Effect of Annealing Temperature of ZnO on the Energy
更新时间:2023-05-25 08:54:01 阅读量: 实用文档 文档下载
- effect推荐度:
- 相关推荐
热处理温度对倒置OPV电池器件的影响
DOI:10.1002/ente.201300186
EffectofAnnealingTemperatureofZnOontheEnergyLevelAlignmentinInvertedOrganicPhotovoltaics(OPVs)
AnirudhSharma,[a]ScottE.Watkins,[b]GuntherAndersson,*[a]andDavidA.Lewis*[a]
Introduction
Organicphotovoltaics(OPVs)arerapidlymaturingasatech-nologyanddeviceswithpromisingefficienciesarebeingre-ported;[1]howevermanychallengesremainbeforetheyarecommerciallyviable.Thepromiseofhigh-speedroll-to-rollprocessinghasthepotentialtosignificantlyreducethecostofproductionandenablelarge-scaleproductionbyusingvar-iousmethods;[2–6]however,processingtemperaturesandin-terlayerstabilityremainsignificantchallenges.
OPVsbasedontheinvertedstructureindiumtinoxide(ITO)/zincoxideparticlelayer(ZnO)/poly(3-hexylthiophene)(P3HT):[6,6]-phenyl-C61-butyricacidmethylester(PCBM)/MoO3/Ag(asshowninFigure1)havethepotentialtoover-comeinterfacialinstabilityatthepoly(3,4-ethylenedioxythio-phene):poly(styrenesulfonate)(PEDOT:PSS)/ITOinter-face,[7,8]whichcouldotherwiseleadtodevicedegradationandshorterlifetimesinconventionalOPVs.[9]ZnOhasbeenwidelyexploredasacathodematerialininverteddevices
andvariousprocessingmethodscompatiblewithflexiblesub-stratesarebeingexplored.[10–12]Mostcommonly,ZnOissyn-thesisedinsitu,whichinvolveshighprocessingtemperaturesofover3008C.[10,13]AlthoughthesemethodsenablethequicksynthesisofZnObufferlayers;theyareincompatiblewithmaterialswithlowglasstransitiontemperatures,suchaspol-yethyleneterephthalate(PET)andpolyethylenenaphthalate(PEN),whicharetheleadingcandidatesforflexiblesub-stratesinroll-to-rollprocessingofOPVs.
TouseZnObufferlayersonflexiblesubstrateswithouttheneedforhigh-temperaturepost-depositionannealing,theZnOnanoparticleshavebeendepositedasthinfilmsbyusingroll-to-rollcompatiblemethodssuchasspincoating[10]andslot–dieprinting.[14]Theparticlelayermuststillbean-nealedafterdeposition,notonlytoconsolidatetheparticles,butalsotopromoteadhesiontothesubstrateandremovetheligands[15–17]aswellasanyremainingorganicfragmentsoftheprecursorthatarepresenttoaidedispersionandavoidaggregation.Ithasbeenshownthattheannealingtempera-turecaninfluencethechemicalcompositionofinsitupro-ducedZnOderivedusingsol–gel,forexample.[12]Therefore,inthecaseofZnOparticlelayers,itisequallyimportanttooptimizeandunderstandtheimpactoftheannealing
temper-
[a]A.Sharma,Prof.G.Andersson,Prof.D.A.LewisFlindersCentreforNanoscaleScienceandTechnology
SchoolofChemicalandPhysicalSciences,FlindersUniversitySturtRoad,BedfordPark,Adelaide,SA5001(Australia)E-mail:gunther.andersson@flinders.edu.au
david.lewis@flinders.edu.au[b]Dr.S.E.Watkins
MaterialScienceandEngineeringCSIRO
BayviewAvenue,Clayton,Victoria,3168(Australia)
Figure1.SchematicofaninvertedOPVincorporatingZnOparticlelayer.
EnergyTechnol.0000,00,1–8 2014Wiley-VCHVerlagGmbH&Co.KGaA,
Weinheim
&1&
Thesearenotthefinalpagenumbers!
ÞÞ
热处理温度对倒置OPV电池器件的影响
G.AnderssonandD.A.Lewisetal.
atureondeviceperformance.A
rangeofpost-processingmeth-odshavebeenemployedon
[18]
ZnOparticlefilms,yettherehasnotbeenanysystematicstudiestodeterminethede-pendenceofprocessconditions
onthechemicalandelectricalpropertiesoftheZnOlayerandtheresultingdeviceproperties.
