Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term
更新时间:2023-07-17 10:50:01 阅读量: 实用文档 文档下载
- asymptotic推荐度:
- 相关推荐
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
6
2
v
o
N
6
]P
A
.
th
a
m
[
1
v
4
3
1
1
1
6
/
tha
m
:v
i
Xr
aASYMPTOTICBEHAVIOROFANONISOTHERMALVISCOUSCAHN-HILLIARDEQUATIONWITHINERTIALTERMMAURIZIOGRASSELLI ,HANAPETZELTOVA´ ,GIULIOSCHIMPERNA Abstract.Weconsideradi erentialmodeldescribingnonisothermalfastphasesepara-tionprocessestakingplaceinathree-dimensionalboundeddomain.ThismodelconsistsofaviscousCahn-Hilliardequationcharacterizedbythepresenceofaninertialtermχtt,χbeingtheorderparameter,whichislinearlycoupledwithanevolutionequationforthe(relative)temperature .ThelattercanbeofhyperbolictypeiftheCattaneo-Maxwellheatconductionlawisassumed.ThestatevariablesandthechemicalpotentialaresubjecttothehomogeneousNeumannboundaryconditions.We rstprovidecondi-tionswhichensurethewell-posednessoftheinitialandboundaryvalueproblem.Then,weprovethatthecorrespondingdynamicalsystemisdissipativeandpossessesaglobalattractor.Moreover,assumingthatthenonlinearpotentialisrealanalytic,weestab-lishthateachtrajectoryconvergestoasinglesteadystatebyusingasuitableversionoftheL ojasiewicz-Simoninequality.Wealsoobtainanestimateofthedecayratetoequilibrium.1.IntroductionConsideraboundeddomain R3withsmoothboundary whichcontains,foranytimet≥0,atwo-phasesystemsubjecttononisothermalphaseseparation.Awell-knownevolutionsystemwhichdescribes(1.1) thiskindofprocessis(see[8],cf.also[7])( +χ)t =0,χt ( χ+φ(χ) )=0,in ×(0,∞).Here denotesthe(relative)temperaturearoundagivencriticalone,χrepresentstheorderparameter(orphase- eld)andφisthederivativeofasuitablesmoothdoublewellpotential(e.g.,φ(r)=r3 ar,a>0).Forthesakeofsimplicity,all
theconstantshavebeensetequaltoone.
Intheisothermalcase,thefollowingsingularperturbationofCahn-Hilliardequationhasbeenexaminedinseveralpapers(see[6,13,20,21,52,53]andreferencestherein)(1.2)εχtt+χt ( χ+αχt+φ(χ))=0,
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
2´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
whereε>0isasmallinertialparameterandα≥0isaviscositycoe cient.Theinertialtermεχttaccountsforfastphaseseparationprocesses(see,e.g.,[19]),whilethemotivationsforintroducingtheviscoustermαχtaredetailedin[38].Theabovequotedworksareconcernedwiththeanalysisofthein nite-dimensionaldissipativedynamicalsystemgeneratedby(1.2)endowedwithsuitableboundaryconditions.Werecallthatthecaseα=0hasbeenanalyzedsofarinonespatialdimensiononly,sinceintwoandthreedimensions,uniquenessandsmoothnessofsolutionsarestillopenissues(seehowever
[45]).
Inthispaperweconsiderequation(1.2)inthenonisothermalcase,namely, ( +χ)t+ ·q=0,
(1.3)σqt+q= , εχ+χ ( χ+αχ+φ(χ) )=0,tttt
whereσ∈[0,1].ObservethatthestandardFourierlawisobtainedwhenσ=0.Other-wise,wehavetheso-calledMaxwell-Cattaneoheatconductionlawwhichentailsthat propagatesat nitespeed(see,e.g.,[25,26,27]andtheirreferences).
