A

1

3

RH(

11

2

13

2

)

89

RH

3 1025A

2.4 试估算一次电离的氦离子He、二次电离的锂离子Li的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。

高等教育出版社原子物理课后习题答案

a) 氢原子和类氢离子的轨道半径:

4 0hn4 mZe

2

2

22

r

a1

22

n

2

Z

,n 1,2,3

10

其中a1

4 0h4 me

2

0.529177 10米,是氢原子的玻尔第

一轨道半径;

,Z 3;

rHerH

Z是核电荷数,对于因此,玻尔第一轨道半

H,Z 1;对于H,Z 2;对于Li

径之比是

ZHZH

e

ZH1rLi 1

, 2rHZLi 3

b) 氢和类氢离子的能量公式:

E

2 meZ

2

2

2

4

22

(4 0)nh

42

E1

Zn

22

,n 1,2,3

其中E1

2 me

2

2

(4 0)h

13.6电子伏特,是氢原子的基态能量。

电离能之比:

0 EHe0 EH0 ELi

c)

ZZZ

2

He2H2Li

4,

0 EH

Z

2H

9

第一激发能之比:

EHe EHeEH EH

2

1

2

1

E1 E1E1 E1

2

22

2212

222

E1 E1 E1 E1

2

22

1 4211

222

33

EE

2Li2H

E E

1Li1H

2212

1 9211

2

2

d) 氢原子和类氢离子的广义巴耳末公式:

112~v ZR(2 2),n1n2

其中R

2 me

22

43

{n2 (n1 1),(n1 2)

n1 1,2,3

(4 0)h

是里德伯常数。

氢原子赖曼系第一条谱线的波数为:

111H~v1 R(2 2) H

12

高等教育出版社原子物理课后习题答案

相应地,对类氢离子有:

~He 22R(1 1) 1v1He 22

12 1111 Li 2~v1 3R(2 2) Li 12 1

因此,

He

1

H1

14

,

Li 1

H1

19

2.5 试问二次电离的锂离子L 从其第一激发态向基态跃迁时发出的光子,是否有可能使处于基态i

的一次电离的氦粒子He 的电子电离掉?

解:L 由第一激发态向基态跃迁时发出的光子的能量为: i

He的电离能量为:

vHe

4hcR

He

(

11

2

1

) 4hcR

He

hvLi hvHe

由于M

He

27RLi16RHe

271 m/MHe

161 m/MLi

He

M

Li

,所以1 m/M 1 m/M

Li

从而有hvLi hvHe ,所以能将He的电子电离掉。

2.6 氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原子的光谱线。试问其巴耳末系的第一条(H )光谱线之间的波长差 有多大?已知氢的里德伯常数RH 1.0967758 10米氘的里德伯常数RD 1.0970742 10米

解:

1 RH(

1212

22

7

1

7

1

H

1

1313

22

), H 36/5RH

D

RD(

), D 36/5RD

H D

365

(

1RH

1RD

)

1.79A

2.7 已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子结构的“正电子素”。试计算“正

高等教育出版社原子物理课后习题答案

电子素”由第一激发态向基态跃迁发射光谱的波长 为多少A?

解:

1

Re e (

11

2

12

2

) R

11

mm

34

38

R

83R

13 10973731

米 2430A

2.8 试证明氢原子中的电子从n+1轨道跃迁到n轨道,发射光子的频率 n。当n>>1时光子频率即为电子绕第n玻尔轨道转动的频率。

~ 证明:在氢原子中电子从n+1轨道跃迁到n轨道所发光子的波数为:vn

1 R[

1n

2

n

1(n 1)

2

]

频率为:vn

c

Rc[

1n

2

1(n 1)

2

2

]

2n 1n(n 1)

2

2

Rc

当n>>时,有(2n 1)/n(n 1)

