学案(四)
更新时间:2024-04-26 13:44:01 阅读量: 综合文库 文档下载
文理教研您的好帮手
8.1二元一次方程组助学案
备助:
教学目标:
1.认识二元一次方程和二元一次方程组.
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解. 教学重点:理解二元一次方程组的解的意义. 教学难点:求二元一次方程的正整数解.
自助:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗? 由问题知道,题中包含两个必须同时满足的条件:
(1) =总场数;(2) =总积分. 这两个条件可以用方程 =22
方程 =40 表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是 ,像这样的方程叫做 方程. 互助:
把两个方程合在一起,写成
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.
第 1 页 共 16 页
文理教研您的好帮手
求助:
探究:
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中. x y 上表中哪对x、y的值还满足方程②
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做 的解.
二元一次方程组的两个方程的公共解,叫做 的解.
补助:
例1 (1)方程(a+2)x+(b-1)y=3是二元一次方程,试求a、b的取值范围. (2)方程x∣a∣-1+(a-2)y=2是二元一次方程,试求a的值. 练习:教科书第94页练习
例2 若方程x2m-1+5y3n-2=7是二元一次方程.求m、n的值 例3 已知下列三对值:
x=-6 x=10 x=10 y=-9 y=-6 y=-1 (1) 哪几对数值使方程 x-y=6的左、右两边的值相等? (2) 哪几对数值是方程组 的解?
续助:
例4 求二元一次方程3x+2y=19的正整数解.
第 2 页 共 16 页
文理教研您的好帮手
8.2 消元(第一课时)助学案
备助:
教学目标:1.会用代入法解二元一次方程组. 2.初步体会解二元一次方程组的基本思想――\消元\
3.通过研究解决问题的方法,培养学生合作交流意识与探究精神. 重点:用代入消元法解二元一次方程组.
难点:探索如何用代入法将\二元\转化为\一元\的消元过程.
自助:
一、知识回顾
1、什么是二元一次方程及二元一次方程的解? 2、什么是二元一次方程组及二元一次方程组的解? 二、提出问题,创设情境
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
在上述问题中,我们可以设出两个未知数,列出二元一次方程组. 这个问题能用一元一次方程解决吗?
互助:
三、新课
1、那么怎样P97页例题1:从例题1的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?
第 3 页 共 16 页
文理教研您的好帮手
归纳:基本思路: \消元\把\ \变为\一元\。
将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入 方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方法称为代入消元法,简称代入法。
求助:
3、把下列方程写成用含x的式子表示y的形式:
(1)2x-y=3 (2)3x+y-1=0 (3)5x-3y = x + y (4)-4x+y = -2 补助:
4、例题分析:例1 例2
续助:
四、课堂小结
问题1、解方程组的基本思路是什么? 问题2、解方程组的方法是什么?
第 4 页 共 16 页
文理教研您的好帮手
8.2 消元(第二课时)助学案
备助:
教学目标:1.用代入法、加减法解二元一次方程组.
2.了解解二元一次方程组时的\消元思想\化未知为已知\的化归思想. 教学重点:用代入法、加减法解二元一次方程组. 教学难点:会用二元一次方程组解决实际问题
自助:
甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,?乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少? 二、 互助:
(一)提高问题,引发讨论
我们知道,对于 方程组 , 可以用代入消元法求解。
这个方程组的两个方程中,y的系数有什么关系??利用这种关系你能发现新的消元方法吗?
求助:
1.问题的解决
上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22即x=18,把x=18代入①得y=4。另外,由①-②也能消去未知数y,?得(x+y)-(2x+y)=22-40即-x=-18,x=18,把x=18代入①得y=4.
第 5 页 共 16 页
文理教研您的好帮手
2.想一想:联系上面的解法,想一想应怎样解方程组
分析:这两个方程中未知数y的系数互为相反数,?因此由①+②可消去未知数y,从而求出未知数x的值。 解:由①+②得x=18
把x= 代入①得y= ∴这个方程组的解为 3.加减消元法的概念
从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
补助:
用加减法解方程组
分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。
议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗? 5.做一做 解方程组
分析:本题不能直接运用加减法求解,要进行化简整理后再求解。 6.想一想
(1)加减消元法解二元一次方程组的基本思想是什么?
第 6 页 共 16 页
文理教研您的好帮手
(2)用加减消元法解二元一次方程组的主要步骤有哪些?
续助:
(1)用加减消元法解二元一次方程组的基本思路仍然是\消元\(2)用加减法解二元一次方程组的一般步骤:
第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,?可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,?可以直接把两个方程的两边相减,消去这个未知数.
第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.
第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,?合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,?常数项在方程的右边的形式,再作如上加减消元的考虑. 归纳总结,知识回顾
本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化\二元\为\一元\
第 7 页 共 16 页
文理教研您的好帮手
8.3 实际问题与二元一次方程组(一)助学案
备助:
教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。 重点:能根据题意列二元一次方程组;根据题意找出等量关系; 难点:正确发找出问题中的两个等量关系
自助:
一、复习
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答 课本105页探究1
互助:
1题中有哪些已知量?哪些未知量? 2题中等量关系有哪些? 3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg (2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
第 8 页 共 16 页
文理教研您的好帮手
求助:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
补助:
1、某工厂第一车间比第二车间人数的 少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的 ,问这两车间原有多少人? 2、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
续助:
借助二元一次方程组解决简单的实际问题
第 9 页 共 16 页
文理教研您的好帮手
8.3 实际问题与二元一次方程组(二)助学案
备助:
教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方
程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型
重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题 难点:寻找等量关系
自助:
看一看:课本106页探究2
问题:1\甲、乙两种作物的单位面积产量比是1:1.5\是什么意思? 2、\甲、乙两种作物的总产量比为3:4\是什么意思? 3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
互助:
这块地还可以怎样分?
