函数与函数的零点知识点总结
更新时间:2024-04-08 12:35:01 阅读量: 综合文库 文档下载
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法:
复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足a?g(x)?b的x的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在x?[a,b]的条件下,求g(x)的值域;
(3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在x?[a,b]的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x即可。 2).求函数的解析式的常用求法:
1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法
1、图像法;2、层层递进法;3、分离常数法;4、换元法;5、单调性法;6、判别式法;7、有界性;8、奇偶性法;9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域
(二)分段函数问题
1:已知定义域求值域问题(代入法) 2:已知定义域求值域问题(代入法) 3.分段函数解析式的求法 要点2.函数的性质
(一)函数的单调性(局部性质): 1).函数单调性的判定
(A) 定义法:定义1:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 (x1?x2)?f(x1)?f(x2)??0?(x1?x2)?f(x1)?f(x2)??0?f(x1)?f(x2)?0?f(x)在?a,b?上是增函数; x1?x2f(x1)?f(x2)?0?f(x)在?a,b?上是减函数. x1?x2定义2.设函数y?f(x)在某个区间内可导,如果f?(x)?0,则f(x)为增函数;如果f?(x)?0,则f(x)为减函数. (B)图象法(从图象上看升降) 2.函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x1,x2∈D,且x1 4 定号(即判断差f(x1)-f(x2)的正负);○5 下结论(指出函数f(x)在给定的区间D上的单调性). ○ (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. (D) 导数法 2)函数的单调区间 3)利用函数单调性解不等式,比较大小,求参数的值或取值范围及最值问题 1. (比较大小) 2.(最值) 3.(参数范围问题) 4.(解不等式) 4)抽象函数的单调性 5).函数单调性的常用结论: 1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)?g(x)在这个区间上也为增(减)函数 2、若f(x)为增(减)函数,则?f(x)为减(增)函数 3、若f(x)与g(x)的单调性相同,则y?f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则y?f[g(x)]是减函数。 4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。 5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。 (二)函数的奇偶性(整体性质):紧扣函数奇偶性的定义和函数的定义域区间关于坐标原点对称、函数图象的对称性等对问题进行分析转化,特别注意“奇函数若在x=0处有定义,则一定有f(0)=0,偶函数一定有f(|x|)=f(x)”在解题中的应用. 1)函数奇偶性的判断 1.1一般函数奇偶性的判断 1.定义:偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. 奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 2.性质:奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数. 3.利用定义判断函数奇偶性的步骤: 1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+○ f(x) = 0,则f(x)是奇函数. 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 1.2分段函数奇偶性的判断 方法:图像法、定义法(注意带人) 2)利用奇偶性求函数的解析式(注意带入) 3)抽象函数奇偶性的证明 4)函数奇偶性的常用结论: 1、如果一个奇函数在x?0处有定义,则f(0)?0,如果一个函数y?f(x)既是奇函数又是偶函数,则f(x)?0(反之不成立) 2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。 3、一个奇函数与一个偶函数的积(商)为奇函数。 4、两个函数y?f(u)和u?g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。 5、若函数y?f(x)是偶函数,则f(x?a)?f(?x?a);若函数y?f(x?a)是偶函数,则 f(x?a)?f(?x?a). 6、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)?的特点是:右端为一个奇函数和一个偶函数的和。 (三)函数的周期性 几个函数方程的周期(约定a>0) (1)f(x)?f(x?a),则f(x)的周期T=a; 11[f(x)?f(?x)]?[f(x)?f(?x)],该式22(2)f(x)?f(x?a)?0,或f(x?a)?11(f(x)?0),或f(x?a)??(f(x)?0), f(x)f(x)或 1?2f(x)?f2(x)?f(x?a),(f(x)??0,1?),则f(x)的周期T=2a; 1(f(x)?0),则f(x)的周期T=3a; f(x?a)f(x1)?f(x2)且f(a)?1(f(x1)?f(x2)?1,0?|x1?x2|?2a),则f(x)的周期T=4a; 1?f(x1)f(x2)(3)f(x)?1?(4)f(x1?x2)?(5)f(x)?f(x?a)?f(x?2a)f(x?3a)?f(x?4a)?f(x)f(x?a)f(x?2a)f(x?3a)f(x?4a),则f(x)的周期T=5a; (6)f(x?a)?f(x)?f(x?a),则f(x)的周期T=6a. 要点3.函数的图象 1.解决该类问题要熟练掌握基本初等函数的图象和性质,善于利用函数的性质来作图,要合理利用图象的三种变换.2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究. (一)图像变换问题 (1) 画法 A、描点法: B、图象变换法常用变换方法有三种:1)平移变换;2)伸缩变换;3)对称变换; (二)图像识别问题 要点4.二次函数 (一)闭区间上的二次函数的最值 二次函数f(x)?ax?bx?c(a?0)在闭区间?p,q?上的最值只能在x??2b处及区间的两端点处取得,具2a体如下: (1)当a>0时,若x??bb??p,q?,则f(x)min?f(?),f(x)max?max?f(p),f(q)?; 2a2ab??p,q?,f(x)max?max?f(p),f(q)?,f(x)min?min?f(p),f(q)?. 2abb?minfp()f,q()(2)当a<0时,若x??,若??p,q?,则f(x)x????p,q?,则??min2a2ax??f(x)?ma?xfmaxp()f,q(f()x)min?min?f(p),f(q)?. ?, (二)二次函数的移轴问题 1)定区间动轴 2)定轴动区间 3)轴动区间动 (三)一元二次方程的实根分布 依据:若f(m)f(n)?0,则方程f(x)?0在区间(m,n)内至少有一个实根 . 设f(x)?x2?px?q,则 ?p2?4q?0?(1)方程f(x)?0在区间(m,??)内有根的充要条件为f(m)?0或?p; ???m?2?f(m)?0?f(n)?0??f(m)?0?(2)方程f(x)?0在区间(m,n)内有根的充要条件为f(m)f(n)?0或?p2?4q?0或?或 ?af(n)?0??m??p?n??2?f(n)?0; ?af(m)?0?
正在阅读:
函数与函数的零点知识点总结04-08
2013届高考数学二轮复习专题专题六 立体几何 第二讲空间中的平行与垂直05-11
人生的目标作文【优秀4篇】03-25
论孔子的世界观及其教育方法(一)12-30
课外辅导记录语文二年级09-14
失败也不怕,那是在为成功做加法励志文章11-20
孟子的全文(2)(9篇)03-25
中华人民共和国第一机械工业部部标准08-20
释迦牟尼佛所发五百大愿07-25
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 函数
- 知识点
- 零点
- 总结
- 关于大连中石油国际储运有限公司“7·16”输油管道爆炸火灾事故
- “养成读书习惯,共享阅读快乐”读书活动实施方案
- 望月(第二课时)
- 大题
- CDC历年真题
- 冀教版小学科学二年级上册10、磁铁的力量 教案
- 新生儿静脉补液基础
- 概要写作在高中英语中的教学策略
- ACOG临床指南:深静脉血栓和肺栓塞的预防
- 第三方检测工作管理办法
- 2017年广东省高职高考数学试卷及参考答案
- 自然角小班幼儿探索科学奥秘的启蒙角
- 无标定视觉伺服在机器人跟踪多特征点目标的应用 - 图文
- 2011年湖南工艺美术职业学院院学生会纪保部工作计划
- 武穴市长乐大道B7段道路毕业设计
- 2013年安徽省造价员考试试题
- 关于委羽山新区道文化主题公园开发的思考与建议
- 加油站管理
- 汉服活动 策划书
- 信息技术练习题