2

2n/n

4

2/n,所以在n>>1时,氢原子中电子从n+1轨

3

3

道跃迁到n轨道所发光子的频率为:vn 2Rc/n。

设电子在第n轨道上的转动频率为fn,则

fn

v

mvr

2

2 r2 mr

P2 mr

2

2Rcn

3

因此,在n>>1时,有vn fn

由上可见,当n>>1时,请原子中电子跃迁所发出的光子的频率即等于电子绕第n玻尔轨道转动的频率。这说明,在n很大时,玻尔理论过渡到经典理论,这就是对应原理。

2.9 Li原子序数Z=3,其光谱的主线系可用下式表示:

~ v

R(1 0.5951)

2

R(n 0.0401)

2

。已知锂原子电离成Li

离子需要203.44电子伏特的功。问如把

Li离子电离成Li

离子,需要多少电子伏特的功?

解:与氢光谱类似,碱金属光谱亦是单电子原子光谱。锂光谱的主线系是锂原子的价电子由高的p能级向基态跃迁而产生的。一次电离能对应于主线系的系限能量,所以Li离子电离成Li

离子时,有

E1

Li

Rhc(1 0.5951)

2

Rhc

R hc(1 0.5951)

2

5.35电子伏特

是类氢离子,可用氢原子的能量公式,因此Li Li

时,电离能E3为:

E3

ZRhc1

2

2

Z

2R

R hc 122.4电子伏特。

高等教育出版社原子物理课后习题答案

设Li Li 的电离能为E2。而Li Li 需要的总能量是E=203.44电子伏特,所以有

E2 E E1 E3 75.7电子伏特

2.10 具有磁矩的原子,在横向均匀磁场和横向非均匀磁场中运动时有什么不同?

答:设原子的磁矩为 ,磁场沿Z方向,则原子磁矩在磁场方向的分量记为 Z,于是具有磁矩的原子在磁场中所受的力为F Z

0,

Z Z Z

原子在磁场中不受力,原子磁矩绕磁场方向做拉摩进动,且对磁场的 取向服从空间量子化规则。对于

B

,其中

B

是磁场沿Z方向的梯度。 B

非均磁场,

B Z

0原子在磁场中除做上述运动外,还受到力的作用,原子射束的路径要发生偏转。

B Z

10

3

2.11 史特恩-盖拉赫实验中,处于基态的窄银原子束通过不均匀横向磁场,磁场的梯度为

特斯拉/米,磁极纵向范围L1=0.04米(见图2-2),从磁极到屏距离L2=0.10米,原子的速度v 5 102米/秒。在屏上两束分开的距离d 0.002米。试确定原子磁矩在磁场方向上投影 的大小(设磁场边缘的影响可忽略不计)。

解:银原子在非均匀磁场中受到垂直于入射方向的磁场力作用。其轨道为抛物线;在L2区域粒子不受力作惯性运动。经磁场区域L1后向外射出时粒子的速度为v',出射方向与入射方向间的夹角为 。 与速度间的关系为:tg

v v

粒子经过磁场L1出射时偏离入射方向的距离S为:

1 BL12

() Z……(1)

2m Zv

S

将上式中用已知量表示出来变可以求出 Z

v at,a v

fm

B

m Z

,t L1/v

Z BL1

m Zv

S' L2tg S

d2 S'

Z BL1L2

m Zd2

v

2

Z BL1L2

m Z

v

2

把S代入(1)式中,得:

d2

Z BL1L2

m Z

v

2

Z BL1

2m Zv

2

2

高等教育出版社原子物理课后习题答案

整理,得:

Z BL1

2m Zv

2

(L1 2L2)

d2

由此得: Z 0.93 10 23焦耳/特

2.12 观察高真空玻璃管中由激发原子束所发光谱线的强度沿原子射线束的减弱情况,可以测定各激发态的平均寿命。若已知原子束中原子速度v 10米/秒,在沿粒子束方向上相距1.5毫米其共振光谱线强度减少到1/3.32。试计算这种原子在共振激发态的平均寿命。