第 10 页 共 16 页
文理教研您的好帮手
求助:
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表: 农作物品种 每公顷需劳动力 水稻 棉花 蔬菜
4人 8人 5人
1万元 1万元 2万元
每公顷需投入奖金
已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
补助:
题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
续助:
借助二元一次方程组解决简单的实际问题
第 11 页 共 16 页
文理教研您的好帮手
8.3实际问题与二元一次方程组(三)助学案
备助:
教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方
程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型
重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题 难点:寻找等量关系
自助:
教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。公路运价为1.5元/(吨〃千米),铁路运价为1.2元/(吨〃千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?
互助:
例:甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12
第 12 页 共 16 页
文理教研您的好帮手
吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运? 求助:
某山区有23名中、小学生因贫困失学要捐助。资助一名中学生的学习费用
需要a元,一名小学生的学习费用需要b元。某校学生积极捐款,初中各年级学生捐款数额与用其捐助贫困中学生和小学生的部分情况如下表:
捐款数额
(元) 捐助贫困中学生人数(名) 捐助贫困小学生人数(名) 初一年级 初二年级 初三年级
4000 2 4 4200 3 3 7400
(1) 求a、b的值。
(2) 初三学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中(不必写出计算过程)。
补助:
某公园的门票价格如下表所示:
1人~50人 51~100人 100人以上
8元/人 5元/人
购票人数 票价
10元/人
某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。问:甲、乙两个班
第 13 页 共 16 页
文理教研您的好帮手
分别有多少人?
续助:
借助二元一次方程组解决简单的实际问题 教材108页5、7。
8.4 三元一次方程组解法举例助学案
备助:
教学目标:1.了解三元一次方程组的概念.2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点: (1)使学生会解简单的三元一次方程组.(2)通过本节学习,进一步体会\消元\的基本思想.
教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.
自助:
前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢? 互助:
第 14 页 共 16 页
文理教研您的好帮手
小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张. 提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?
【列表分析】 (师生共同完成)
(三个量关系) 每张面值 × 张数 = 钱数
1元 x x 2元 5元
y 2y z
5z 12 22
合 计
注 1元纸币的数量是2元纸币数量的4倍,即x=4y 解:(学生叙述个人想法,教师板书) 设1元,2元,5元的张数为x张,y张,z张. 根据题意列方程组为:
【得出定义】 (师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
求助:
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)
第 15 页 共 16 页
文理教研您的好帮手
例1 .解方程组
分析1:发现三个方程中x的系数都是1,因此确定用减法\消x\分析2:方程③是关于x的表达式,确定\消x\的目标.
补助:
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为: 类型一:有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组 类型二:缺某元,消某元.
教师提示:当然我们还可以通过消掉未知项y来达到将\三元\转化为\二元\目的,同学可以课下自行尝试一下.
续助:
1.解三元一次方程组的基本思路:通过\代入\或\加减\进行消元,把\三元\化为\二元\,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组 二元一次方程组 一元一次方程
2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.布置作业
1. 解方程组 你能有多少种方法求解它?
本题方法灵活多样,有利于学生广开思路进行解法探究。 2. 教材114页练习1(1),2;习题8.4-1.
第 16 页 共 16 页
文理教研您的好帮手
例1 .解方程组
分析1:发现三个方程中x的系数都是1,因此确定用减法\消x\分析2:方程③是关于x的表达式,确定\消x\的目标.
补助:
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为: 类型一:有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组 类型二:缺某元,消某元.
教师提示:当然我们还可以通过消掉未知项y来达到将\三元\转化为\二元\目的,同学可以课下自行尝试一下.
续助:
1.解三元一次方程组的基本思路:通过\代入\或\加减\进行消元,把\三元\化为\二元\,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组 二元一次方程组 一元一次方程
2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.布置作业
1. 解方程组 你能有多少种方法求解它?
本题方法灵活多样,有利于学生广开思路进行解法探究。 2. 教材114页练习1(1),2;习题8.4-1.
第 16 页 共 16 页
正在阅读:
学案(四)04-26
孤单的人总说无所谓02-13
关于新型钢塑复合管产业规模扩大化实施报告05-28
巧设问题情境增强课堂活力09-12
上海市普陀区2012学年第一学期高三年级质量调研考试(文理)07-09
《合理开发利用家长资源的研究》研究报告05-13
培训教案—培育教导下属能力07-22
口号标语之9月销售口号04-19
杭州总体规划实施评价1107 - 图文06-05
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- ccaa认证人员基础知识考试统一考试及答案
- 2012届高三数学一轮复习第十章统计与概率10-9
- 关于打击官僚主义的学习材料
- 计算机一级考试理论试题 第6部分 信息与计算机基础知识
- DA与AD转换器的基本原理
- SAP设计理念
- 立体车库项目商业计划书
- 昆明市盘龙区各级文物保护单位简介
- 201709考试批次《市场营销学》(结课作业)
- 政府领导在全市节能减排会议上的讲话
- 量子化学计算简介-量子化学计算发展史
- 陕旅版六年级上英语Unit3测试卷
- 薪酬管理第一次作业(东航飞行员集体返航事件)
- 濮阳市示范区市政工程建设(1包)项目PPP项目 - 图文
- 农业行政执法法律知识试题
- 个人纪律作风整顿自我剖析精选3篇
- PM32使用说明
- 1.建设项目概况 - 图文
- 学习撰写权利要求书
- 整数除法竖式计算题天天练(11)