Inthisstudy,theeffectofthepost-depositionannealingtemperatureonthechemicalandelectronicpropertiesofZnOparticlelayersininvertedOPVsisreported.X-rayandultravioletphotoelectronspectroscopies(XPSandUPS)areusedtostudythesurfacechemistryandelectronicpropertiesoftheZnOparticlelayer.ThemeasurementsofenergylevelpositionsofZnO(annealedatvarioustemperatures)asde-terminedusingUPSwerecorrelatedtotheI–Vmeasure-mentsandusedtounderstandthedifferencesobservedinthedeviceperformance.ThechangesinducedintheenergybandsofZnOasaresultofvariousannealingtemperaturesarerelatedtochargetransportacrosstheZnObufferlayerfromthebulkheterojunction(BHJ)tothecathode.
ResultsandDiscussion
InvertedOPVswerefabricatedusingthreedifferentpost-depositionannealingtemperaturesfortheZnOparticlelayer:DeviceA(annealedat1508C),DeviceB(annealedat2008C),andDeviceC(annealedat2508C).Figure2showstheresultantI–Vcharacteristics.Thephotoconversioneffi-ciencyofDeviceAwasfoundtobe2.3%,andDevicesBandCwerealmostidenticalwithanincreasedefficiencyof3.6%.InbothDevicesBandC,themaximumopen-circuitvoltagewas620mVcomparedwith590mVforDeviceAandtheshort-circuitcurrentdensitywascorrespondinglyhigher,asshowninTable1.AlsointhecaseofDeviceA,
thevariationobservedintheshort-circuitcurrentovermulti-plesampleswaslargeincomparisontoDevicesBandC.Theimprovementinseriesresistancewithhigheranneal-ingtemperatureisreflectedinimprovedfillfactors(FFs)of49%(DeviceB)and48%(DeviceC)comparedto38%inthecaseofDeviceA.Thefillfactorisdrivenbytheseriesandshuntresistanceinthedevices,whichwerecalculatedfromtheinverseslopesofthedarkI–VcurvesatV=1VandV=0V,respectively.TheseriesresistanceofDeviceAwasfoundtobe28Wcm2,anorderofmagnitudehigherthanthoseofDevicesBandC,whereastheshuntresistancewasfoundtobe730Wcm2,almosthalfthevalueofDevicesBandC.ToinvestigatetheoriginoftheobserveddifferencesintheI–VcharacteristicsofDevicesA,B,andC,ultravioletphotoelectronspectroscopy(UPS)wasperformedtodeter-mineanypossiblechangesintheelectronicstructureofdif-ferentlyannealedZnO.Followinginitialspectroscopicmeas-urements,SampleAwasheatedto2608Cintheinstrument(underultra-highvacuum)andisreferredtoasSampleD.UPS(Figure3)showsthattheworkfunctionincreasesfrom3.2Æ0.05eV(SampleA)to3.87Æ0.05eV(SampleC)withincreasedannealingtemperaturesduetothesecondary-electroncut-offmoving0.7eVtowardslowerbindingener-giesforSamplesBandCrelativetoSampleA.ThevaluefortheworkfunctionforSampleAissignificantlylowerthanthecommonlyreportedvalueoftheworkfunctionforZnO,[19]thoughaworkfunctioncloseto3eVforaZnOnanoparticlelayerhasalsobeenreportedbyGutmannetal.[20]Inthespectrum,therewerenovisiblesignsof
charg-
Figure2.I–VcharacteristicsofthebestdevicesfabricatedwithaZnOparticlelayerannealedatvarious
temperatures.Figure3.UPSspectraofZnOnanoparticlelayersannealedatvarioustemper-atures.
&2&
2014Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimEnergyTechnol.0000,00,1–8
ÝÝThesearenotthefinalpage
numbers!
热处理温度对倒置OPV电池器件的影响
InvertedOrganicPhotovoltaics
ingduetothephotonfluxoftheUVsourceusedfortheUPSmeasurements,andthemeasurementswerereproduci-bleacrossmultiplesamples.Additionally,spectrawerehighlyreproducibleandnochangeswereobservedduetothelow-intensityUVradiationusedfortheUPSmeasure-mentsortheeffectofstoringthesamplesunderultra-highvacuum,whichsuggeststhatthelowworkfunctionvalueob-servedisnotattributabletothelossofsurfaceoxygenorduetoUVexposure,asreportedpreviously.[20]Also,asallthreesamples(A,B,andC)wereannealedinairbeforetransfer-ringintothevacuumchamber,theexposureofallsamplestohydrocarbonsand/ormoisturewassimilar.Therefore,thepresenceofhydrocarbonsand/orwateronthesurfacecannotbetheonlyreasonforthelowvalueoftheworkfunctionmeasured.