解:设沿粒子束上某点A和距这点的距离S=1.5毫米的 B点,共振谱线强度分别为I0和I1,并设粒子束在A点的时刻为零时刻,且此时处于激发态的粒子数为N20,原子束经过t时间间隔从A到达B点,在B点处于激发态的粒子数为N2。

光谱线的强度与处于激发态的原子数和单位时间内的跃迁几率成正比。设发射共振谱线的跃迁几率为A21,则有

I1I0

A21N2A21N20I1I0

N2N20

N2N20

3

适当选取单位,使 1/3.32,

并注意到 N2 N20e则有:

N2N20

e

A21t

A21t

,而t S/v,

1/3.32

由此求得:

A21 t

1A21

1t

(ln3.32 ln1)

svln3.32

6

vs

3

ln3.32

3

1.5 10

10 ln3.32

1.25 10秒

高等教育出版社原子物理课后习题答案

第三章 量子力学初步

3.1 波长为1A的X光光子的动量和能量各为多少? 解:根据德布罗意关系式,得: 动量为:p

h

6.63 1010

10

34

6.63 10

24

千克 米 秒

1

能量为:

E hv hc/

6.63 10

34

8

10

3 10/10 1.986 10

15

焦耳。

3.2 经过10000伏特电势差加速的电子束的德布罗意波长 ? 用上述电压加速的质子束的德布罗意波长是多少?

解:德布罗意波长与加速电压之间有如下关系:

h/2meV 对于电子:m 9.11 10

31

公斤,e 1.60 10

19

库仑

把上述二量及h的值代入波长的表示式,可得:

12.25

A

12.25 27

A 0.1225A

对于质子,m 1.67 10公斤,e 1.60 10

34

19

19

库仑,代入波长的表示式,得:

3

6.626 10

2 1.67 10

27

2.862 10

10000

1.60 10

A

12.25

3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来 与加速电压的关系式应改为:

A的电子德布罗意波长

12.25V

(1 0.489 10

6

V)A

其中V是以伏特为单位的电子加速电压。试证明之。

证明:德布罗意波长: h/p

对高速粒子在考虑相对论效应时,其动能K与其动量p之间有如下关系:K

2

2Km0c

2

pc

22

高等教育出版社原子物理课后习题答案

而被电压V加速的电子的动能为:K eV

pp

2

(eV)c

2

2

2m0eV

2

2

2m0eV (eV)/c

因此有:

h/p

h2m0eV

1eV2m0c

2

一般情况下,等式右边根式中eV/2m0c2一项的值都是很小的。所以,可以将上式的根式作泰勒展开。只取前两项,得:

h2m0eV

(1

eV4m0c

2

)

h2m0eV

(1 0.489 10

6

V)

由于上式中h/

2m0eV

12.25

A,其中V以伏特为单位,代回原式得:

12.25(1 0.489 10

6

V)A

由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。

3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。

证明:轨道量子化条件是:pdq nh 对氢原子圆轨道来说,pr 0,p mr mvr 所以有:

2

pd

2 mvr nh

hmv

n ,n 1,2,3

S 2 r n

所以,氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波长。椭圆轨道的量子化条件是:

其中

p d n h

prdr nrh

pr mr,p mr

(prdr p d ) nh,其中n n nr

2

而 (prdr p d ) (mrdr

mr d )

2

高等教育出版社原子物理课后习题答案

(mr

2

drdt

dt mr

2

d dt

dt)

mvdt rdsh

hmvds

ds

n

因此,椭圆轨道也正好包含整数个德布罗意波波长。

3.5 带电粒子在威耳孙云室(一种径迹探测器)中的轨迹是一串小雾滴,雾滴德线度约为1微米。当观察能量为1000电子伏特的电子径迹时其动量与精典力学动量的相对偏差不小于多少?

