材料力学试题库

更新时间:2023-12-04 05:49:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1、以下列举的实际问题中,属于强度问题的是( );属于刚度问题的是( );属于稳定性问题的是( ) 【 】【 】【 】

A.旗杆由于风力过大而产生不可恢复的永久变形 B.自行车链条拉长量超过允许值而打滑 C.桥梁路面由于汽车超载而开裂 D.细长的千斤顶螺杆因压力过大而弯曲

2、虎克定律使用的条件是( ) 【 】

A、σ<σp B、σ>σp C、σ<σs D、σ>σs

3、一等直杆在两端承受拉力作用,若其一半为钢,一半为铝,则两段的( )。 【 】

A、内力相同,变形相同 B、内力相同,变形不同 C、内力不同,变形相同 D、内力不同,变形不同

4、如图所示,设杆内最大轴力和最小轴力分别为FNmax和FNmin,则下列结论正确的是 【 】

A、FNmax=50KN,FNmin=5KN; B、FNmax=55KN,FNmin=40KN; C、FNmax=55KN,FNmin=25KN; D、FNmax=20KN,FNmin=-5KN;

5、矩形截面梁受弯曲变形,如果梁横截面的高度增加一倍时,则梁内的最大正

应力为原来的多少倍? 【 】

A.正应力为1/2倍 B.正应力为1/4倍 C.正应力为4倍 D.无法确定

6、用同一材料制成的实心圆轴和空心圆轴,若长度和横截面面积均相同,则抗

扭刚度较大的是哪个?

【 】

A. 实心圆轴 B. 空心圆轴 C.两者一样 D.无法判断

7、梁变形时,挠度?和转角?间的关系??d?【 】

A.梁发生平面弯曲 B.小变形假设 C.平截面假设 D.以上三个条件同时成立

dx成立的条件是

8、悬臂梁承受均匀分布载荷,支座【 】 A.处的反力有四种结果,正确的是

FA?qlmA?0

FA?qlmA?FA?qlB.C.D.12ql 2mA?ql2

1FA?qlmA?ql2

31、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( )。

【 】

A、形状尺寸不变,直径线仍为直线。 B、形状尺寸改变,直径线仍为直线。 C、形状尺寸不变,直径线不保持直线。D、形状尺寸改变,直径线不保持直线。 2、虎克定律使用的条件是( ) 【 】

A、σ<σp B、σ>σp C、σ<σs D、σ>σs

3、一等直杆在两端承受拉力作用,若其一半为钢,一半为铝,则两段的( )。 【 】

A、内力相同,变形相同 B、内力相同,变形不同 C、内力不同,变形相同 D、内力不同,变形不同

4、如图所示,设杆内最大轴力和最小轴力分别为FNmax和FNmin,则下列结论正确

的是 【 】

A、FNmax=50KN,FNmin=5KN; B、FNmax=55KN,FNmin=40KN; C、FNmax=55KN,FNmin=25KN; D、FNmax=20KN,FNmin=-5KN;

5、矩形截面梁受弯曲变形,如果梁横截面的高度增加一倍时,则梁内的最大正

应力为原来的多少倍? 【 】

A.正应力为1/2倍 B.正应力为1/4倍 C.正应力为4倍 D.无法确定

6、用同一材料制成的实心圆轴和空心圆轴,若长度和横截面面积均相同,则抗

扭刚度较大的是哪个?

【 】

A. 实心圆轴 B. 空心圆轴 C.两者一样 D.无法判断

7、梁变形时,挠度?和转角?间的关系??d?【 】

A.梁发生平面弯曲 B.小变形假设 C.平截面假设 D.以上三个条件同时成立

dx成立的条件是

8、悬臂梁承受均匀分布载荷,支座【 】 A.处的反力有四种结果,正确的是

FA?qlmA?0

FA?qlmA?FA?qlB.C.D.12ql 2mA?ql2

1FA?qlmA?ql2

39、若某刚体在平面一般力系作用下平衡,则此力系各分力对刚体( )之矩的

代数和必为零。

A、特定点 B、重心 C、任意点 D、坐标原点 【 】

10、圆轴扭转变形时,横截面上的应力分布规律正确的是______________。 【 】

1、衡量材料强度的两个重要指标是 和 。 2、通常工程材料丧失工作能力的情况是:塑性材料发生 现象,

脆性材料发生 现象。

3、梁的弯曲强度与 、 、 因素有关。 4、圆形截面杆受扭如图所示,则杆中的最大剪应力为 。

1、材料力学的基本假设 2、什么是圣维南原理 3、梁与杆的区别

4、材料的变形形式有哪些,又有哪些组合变形

从强度方面考虑,空心圆截面轴何以比实心圆截面轴合理? 在固定端处和铰支座处梁位移的边界条件是什么?

何谓许用应力?何谓强度条件?利用强度条件可以解决哪些类型的强度问题?

绘制轴力图:

绘制扭矩图;

M1=1000N.m M2=500N.m M3=500N.m

绘制轴力图:

(b)18kN.12.

3.33kN125kN210kN

绘制剪力图与弯矩图; 绘制剪力图与弯矩图;

如图所示,建立梁的剪力与弯矩方程,并画剪力与弯矩图。

图示阶梯形截面杆AC,承受轴向载荷F1?200KN与F2?100KN,AB段的直径

d1?40mm。如欲使BC与AB段的正应力相同,试求BC段的直径。(10分)

2.图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1?30mm与d2?20mm,两杆材料相同,屈服极限?s?320Mpa,安全因数ns?2.0。该桁架在节点A处承受铅垂方向的载荷F=80KN作用,试校核桁架的强度。(10分)

3.图示悬臂梁,横截面为矩形,承受载荷F1与F2作用,且F1?2F2?5KN。试计算梁内的最大弯曲正应力,及该应力所在截面上K点处的弯曲正应力。(10分)

试确定图示轴的直径。已知扭力偶矩M1?400N?m,M2?600N?m,许用切应力????40MPa。

如图1-4所示拉杆,用四个直径相同的铆钉固定在格板上,拉杆与铆钉的材料相同,试校核铆钉与拉杆的强度。已知载荷F?80KN,板宽b?80mm,板厚

??10mm,铆钉直径d?16mm,许用切应力[?]?100MPa,许用挤压应力[?bs]?300MPa,许用拉应力[?]?160MPa。(10分)

如图所示悬臂梁,自由端承受集中载荷F作用,试建立梁的挠度与转角 方程。并计算最大挠度与转角。设弯曲刚度EI为常数。

如图所示矩形截面悬臂梁,承受载荷Fy与Fz作用,且Fy?Fz?F?1.0KN,截面高度h?80mm,宽度b?40mm,许用应力[?]?160MPa,a?800mm。试校核梁的强度。(15分)

本文来源:https://www.bwwdw.com/article/snwt.html

Top