ThevalencebandmaximumforSampleAwasfoundat3.6eVrelativetotheFermilevel,andforsamplesannealedathighertemperaturesthiswasfoundtodecrease(3.5eVforSampleBand3.4eVforbothSamplesCandD).Theob-serveddependenceofthevalancebandpositiononthean-nealingtemperatureisquitesignificant,asitinfluencestheenergylevelalignmentbetweentheZnOandPCBMandthusthechargetransportacrosstheinterface.TheelectronaffinityforSampleAwasfoundtobe3.5Æ0.05eV,whichin-creasedsignificantlyto3.9Æ0.05eV,4.0Æ0.05eV,and3.9Æ0.05eVforSamplesB,C,andD,respectively.
Tobetterunderstandtheinterfacialenergeticsinaninvert-eddevicestructuresuchastheonereportedhere,wemodeltheenergylevelalignmentofZnOwithPCBMtakingintoaccounttheinterfacialdipolebetweentheZnOandPCBM,asreportedelsewhere.[21]TheenergybandalignmentofZnOwiththeBHJintwodifferentscenarios(1508Cand2508CannealingtemperaturesofZnO)isdepictedinFigure4,con-structedusingtheworkfunctionandvalencebandmaxima(VBM)valuesofZnOasmeasuredusingUPS.Itisassumed
thatthebandalignmentinthecaseofbulkheterojunctiondeviceswouldbesameasthatincaseofaninvertedbilayerstructureresultinginFermilevelalignmentbetweentheZnOandPCBM.[21]
TheoffsetbetweentheconductionbandofZnOandtheLUMOofPCBMforDeviceC,wasfoundtobe0.5eV,facil-itatingefficientelectrontransferacrosstheBHJ–ZnOinter-face.However,inthecaseofDeviceA,therewasnooffsetfoundbetweentheconductionbandofZnOandtheLUMOofthePCBM.ThiscouldresultinpoorchargeseparationandtransportacrossBHJ–ITOelectrode,whichisevidentfromtherelativelylowshort-circuitcurrentdensity(Jsc)ob-servedfromtheI–VcharacterizationofDeviceAcomparedtoDevicesBandC.
ThedipoleattheinterfaceusedtoconstructFigure4isbasedontheassumptionthatitisthesameasinDavisetal.[21]ThisassumptionmightbeincorrectbecausetheZnOusedinliterature[21]mightbeslightlydifferentthantheZnOusedinthepresentstudyandthiscouldalsopotentiallybeaffectedbydifferentannealingeffectsattemperaturesof150and2508C.However,whatisimportantforthecorrelationofFigure4withtheI–VcharacteristicsisnottheexactvalueoftheoffsetbetweentheconductionbandofZnOandtheLUMOofthePCBMbutthefactthattheoffsetismorepos-itivefortheZnOsampleannealedat2508Cthanat1508C.Evenforthecasethatourassumptionaboutthedipoleattheinterfaceisincorrect,thisdifferencewillbeaffectedonlytoaminordegree.
X-rayphotoelectronspectroscopy(XPS)wasusedtode-termineiftherearechemicaldifferencesinducedintheZnOlayerduetotheannealingconditionsthatmayhaveaffecteddifferentelectronicproperties,asfoundwithUPS.Figure5andFigure6showthecorelevelXPSspectraofZn2p3/2andO1scorelevelsrespectively,foreachoftheannealingconditions.
TheZn2p3/2peakwasfoundtobesymmetricforallSam-plesA,B,C,andDanditexhibitsashiftof
approximately
Figure4.EnergylevelalignmentofaZnOnanoparticlelayerwiththeacceptor(PCBM)intheBHJinaninvertedOPV.TheenergyoffsetattheZnO–PCBMinterfaceisshowedin(A)forthecaseof1508Cannealingand(B)forthecaseof2508Cannealing.Thevalueforthedipoleusedtoconstructtheenergydiagramisbasedonanassumptiondiscussedinthemainbodyofthe
text.
Figure5.CorelevelXPSoftheZn2p3/2level.
EnergyTechnol.0000,00,1–8 2014Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
&3&
Thesearenotthefinalpagenumbers!
ÞÞ
热处理温度对倒置OPV电池器件的影响
G.AnderssonandD.A.Lewisetal.
ofthetotaloxygencorrespondingtothezincoxidematrix.However,astheannealingtemperatureincreased,therela-tivepeakareaofthehigherbindingenergycomponentofoxygendecreasescomparedtothelowerbindingenergycomponent(correspondingtotheZnOmatrix)becoming68%and73%ofthetotaloxygenpresentinthesystemforSamplesCandD,respectively.