解:由题知,电子动能K=1000电子伏特, x 10 6米,动量相对偏差为 p/p。 根据测不准原理,有 p x 经典力学的动量为:

h2

,由此得: p

h2 x

p pp

2mK

h2 x2mK

3.09 10

5

电子横向动量的不准确量与经典力学动量之比如此之小,足见电子的径迹与直线不会有明显区别。

3.6 证明自由运动的粒子(势能V 0)的能量可以有连续的值。 证明:自由粒子的波函数为:

Ae

ih

(p r Et)

(1) h

2

自由粒子的哈密顿量是:H

2m

(2)

2

自由粒子的能量的本征方程为:H E (3)

把(1)式和(2)式代入(3)式,得: 即:

ph

22

h

2

2m

[Ae

2

ih

(p r Et)

] E

2m

A(

2

ddx

22

ddy

22

ddz

22

)e

ih

(pxx pyy pzz Et)

E

2m

E

p

2

E

2m

自由粒子的动量p可以取任意连续值,所以它的能量E也可以有任意的连续值。 3.7 粒子位于一维对称势场中,势场形式入图3-1,即

高等教育出版社原子物理课后习题答案

{

0 x L,V 0

x 0,x L,V V0

(1)试推导粒子在E V0情况下其总能量E满足的关系式。

(2)试利用上述关系式,以图解法证明,粒子的能量只能是一些不连续的值。 解:为方便起见,将势场划分为Ⅰ Ⅱ Ⅲ三个区域。 (1) 定态振幅方程为式中 是粒子的质量。

Ⅰ区:

d dx

22

d dx

2

(x)2

2 h

2

(E V(x))

(x)

0

0其中

22

2 h

2

(V0 E)

波函数处处为有限的解是: 1(x) Ae x,A是一任意常数

Ⅱ区:

d dx

22

0其中

22

2 h

2

E

处处有限的解是: 2(x) Bsin( x ),B, 是任意常数。

Ⅲ区:

d dx

22

0其中

22

2 h

2

(V0 E)

处处有限的解是: 3(x) De有上面可以得到:

1d 1

x

,D是任意常数。

1dx

,

1d

2

2

dx

ctg( x ),

1d 3

3dx

,

有连续性条件,得:

{

解得:

ctg

ctg( L )

tg( L)

1

2

2

因此得: L n 2tg

1

( / )

这就是总能量所满足的关系式。

(2) 有上式可得:

tg(

n 2

L

2

)

高等教育出版社原子物理课后习题答案

{

tgctg

L

2 L2

n 偶数,包括零

n 奇数

L ( L)ctg

亦即

L

2

L ( L)tg

L

2

L u, L v,则上面两方程变为:

v utgv utg

u2u2

(1)

(2)

(3)另外,注意到u和v还必须满足关系:u2 v2 2 V0L2/h2

所以方程(1)和(2)要分别与方程(3)联立求解。

3.8 有一粒子,其质量为m,在一个三维势箱中运动。势箱的长、宽、高分别为a、b、c在势箱外,

势能V ;在势箱内,V 0。式计算出粒子可能具有的能量。

解:势能分布情况,由题意知:

Vx 0,0 x a;Vy 0,0 y b;Vz 0,0 z c;Vx ,x 0和x aVy ,y 0和y bVz ,z 0和z c

在势箱内波函数 (x,y,z)满足方程:

2x

22

2y

2

2

2z

2

2

2mh

2

[E (Vx Vy Vz)] 0

解这类问题,通常是运用分离变量法将偏微分方程分成三个常微分方程。

令 (x,y,z) X(x)Y(y)Z(z)

代入(1)式,并将两边同除以X(x)Y(y)Z(z),得:

1dXXdx

22

(

2mh

2

Vx) (

1dYYdy

2

2

2mh

2

Vy) (

1dZZdz

2

2

2mh

2

Vz)

