2006年高一年级第一学期期末调研考试数学试题--泰州市(民兴中学)必修4

更新时间:2023-10-29 20:43:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

江苏省泰州民兴中学2005~2006学年度高一提招班期末考试

数学(必修4)试题

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页. 全卷满分150分,考试时间120分钟.

第Ⅰ卷(选择题 共60分)

注意事项:

1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B铅笔涂在答题卡上. 2. 每小题选出答案后,请用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮

擦干净后,在选涂其他答案,不能答在试题卷上. 3. 考试结束后,监考人员将第Ⅱ卷和答题卡一并收回.

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有

一项是符合题目要求的.

1. 把-4950表示成k·3600+θ(k∈z)的形式,其中使∣θ∣最小的值是

0000

A.-135 B.-45 C.45 D.135

2.将?角的终边按逆时针方向旋转

?,则它与单位圆的交点坐标为 2 A.(cos?,sin?) B. (cos?,?sin?)

C.(sin?,?cos?) D. (?sin?,cos?)

3.下列命题中正确是 A.cos2

C.cos4

4.如果函数f(x)=sin2x+acos2x的图像关于直线x=

A.

?对称,那么a的值是 82 B. -2 C.1 D.- 1

?)的图像 6?? A. 向左平移个单位; B. 向左平移个单位;

126??C. 向右平移个单位; D. 向右平移个单位.

1265.要得到函数y=tan2x的图像,只需把函数y=tan(2x+

6. 四边形ABCD中,AB=2DC,则四边形ABCD为 A. 梯形 B.矩形 C.菱形 D. 平行四边形

7.方程lgx=sin2x的实根有 A.3个 B.4个 C.5个 D.6个

8. 若f(sinx)=sin3x, 则f(cosx)=

1

A.-cos3x B.cos3x C.sin3x D.-sin3x

9.在平行四边形ABCD中,AB+CA+BD等于 A. AB B.BA C.DC D.BC

??10.已知点D、E、 F分别是?ABC的边BC、CA、AB的中点,且BC=2a,CA=2b,

给出的下列四个等式

??① AD=a?2b ??② BE=2a?b ??③ CF=b?a

④ AD+BE+CF=AB+BC+CA

其中正确命题的序号是

A.①,②,③ B. ①,②,④ C. ②,③,④ D. ①,③,④

??????11.已知│a│=a,│b│=b, 向量a和b的夹角为?,则│a-b∣等于

Aa2?b2?2abcos? B. a2?b2?2abcos? C.

a2?b2?2absin? D. a2?b2?2absin?

?????12.已知向量a=(3,4),b=(2,-1),如果向量a+xb与-b垂直,则x的值是

A.

2332 B. C.2 D.-

5323江苏省泰州民兴中学2005~2006学年度高一提招班期末考试

数学(必修4)试题

第Ⅱ卷(非选择题 共90分)

注意事项:

1.第Ⅱ卷共7页,用钢笔或用圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.

二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.

2

13.如果A,B,C是坐标平面内的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),那么?ABC的形状是________________.

14.函数y=?sinx+16?x2的定义域是_________________.

15.若扇形的面积是1㎝ 2它的周长是4㎝,则圆心角的弧度数是________________.

??????2

16.若b?(1,1),并且a?b?2,(a?b)=3, 则│a│=__________.

三、解答题:本大题共6小题 , 共 74分. 解答应写出文字说明、证明过程或演算步骤.

17.(本小题满分12分)

已知:cosB=cos?sinA,cosC=sin?sinA

222

求证:sinA+sinB+sinC=2. 18.(本小题满分12分)

已知: tan?=

1?a (0

a?cos?a?cos?19.(本小题满分12分)

若O是?ABC内部一点,且OA+OB+OC=0, 求证:O是?ABC的重心.

20.(本小题满分12分)

已知关于x的方程4x?2(m?1)x?m?0的两个根恰好是一个直角三角形的两个锐角的余弦,求实数m的值.

21.(本小题满分12分)

2????已知:a?2,b?3,a和b的夹角为450,

????求:⑴当向量a??b与?a?b的夹角为钝角时,?的取值范围; ???? ⑵当???2时,向量a??b与?a?b的夹角的余弦值.

22. (本小题满分14分) 已f(x)的最大值是

f(x)=asin(2?x??6)?a?b(x?R,a?0,??0)的最小正周期为?,函数273,最小值是. 44⑴求?,a,b的值;

⑵求出f(x)的单调递增区间;

⑶指出当f(x)取得最大值和最小值时x的集合.

3

江苏省泰州民兴中学2005~2006学年度高一提招班期末考试

数学(必修4)试题参考答案及评分标准

一. 选择题:

1.A 2.D 3.B 4.C 5.D 6.A 7.C 8. A 9.B 10.C 11.B 12.D 二. 填空题:

13.等腰直角三角形; 14.[??,0]?[?,4]; 15.2 ; 16.5. 三.解答题:

17.证明:由已知可得 : cos2B= cos2?sin2A ⑴

222

cosC=sin?sinA ⑵ ------------------------------6分

2222

⑴+⑵得 cosB+cosC=sinA(cos2?+ sin?)

即 1-sinB+1-sinC=sinA----------------------------10分 所以 sinA+sinB+sinC=2.-----------------------------12 分

2

2

2

222

sin2?sin2?? 18 .解:

a?cos?a?cos?(a?cos?)sin2??(a?cos?)sin2? =--------------------------------------2分

(a?cos?)(a-cos?)2asin2?2asin2? =2=2------------------------------4分 2222a?cos?a(sin??cos?)?cos?2asin2? =2 222asin??(a?1)cos?2atan2? =2---------------------------------------------------------------8分

atan2??a2?11?aa =----------------------------------------------------------------10分 1?aa2?a2?1a2a 4

=

2(1?a) 2a(1?a)?a?12(1?a)=-2------------------------------------------------12分

a?1 =

19.证明:设D是BC中点,则OB+OC=2OD------------------------2分

? ?OA+OB+OC=0 ?OB+OC=-OA

?OA=-2OD ?A,O,D 共线,--------------------8分 同理可证:若E是AC中点,则B,O,E共线, 若F是AB中点,则C,O,F共线,

所以 O是?ABC的重心.---------------------------------------12分 20. 解:设直角三角形的两个锐角分别?,?,则?+?=

? 2 ?cos?=sin? --------------------------------------------2分

?方程4x2-2(m+1)x+m=0中?=4(m+1)2-4×4m=4(m-1)2 ≥0

?当m∈R,方程恒有两实根-------------------------------------4分 ?cos?+cos?=sin?+cos?=

cos?cos?=sin?cos?=

m?1 2m 4m?由以上两式及sin?+cos?=1得 1+2×

42

2

?m?1?=?? ?2?2?m=?3---------------------------------------------------8分

当m=3时 cos?+cos?=

3?13>0, cos?cos?=>0满足题意 245

本文来源:https://www.bwwdw.com/article/stm2.html

Top