TheobservedincreaseintheproportionofoxygenintheZnOmatrix(thelowerbindingenergycomponent)uponthermalannealingcanbeattributedtoeithertheremovalofchemisorbedoxygenspecies(e.g.,water)orthedecomposi-tionofremainingtracesoftheacetateprecursorintheZnOparticlelayer
FromtheUPSofSamplesA,B,andC,threecharacteristicemissionpeaksatapproximately11.5,8.2,and5.2eVwerefound,asseeninFigure7.Thesepeakshavepreviouslybeen
Figure6.CorelevelXPSoftheO1s
level.
0.4eVfrom1021.66to1022eVwiththeincreaseinanneal-ingtemperature,asshowninFigure5.
Thisshifttowardshigherbindingenergyhaspreviouslybeenattributedtoincreasedoxidationofzincandhenceamoreelectronegativeenvironment.[19]Theatomicpercent-ageofZnwasfoundtoincreasefrom33%at1508Canneal-ingto44%and45%fortreatmentsat200and2508C,re-spectively,attheexpenseofthetotaloxygeninthesystem.Theratioofthetotaloxygenrelativetozincandcarbonde-creasesfrom37%to29%withhigherannealingtempera-tures.
Theoxygenpeaksinallsampleswerefoundtobeasym-metricwithtwocomponentsatapproximately530and532eV,asshowninFigure6,andbothofthecomponentsofoxygenwerefoundtoshiftslightlytowardsthehigherbind-ingenergyafterheatingfrom150to2608C.
Thelowerbindingenergycomponentcorrespondstotheoxygeninthezincoxidematrixinstoichiometriccomposi-tion,[22]whereasthehigherbindingenergycomponentat532eVhasearlierbeenreportedtobeduetochemisorbedoxygen,[23]zinchydroxide,[24]orduetothepresenceofre-mainingfragmentsofthezincacetateprecursor.[25]BasedontheUPSspectra,wewillshowbelowthatthepeakat532eVcouldpartiallybeattributedtoOinZnOaswell.
Thepeakratiosofthetwocomponentsoftheoxygenpeakwerefoundtobecloseto1:1forSampleA,withonly51%
Figure7.UPSspectrafromSamplesA,B,C,andDdepictingthethreechar-acteristicpeakemissions.
attributedtotheZn3dband,bondingoftheZn4sand4pwiththeO2pelectrons,andtotheO2pnonbondingelec-trons,respectively.[26,27]
TheZn3dpeakat11.5eVforSamplesBandCwasfoundtobemorepronouncedthanthatofSampleA.Nopeakat8.2eVwasfoundforSampleA,howeverforSamplesBandC,thisfeaturealsobecomesmoreprominent.Thisisconsis-tentwiththeXPSresults,whichshowedincreasedzinc–oxygeninteractionforSamplesBandC.ForallSamplesA,B,C,andD,nosignificantpeakshiftwasobserved.
ForSampleA(annealedat1508C),theO2ppeakwasalmostabsentinitially,butwithfurtherheattreatment(upto2608C),boththeZn3dandO2pfeaturesbecamemoreprominentasseenfromSampleD.Thissuggeststhatthe1508CannealingtreatmentresultsinZnOthatisdeficientinthenonbondingoxygenorbital(lonepair),whichcouldalsohaveimplicationsforitselectronicpropertiesandthusforthedeviceperformance.
Physisorbedwateronthesurfaceshowsanoxygenfeatureatapproximately10eVintheUPS.[28–30]SomeintensityisseeninSampleAinthisregion(aGaussianfunctioncouldbefittedaftersubtractingthebackground);however,itis
ob-EnergyTechnol.0000,00,1–8
&4&
2014Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
ÝÝThesearenotthefinalpage
numbers!
热处理温度对倒置OPV电池器件的影响
InvertedOrganicPhotovoltaics
servedtoamuchlowerdegreeinSamplesB,C,andD,sug-gestingthatthe532eVpeakobservedbyXPSinallsamplescannotbeexclusivelyduetochemisorbedoxygenorab-sorbedwaterasthereisnowaterfoundonthesesamplesbyUPSmeasurement.Theoxygencomponentat532eVasseeninthecorelevelXPSofoxygen(Figure6)couldthereforebeduetothepresenceoftheacetateintheZnOparticlelayer,water,andoxygeninZnO.
Allpossibilitiesfortheoriginofthechangesintheoxygenstructuredescribedabovecouldbethereasonforthechangeinworkfunction.Basedontheinformationavailablethroughthisstudy,itcannotbedecidedwhichofthepossibilities(orwhichcombinationofpossibilities)isthereasonforthechangeinworkfunctionuponheating.However,becausetheworkfunctionisameasureforthepolarityoftheinterface,itcanbeassumedthatthepresenceofacetategroupsatthesurfaceisthelikelyreasonforthelowworkfunctionofthesampleannealedat1508C;ofthecompoundsZnO,H2O,andacetate,thelatteristheleastpolarcompound.