2mh

2

E

方程左边分解成三个相互独立的部分,它们之和等于一个常数。因此,每一部分都应等于一个常数。由此,得到三个方程如下:

高等教育出版社原子物理课后习题答案

1dXXdx1dYYdy

222

2

2

2mhh

22

Vx

2mh

22

Ex

2m

Vy Vz

2mh

EyEz

1dZZdz

2

2mh

2

2mh

2

其中E Ex Ey Ez,Ex,Ey,Ez皆为常数。

将上面三个方程中的第一个整数,得:

dXdx

22

2mh

2

(Ex Vx)X 0 (2)

边界条件:X(0) X(l) 0

可见,方程(2)的形式及边界条件与一维箱完全相同,因此,其解为: Xn Ex

2asin

22

nx a

2

x

h2 a

2

nx,nx 1,2,3

类似地,有

Yn Ey Zn Ez

2b

2

sin

22

ny b

2

y

h2 b2c

2

ny,ny 1,2,3 nz c

2

sin

22

z

h2 c

nz,nz 1,2,3

8abc

2

(x,y,z) sin

2

nx xanzc

2

sin

ny yb

sin

nz zc

E

h2m

22

(

nxa

2

nyb

2

2

)

可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的波函数之积。而粒子的能量相当于三个一维箱中粒子的能量之和。

对于方势箱,a b c,波函数和能量为: (x,y,z)

E

8a

2

3

sin

nx xa

2

sin

2

ny ya

2

sin

nz za

h

2ma

222

n,n

2

nx ny nz

第四章 碱金属原子

高等教育出版社原子物理课后习题答案

4.1 已知Li原子光谱主线系最长波长 6707A,辅线系系限波长 3519A。求锂原子第一激发电势和电离电势。

解:主线系最长波长是电子从第一激发态向基态跃迁产生的。辅线系系限波长是电子从无穷处向第一激发态跃迁产生的。设第一激发电势为V1,电离电势为V ,则有:

eV1 h V1

c

1.850伏特 h(1

c

hc

ec

eV h V

e

1

hc

) 5.375伏特。

4.2 Na原子的基态3S。已知其共振线波长为5893A,漫线系第一条的波长为8193A,基线系第

一条的波长为18459A,主线系的系限波长为2413A。试求3S、3P、3D、4F各谱项的项值。

解:将上述波长依次记为

pmax, dmax, fmax, p ,

max

即 pmax 5893A, dmax 8193A, f 18459A, p 2413A

容易看出:

~ T3S v T3P

1

1

4.144 10米1

6

1

P

P pmax

1

2.447 10米

6

6 1

1.227 10米 0.685 10米

6

1

T3D T3p T4F T3D

dmax

1

1

fmax

4.3 K原子共振线波长7665A,主线系的系限波长为2858A。已知K原子的基态4S。试求4S、4P谱项的量子数修正项 s, p值各为多少?

~ 1/ 解:由题意知: pmax 7665A, p 2858A,T4s vP P

由T4S

R(4 s)

2

,得:4 s

Rk/T4S

设RK R,则有 s 2.229,T4P

1

P

1

Pmax

高等教育出版社原子物理课后习题答案

与上类似

p 4

R /T4P 1.764

4.4 Li原子的基态项2S。当把Li原子激发到3P态后,问当3P激发态向低能级跃迁时可能产生哪些谱线(不考虑精细结构)?

答:由于原子实的极化和轨道贯穿的影响,使碱金属原子中n相同而l不同的能级有很大差别,即碱金属原子价电子的能量不仅与主量子数n有关,而且与角量子数l有关,可以记为E E(n,l)。理论计算和实验结果都表明l越小,能量越低于相应的氢原子的能量。当从3P激发态向低能级跃迁时,考虑到选择定则: l 1,可能产生四条光谱,分别由以下能级跃迁产生:

3P 3S;3S 2P;2P 2S;3P 2S。

4.5 为什么谱项S项的精细结构总是单层结构?试直接从碱金属光谱双线的规律和从电子自旋与轨道相互作用的物理概念两方面分别说明之。

答:碱金属光谱线三个线系头四条谱线精细结构的规律性。第二辅线系每一条谱线的二成分的间隔相等,这必然是由于同一原因。第二辅线系是诸S能级到最低P能级的跃迁产生的。最低P能级是这线系中诸线共同有关的,所以如果我们认为P能级是双层的,而S能级是单层的,就可以得到第二辅线系的每一条谱线都是双线,且波数差是相等的情况。

主线系的每条谱线中二成分的波数差随着波数的增加逐渐减少,足见不是同一个来源。主线系是诸P能级跃迁到最低S能级所产生的。我们同样认定S能级是单层的,而推广所有P能级是双层的,且这双层结构的间隔随主量子数n的增加而逐渐减小。这样的推论完全符合碱金属原子光谱双线的规律性。因此,肯定S项是单层结构,与实验结果相符合。

碱金属能级的精细结构是由于碱金属原子中电子的轨道磁矩与自旋磁矩相互作用产生附加能量的结果。S能级的轨道磁矩等于0,不产生附加能量,只有一个能量值,因而S能级是单层的。

4.6 计算氢原子赖曼系第一条的精细结构分裂的波长差。

解:赖曼系的第一条谱线是n=2的能级跃迁到n=1的能级产生的。根据选择定则,跃迁只能发生在 2P 1S之间。而S能级是单层的,所以,赖曼系的第一条谱线之精细结构是由P能级分裂产生的。

氢原子能级的能量值由下式决定:

E

Rhc(Z )

n

2

2

22

Rhca

2

(Z S)n

3

4

(

1j

12

34n

)

其中(Z ) (Z S) 1

E(2P3/2) E(1S1/2) h 1

22

2

c

1

hc

E(2P3/2) E(1S1/2)

2

2

2

E(2P1/2) E(1S1/2) h 2

hc

c

2

E(2P1/2) E(1S1/2)

22

因此,有:

高等教育出版社原子物理课后习题答案

2 1

hc[E(2P3/2) E(1S1/2)]

[E(2P3/2) E(1S1/2)][E(2P1/2) E(1S1/2)]E(2P3/2) RhcE(2P1/2) RhcE(1S1/2) Rhc

2222

2

2

2

2

2

16 a64

2

2

16 5a

644 a4

2

将以上三个能量值代入 的表达式,得:

4a

64

48 11a

64

64

22

2

4a

48 15a

64

2

2

2

1R

R(48 11a)(48 15a)

13

5.39 10米 5.39 10

3

A

6 1

4.7 Na原子光谱中得知其3D项的项值T3D 1.2274 10米,试计算该谱项之精细结构裂距。

6 17 1

解:已知T3D 1.2274 10米,RNa 1.0974 10米

n 而Z

*

*

RNaT3D

*

2.9901

n/n

RaZ

3

2

*4

所以有: T

nl(l 1)

3.655米

1

4.8 原子在热平衡条件下处在各种不同能量激发态的原子的数目是按玻尔兹曼分布的,即能量为E的激发态原子数目N N0

gg0

e

(E E0)/KT

。其中N0是能量为E0的状态的原子数,g和g0是相应

能量状态的统计权重,K是玻尔兹曼常数。从高温铯原子气体光谱中测出其共振光谱双线

1 8943.5A, 2 8521.1A的强度比I1:I2 2:3。试估算此气体的温度。已知相应能级的统计权重g1 2,g2 4。

解:相应于 1, 2的能量分别为:

E1 hc/ 1;E2 hc/ 2

所测得的光谱线的强度正比于该谱线所对应的激发态能级上的粒子数N,即

本文来源:https://www.bwwdw.com/article/sxf1.html

Top