北师大版八年级下册分式说课稿

更新时间:2023-07-29 16:38:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

北师大版八年级下册《分式》(第一课时)说课稿

宣汉县城西中学 马志平

各位评委老师:

大家好!我今天说课的内容为北师大版八年级下册第三章第一节《分式》第一课时。我将从以下五个方面对本课加以说明:

一.结合课程标准说教材设计

1.教材的地位和作用

分式是初中数学中继整式之后学习的又一个代数基础知识,较之整式难度有所加深,是初中数学的又一重点,也是对小学所学分数的延伸和扩展,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提,甚至在理化等其他学科也会涉及。因此,学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“分式方程”等,提供重要的条件,打下坚实的基础。

2.教学重难点

根据以上学习任务和学情分析,确定本节课的教学重难点如下:

教学重点:分式的概念与意义

设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。

教学难点:理解和掌握分式有无意义、分式值为零时的条件

设计意图:由于分式的分母中含有待定字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。

二.结合教育现状说学情分析

由于种种原因,我校学生两极分化现象严重,学生基础薄弱,加之借班上课,对学生情况掌握较少,学生在分数和整式的学习中,学生对分数和整式的理解、掌握不熟练,这给本节分式的学习带来了很大的困难,其实分式是分数的“代数化”,所以其性质与运算是完全类似的,针对这种状况,要以基础知识的学习为主,复习和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。

三.结合学生情况说教学目标设计

随着课改的不断深入,三维目标在教学中的重要性显得更突出,知识、过程、技能、效果的重要性也由此可知。

由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下3个方面为本节课的教学目标:

知识与技能目标:

(1)、了解分式的概念,明确分式和整式的区别;

(2)、体会分式的意义,进一步发展符号感。

过程与方法目标:

(1)、培养学生会用所学知识解决实际问题的能力和技巧;

(2)、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.

情感与态度目标:

通过丰富的数学活动,获得成功的经验,体验数学活动充满 着探索和创造,体会分式的模型思想。

四.结合教学情境说教法与学法设计

1、教学方法

基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,以实现概念教学的类比迁移这一思想方法的渗透。借助于课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。以加强分式与现实生活的联系,发展数学的应用意识,突出分式的模型概念。

2、学法指导

根据教材和新课标对学生知识及能力层面的要求,以及充分考虑到学生的认知水平和实际接受能力,在本节课的学法指导中,我将采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结

的能力。

因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

五.结合模式方法策略说教学过程设计

本节课以分式概念为起点,学生在创设问题情境的前提下,带着问题去思考归纳,极大程度的调动学生学习的主动性,激发学生学习的热情,激活学生的思维。

结合本节的教学内容及重难点,我将本节课的教学过程设计如下:创设情境引入课题—分析概念落实双基—举例应用分层教学—及时反馈归纳小结

设计的意图:在上述流程中通过问题的探究,使知识的发生发展与学生的思维贴近,这样实现了主体参与,主体发展的同步进行。

1.创设情境,引入课题

创设一个“游览洋烈新村”的情景,在模拟“骑车前往”、“买票”“买礼品”等活动在进行数学活动,复习整式的概念,并能判断哪些式子是整式,为学习分式做准备.

问题:什么是整式?下列式子中那些是整式?

设计意图: 让学生通过复习整式的概念,明确单项式和多项式统称为整式,这样就较容易找出哪些是整式。因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得分式的概念,所以必须熟练掌握整式的概念.

注意事项:学生能够比较准确的找出哪些是整式,但有些学生会简单的认为“分数”形式的代数式不是整式,其实这不是判别的关键,而是看分母中是不是含有字母,所以有些学生会漏掉

设计意图:通过以上活动中列出了几个与整式不同的代数式,形成对比,自然过渡到分式的探索和学习分式的必要性。让学生进一步经历探索实际问题中的数量关系的过程;通过问题情景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感.

注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,冷静的思考,激烈的讨论,对于问题(1)大多数学生能找出数量关系式,根据学生的情况教师可以给予适当的提示和引导。

2.分析概念,落实双基

以小组的形式对前面出现的分式进行讨论后得出分式的概念,体会分式的意义. 讨论内容:对前面出现的代数式如下

共同特征?它们与整式有什么不同?

分式的概念:整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.对于任意一个分式的分母都不能为零.

设计意图:让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.再得出分式概念后,老师要特别强调分式的分母必须含有字母,且分母不能为零,引起学生的注意。

注意事项:学生通过观察、类比,及小组激烈的讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解,还可理解为字母是可以表示任何数的。这样获得的知识,理解的更加透彻,掌握的更加牢固,运用起来会更灵活.

3.举例应用分层教学

学生讨论分式什么时候有意义?什么时候无意义?什么时候分式的值为零? 例题(1)当 x=1,2时,分别求分式

(2)当 a取何值时,分式2x的值; 3x 1a20a 40b35m 、 、、,它们有什么ba ba bxa 1有意义? 4a 1

a 1(3)当 a取何值时,分式 无意义? 4a 1

a 1(4)当a取何值时,分式 的值为0? 4a 1

其中(1)(2)(3)问由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。在此基础上我补充了第(4)问让学生进一步探索出分式为零的条件

设计意图:通过分式有无意义的条件探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发主动学习的内在动机。

讨论、解答结束后,教师再一次总结分式有无意义的条件及分式的值为零的条件并板书加深对知识的理解。 分式A有无意义的条件: 1、有意义 B≠0; 2、无意义 B=0. B

3、分式值为零的条件 A=0 且 B≠0.

4. 及时反馈归纳小结1、反馈训练,巩固概念

(1)、下列各式中,哪些是整式?哪些是分式?

A、3a32x4axy y B、 C、 D、 E、π F、 22ax5bc2x 1

设计意图:考察学生对分式、整式概念的理解.

(2)、x取什么值时,下列分式无意义?

2xx 1|x| 1 、 、 、 x 24x 1x 13x

设计意图:让学生体会分式的意义,知道如果a的取值使的分母的值为零,则分式没有意义,反之有意义.

(注意事项:学生通过类比分数的分母不能为零,基本能理解分式的分母也不能为零。在学习中,有些学生错误的理解为只是分式的分母中的字母不为零,应该及时纠正,是整个分母不为零。分母可能是单项式,也可能是多项式。

2.小结归纳,分层作业

a.小结:

(1)通过本节课的学习,你学会了哪些知识?

(2)通过本节课的学习,你最大的收获是什么?

(3)通过本节课的学习,你获得了哪些学习数学的方法?

设计意图:让学生畅所欲言,大胆谈自己的收获和感想,充分发挥学生的主体地位,从学习知识、方法、和延伸三方面进行归纳。

b.作业布置:

针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。

必做题是教材67页1、2、3题

选做题是教材68页4题及编一题用分式表示数量关系的实际问题

设计意图:根据学生的个体差异,设计分层作业,使不同层次的学生都能通过作业有所收获。

本文来源:https://www.bwwdw.com/article/spfm.html

Top