Further,theC1sregionoftheZnOparticlelayerforallsamples(Figure8)wasfoundtohavethreecomponentswiththestrongestpeakatapproximately285eVandsmallerpeaksat287and289eV,whichhavepreviouslybeenattrib-utedtotheCÀHorCÀCbonds,CÀO,andC=O/COOÀbonds,respectively.[31]
Althoughtherewasonlyaslightdifferenceof1%ob-servedinthetwocarboncomponentsathigherbindingenergyafterthesampleswereheatedfrom1508C(Sam-pleA)to2508C(SamplesBandC),theatomicconcentra-tionofthecarboncomponentat285eVwasfoundtode-creasefrom22%(SampleA)to15%and13%forSam-plesBandC,respectively.AfterSampleAissubsequentlyheatedat2608Cundervacuum(toformSampleD),thecarboncomponentat285eVreducesfrom22%toonly17%.ThepeakpositionsandatomicconcentrationsofZn,O,andCatdifferenttemperaturesaresummarizedinTable2.
TheXPSresultssuggestingthepresenceofremainingace-tateintheZnOparticlelayerannealedat1508CagreewellwiththeprevioushypothesisestablishedfromtheI–Vchar-acterizationofthesedevicesthatresidualacetateororganicimpuritiescouldexplainthehighseriesresistanceobservedindevicesthatareannealedatsuboptimaltemperatures.Theloweropen-circuitvoltageofDeviceAascomparedtoDevi-
Figure8.CorelevelXPSoftheC1s
level.
cesBandCcanbeattributedtothereducedshuntresistanceinDeviceA.
Conclusions
TheannealingtemperatureoftheZnOparticlelayerdepos-itedontheunderlyingITOelectrodeininvertedOPVsiscriticaltoachieveoptimumdeviceperformance;theefficien-cywasfoundtohaveadirectdependenceontheannealing
temperatureoftheZnObufferlayer.Anefficiencyof2.3%wasachievedfromdevicesin-corporatingaZnOparticlelayerannealedat1508C,whichsignificantlyincreasedto3.6%
withanincreaseintheanneal-ingtemperaturesofupto
2508C,showntobeoptimalforZnOfilmsfromzincacetateprecursors.TheworkfunctionoftheZnOparticlelayertreated
at
EnergyTechnol.0000,00,1–8 2014Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
&5&
Thesearenotthefinalpagenumbers!
ÞÞ
热处理温度对倒置OPV电池器件的影响
G.AnderssonandD.A.Lewisetal.
1508Cwasfoundtobe3.2eV,significantlylessthanprevi-ouslyreportedvalues,butitincreasedto3.9eVaftertheZnOlayerwasannealedattemperaturesofupto2508C.Moreimportantly,theelectronaffinityofZnOparticlelayerannealedat1508Cwasfoundtobe3.5eV,comparedto4.0eVforaZnOparticlelayerannealedat2508C.Thesig-nificantlylowerelectronaffinityforlow-temperatureanneal-ingleadstozeroenergyoffsetbetweentheconductionbandofZnOandtheLUMOofPCBMandresultsinpoorchargetransportacrosstheBHJandtheITOelectrode;thisistheproposedmechanismforthepoorperformancefordevicesinwhichtheZnOlayerwasannealedatlowertemperatures.Thechangeinelectronaffinitycanbeattributedtodifferen-cesinthesurfacechemistryintheZnOlayeratdifferentan-nealingtemperatures.ThenatureoftheoxygenspeciesintheZnOchangeswithannealingtemperatureandthiscouldbeduetoeithertheeliminationofremainingprecursorim-puritiesorchangesinthenatureofthezinc–oxygenbonditself;however,itcannotbeduetochangesinphysisorbedwater.Heatingthepartiallyconvertedzincacetateinvacuumto2608CleadstoZnOthatshowsdeficienciesofthenonbondingoxygenorbital.
ThoughZnOparticleinkcanbeusedforflexibleOPVsasalow-temperaturealternativetothesol–gelmethod,thisstudysuggeststhattemperatureslowerthan2008Careinsuf-ficientforachievingZnOthatisoptimalfordeviceper-formance.
TheheterojunctionblendwaspreparedbydissolvingP3HT(45mg,Merck)andPCBM(36mg,fromnanoC)inchloroben-zene(1.5mL).Bothsolutionsweredissolvedseparatelyingloveboxat808Cforonehour,followedbycoolingdown,filtering,andstirringatroomtemperature.TheheterojunctionlayerofP3HT:PCBMwasspincoatedat3000rpmfor30sfollowedbyannealingat1508Cfor10min.
Amolybdenumoxidelayer(20nm)wasthermallyevaporatedastheanodicbufferlayerbeforeevaporatingthesilveranode(100nm).
Electronspectroscopy
TheinvestigationsoftheZnOparticlelayeronITOsubstrateswithXPSwereperformedbyusinganultra-highvacuum(UHV)apparatusbuiltbySPECS(Berlin,Germany)withanonmono-chromaticX-raysourceforMg.ThebasepressureoftheUHVchamberwasontheorderof10À10mbar.High-resolutionXPSspectrawereobtainedtodeterminethechemicalstatesofzincandoxygeninthenear-surfaceregionoftheZnOthinfilms.TheXPSspectrawerereferencedtotheC1speak,whichwasduetotheadventitioushydrocarbonsabsorbedontheZnOsurface.TheC1speakwassetto285eV.
Theapparatuswasfurtherequippedwithultravioletphotoelec-tronspectroscopy(UPS)withatwo-stagecoldcathodegasdis-chargefromMFS(Clausthal-Zellerfeld,Germany)togeneratesimultaneouslymetastableheliumatoms(He*3S1)andlow-in-tensityUVlight(HeIline).Thespectraoftheelectronsemittedfromthesampleswererecordedatapassenergyof10eV,withahemisphericalPhoibos100energyanalyserfromSPECS.Atthepassenergyof10eVtheanalyserhasanenergyresolutionof400meVasevaluatedfromtheFermiedgeofpolycrystallinesilver.Theanglebetweenthelightirradiationsourcesandtheanalyzer(bothHe*/UVandX-ray)wereboth548.TheUPSspectrawereacquiredbyapplyingabiasof10Vtothesampletoclearlyobservethesecondaryelectroncut-off.
InaUPSexperimentthesamplewasirradiatedwithUVphotonsleadingtophotoionizationviathephotoelectriceffect.Theenergyofemittedelectronsisgivenby
ExperimentalSection
ZnOparticleink
TheZnOparticlesweresynthesizedbydissolvingzincacetatedehydrate(0.44g)inethanol(40mL)at608Cfor30min.Thiswasfollowedbydrop-wiseadditionoftetramethylammoniumhy-droxide(2mL,20%inMeOH)inethanol(10mL)tothesolu-tionovertheperiodof5min.TheZnOnanoparticlesolutionwasheatedat608Cfor30mintoattainzincoxidenanoparticlesofapproximately5nminsize.Detailedinformationaboutthesynthesiscanbefoundelsewhere.[32]
EkE¼EðhnÞÀEbinÀ0specð1Þ
Devicefabrication
ITO-coatedglasssubstrates(7W/&)werecleanedusingthestan-dardrecipe—theglasswascleanedindeconexPAneutraldeter-gent(5%solutionsuppliedbyBorer)at908Cfor20min.Thesampleswerethenrinsedindeionized(DI)waterfollowedbysuccessivesonicationfor10mineachinDIwater,acetone,andisopropanol.SubsequentlyUV-ozonecleaningoftheITOsub-strateswasappliedusingaNovascanPDS-UVTUV/ozonecleanerwiththelampintensitybeinggreaterthan36mWcmÀ2atadistanceof100cm,givinganozoneconcentrationgreaterthan50ppmatambientconditions.
TheZnOparticlelayerwasspincoatedat3000rpmfollowedbyannealingonapreheatedhotplateinair.Threedifferentsetofsampleswerepreparedandwereannealedat150,200,and2508C.Fordevicefabrication,allZnOcoatedsamplesweretransferredtothegloveboxafterannealing.WiththeexceptionoftheZnOannealingtemperatures,alldeviceswerepreparedsimilarlyusingthesamebatchofmaterials.
inwhichEkEisthekineticenergyoftheemittedelectron,E(hn)thephotonenergy(21.22eVfortheHeIlineusedhere),Ebinthebindingenergyoftheelectronbeforeexcitation,andfspecthespectrometerworkfunction.UPSspectracanbeusedtodeter-minetheworkfunctionandthedensityofstatesinnear-surfaceregionofamaterial.Theworkfunctionofthesampleswasdeter-minedasthedifferencebetweentheexcitationenergyandthewidthofthespectrum.Thelatterisgivenasthedifferenceofthehighbindingenergycut-offandthecut-offofthespectrumatthelowestbindingenergy.
I–Vcharacterization
Invertedsolarcellswithanactiveareaof0.1cm2werefabricat-ed,withdeviceareabeingdefinedbytheelectrodegeometry.Thecurrent-voltage(J–V)characteristicsofthedevicesweremeasuredinsidetheglovebox,withoutencapsulation,underAM1.5Girradiation(100mWcmÀ2).ThedevicesweretestedbyusingaKeithley2400sourcemetercontrolledbyLabviewsoft-ware.
EnergyTechnol.0000,00,1–8
&6&
2014Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
ÝÝThesearenotthefinalpage
numbers!
热处理温度对倒置OPV电池器件的影响
InvertedOrganicPhotovoltaics
Acknowledgements
TheauthorswouldliketoacknowledgeDr.JacekJasieniakofCSIROforfruitfuldiscussionsandforprovidingtheZnOparticleink.A.S.wishestoacknowledgeFlindersUniversityforpostgraduateresearchscholarshipandCSIROforaPhDstudentship.ThisworkhasbeenfundedthroughtheFlexibleElectronicsThemeoftheCSIROFutureManufacturingFlag-shipandbytheSchoolofChemicalandPhysicalSciencesofFlindersUniversity.
Keywords:energylevelalignment·PCBM·photovoltaics·workfunction·zincoxide
[1]Heliatek,2013,/newscenter/presse/.
[2]S.-Y.Park,Y.-J.Kang,S.Lee,D.-G.Kim,J.-K.Kim,J.H.Kim,J.-W.
Kang,SolarEnergyMater.SolarCells2011,95,852–855.
[3]A.Sharma,M.Ionescu,G.G.Andersson,D.A.Lewis,SolarEnergy
Mater.SolarCells2013,115,64–70.
[4]R.R.Søndergaard,M.Hçsel,F.C.Krebs,J.Polym.Sci.PartB2013,
51,16–34.
[5]S.-W.Heo,J.-Y.Lee,H.-J.Song,J.-R.Ku,D.-K.Moon,SolarEnergy
Mater.SolarCells2011,95,3041–3046.
[6]F.C.Krebs,M.Jørgensen,K.Norrman,O.Hagemann,J.Alstrup,
T.D.Nielsen,J.Fyenbo,rsen,J.Kristensen,SolarEnergyMater.SolarCells2009,93,422–441.
[7]A.Sharma,G.Andersson,D.A.Lewis,Phys.Chem.Chem.Phys.
2011,13,4381–4387.
[8]M.Jørgensen,K.Norrman,F.C.Krebs,SolarEnergyMater.Solar
Cells2008,92,686–714.
[9]A.Sharma,S.E.Watkins,D.A.Lewis,G.Andersson,SolarEnergy
Mater.SolarCells2011,95,3251–3255.
[10]S.K.Hau,H.-L.Yip,N.S.Baek,J.Zou,K.O Malley,A.K.Y.Jen,
Appl.Phys.Lett.2008,92,253301–253303.
[11]O.Tari,A.Aronne,M.L.Addonizio,S.Daliento,E.Fanelli,P.Per-nice,SolarEnergyMater.SolarCells2012,105,179–186.
[12]Y.Sun,J.H.Seo,C.J.Takacs,J.Seifter,A.J.Heeger,Adv.Mater.
2011,23,1679–1683.
[13]Z.Liang,Q.Zhang,O.Wiranwetchayan,J.Xi,Z.Yang,K.Park,C.
Li,G.Cao,Adv.Funct.Mater.2012,22,2194–2201.
[14]F.C.Krebs,S.A.Gevorgyan,J.Alstrup,J.Mater.Chem.2009,19,
5442–5451.
[15]S.Sakohara,M.Ishida,M.A.Anderson,J.Phys.Chem.B1998,102,
10169–10175.
[16]N.S.Pesika,Z.Hu,K.J.Stebe,P.C.Searson,J.Phys.Chem.B2002,
106,6985–6990.
[17]M.L.Kahn,M.Monge,V.Colli re,F.Senocq,A.Maisonnat,B.
Chaudret,Adv.Funct.Mater.2005,15,458–468.
[18]F.C.Krebs,Y.Thomann,R.Thomann,J.W.Andreasen,Nanotech-nology2008,19,424013.
[19]F.-L.Kuo,Y.Li,M.Solomon,J.Du,N.D.Shepherd,J.Phys.D2012,
45,065301.
[20]S.Gutmann,M.Conrad,M.A.Wolak,M.M.Beerbom,R.Schlaf,J.
Appl.Phys.2012,111,123710.
[21]R.J.Davis,M.T.Lloyd,S.R.Ferreira,M.J.Bruzek,S.E.Watkins,
L.Lindell,P.Sehati,M.Fahlman,J.E.Anthony,J.W.P.Hsu,J.Mater.Chem.2011,21,1721–1729.
[22]nger,C.J.Vesely,Phys.Rev.B1970,2,4885–4892.
[23]M.N.Islam,T.B.Ghosh,K.L.Chopra,H.N.Acharya,ThinSolid
Films1996,280,20–25.
[24]S.Kobayashi,K.Oshima,T.Sasaki,N.Tsuboi,F.Kaneko,Jap.J.
Appl.Phys.2005,44,1372–1375.
[25]L.G.Mar,P.Y.Timbrell,mb,ThinSolidFilms1993,223,
341–347.
[26]R.R.Gay,M.H.Nodine,V.E.Henrich,H.J.Zeiger,E.I.Solomon,
J.Am.Chem.Soc.1980,102,6752–6761.
[27]S.H.Su,i,H.-H.Chen,T.-H.Lee,Y.-J.Hsu,R.L.Wang,
J.C.A.Huang,J.Phys.Chem.C2012,116,9917–9924.
[28]S.Krischok,J.Gunster,D.W.Goodman,O.Hofft,V.Kempter,Surf.
InterfaceAnal.2004,36,77–82.
[29]S.Krischok,O.Hofft,J.Gunster,J.Stultz,D.W.Goodman,V.
Kempter,Surf.Sci.2001,495,8–18.
[30]S.Krischok,J.A.Schaefer,V.Kempter,Surf.InterfaceAnal.2004,
36,83–89.
[31]W.Wang,Q.Feng,K.Jiang,J.Huang,X.Zhang,W.Song,R.Tan,
Appl.Surf.Sci.2011,257,3884–3887.
[32]J.Jasieniak,B.I.MacDonald,S.E.Watkins,P.Mulvaney,NanoLett.
2011,11,2856–2864.
Received:December16,2013Revised:January27,2014
Publishedonlineon&&&&,0000
EnergyTechnol.0000,00,1–8 2014Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim
&7&
Thesearenotthefinalpagenumbers!
ÞÞ
热处理温度对倒置OPV电池器件的影响
FULLPAPERS
A.Sharma,S.E.Watkins,G.Andersson,*D.A.Lewis*&&–&&
EffectofAnnealingTemperatureofZnOontheEnergyLevelAlignmentinInvertedOrganicPhotovoltaics
(OPVs)
OptimizingZnOforOPVs:Thean-nealingtemperatureofZnOlayersisfoundtohaveasignificantimpactontheefficiencyofinverteddevices.Thedependenceoftheelectronicproper-tiesontheannealingtemperatureisat-tributedtoadeficiencyofelectronscorrespondingtothenonbonding(lonepair)oxygenorbitalsintheZnOmatrixandthepresenceofprecursorimpurities.
&8&
2014Wiley-VCHVerlagGmbH&Co.KGaA,WeinheimEnergyTechnol.0000,00,1–8
ÝÝThesearenotthefinalpagenumbers!
正在阅读:
Effect of Annealing Temperature of ZnO on the Energy05-25
一年级科学走近科学课教学设计11-10
烧菜作文700字06-17
小学语文S版 五年级上册9《西风胡杨》优质课公开课教案教师资格03-10
120万吨球团二期自动化技术方案10-08
第2章气相色谱分析01-27
NC开发基本技术08-16
家庭教育05-14
- 1Apparent temperature of fragments in the breakup of spectator residues
- 2choose materials for high-temperature environments
- 3Energy management systems – Requirements with guidance for use
- 4Quark number susceptibility of high temperature and finite d
- 5Metabolic Profiling Reveals the Protective Effect of Diammon
- 6Critical Casimir Effect in superfluid wetting films
- 7Abnormal Crowd Behavior Detection Based on the Energy Model
- 8Poster 1039-Investigation the effect of different methods of
- 9affect-effect-influence的区别
- 10Abnormal Crowd Behavior Detection Based on the Energy Model
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Temperature
- Annealing
- Effect
- Energy
- ZnO
- 8.3.1实际问题与二元一次方程组
- 幼儿园运动会主持稿
- 《我与绘画的缘分》赏析(人教版高二选修)
- 圆盘凸轮开题报告
- 光子晶体波导慢光技术
- TD-SCDMA移动通信系统的特点分析
- 光学系统设计(一)
- 2021年教师资格统考小学教育知识与能力模拟试题及答案2
- 最小基因组与生命起源
- 公司班组建设方案
- 冠英小学语文教研组
- 北师大版六年级上册数学教案
- 08-09年全国名校高考模拟试题汇编专题训练8-电场和磁场的综合应用
- 2012《财物管理学》作业及答案
- 裴斯泰洛齐的教育思想
- 大学物理题库波动光学干涉下答案
- 2021年教师资格考试小学教育心理学试题及答案
- 7、两步计算解决问题
- 449灵思企划 北京现代项目 依兰特上市暨品牌传 播策划案v5.0
- 一年级第二学期数学竞赛卷