System(1.3)issubjecttotheinitialconditions
(1.4)
(1.5) (0)= 0,σq(0)=σq0,χ(0)=χ0,χt(0)=χ1,in ,andtotheno- uxboundaryconditionsq·n= χ·n= ( χ)·n=0,on ×(0,∞),
wherenstandsfortheoutwardnormalderivativeand·indicatestheusualEuclideanscalarproduct.Observethat(1.3)reducesto(1.1)whenε=α=0.Moreover,notethat(1.5)areequivalenttoassumethe rsttwoconditionsand u·n=0,whereu= χ+αχt+φ(χ) istheso-calledchemicalpotential.
Herewewanttodemonstrate rstthatproblem(1.3)-(1.5)iswellposed.ThuswecanconstructastronglycontinuoussemigroupSσ(t)onanappropriatephase-space.Thissemigrouppossessesaboundedabsorbingsetwhichiscompactinthephase-spaceifσ=0,otherwiseweshowtheexistenceofacompactexponentiallyattractingsetwhichentailstheasymptoticcompactnessofSσ(t).Thelatterresultisbasedonarecentdecompositionofthesolutionsemigroupdevisedin[39].Therefore,foranyσ≥0,wededucethatSσ(t)possessesa(smooth)globalattractor.Takingadvantageoftheseresults,wecanalsodeducethatanytrajectoryoriginatingfromthephase-spaceisprecompact.Then,wecanproceedtoanalyzetheasymptoticbehaviorofasingletrajectory.Moreprecisely,weshowthatifφisrealanalytic,thenany(weak)solution( (t),σq(t),χ(t))converges,astgoesto∞,toasingleequilibrium,namely,toatriplet( ∞,0,χ∞),where ∞andχ∞satisfy ∞=| | 1( 0 εχ1), χ∞=(εχ1+χ0),(1.6) ( χ∞+φ(χ∞))=0,in , χ∞·n= ( χ∞)·n=0,on .
Thisresultisobtainedbyexploitingawell-knowntechniqueoriginatedfromsomeworksofS.L ojasiewicz[35,36]andthenre nedbyL.Simon[46].Werecallthat,inmorethanone
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION3spatialdimension,thestructureofthesetofsolutionsto(1.6)maycontainacontinuumofsolutionsif isaballoranannulus(cf.,e.g.,[29]andreferencestherein).Ifthisisthecase,itisnontrivialtodecidewhetherornotagiventrajectoryconvergestoasinglestationarystate.Moreover,thismightnothappenevenfor nite-dimensionaldynamicalsystems(cf.[5])andtherearenegativeresultsforsemilinearparabolicequationswithsmoothnonlinearities(see[40,41]).
Duringthelastyears,theL ojasiewicz-Simontechniquehasbeenmodi edandusedbymanyauthors(cf.,e.g.,[9,10,12,17,30,31,32,33,34,50])toinvestigateanumberofparabolicandhyperbolicsemilinearequationswithvariationalstructure.Morerecently,thistechniquehasalsobeenusedforproblemswithonlyapartialvariationalstructure,likethephase- eldsystems.Moreprecisely,nonconservedmodels(withorwithoutmem-orye ects)havebeenanalyzedin[1,2,16,22,51],whilethecaseofahyperbolicdynamicsfortheorderparameterhasbeenexaminedin[23,48].Therearealsoresultsfornonlocalmodels(see[15,24]).ConcerningthestandardCahn-Hilliardequation,convergencetostationarystateshasbeenexaminedin[11,18,42,44,49],whilethenonconstanttem-peraturecase,namely(1.1)with(1.5),hasbeen rstanalyzedin[14]andthenin[43]inthecaseofdynamicboundaryconditions.Thememorye ectsintheheat uxhavebeentreatedin[3,4]fortheColeman-Gurtinlawand,recently,in[37]forageneralizationoftheMaxwell-Cattaneolaw.Asweshallsee,hereweneedaparticularL ojasiewicz-Simontypeinequalitywhichisare nementoftheoneprovedin[18](seeLemma4.1anditsproofinAppendix).
2.Well-posednessanduniformbounds
LetH=L2( )andH=(L2( ))3.Thesespacesareendowedwiththenaturalinnerproduct ·,· andtheinducednorm · .Forthesakeofsimplicity,wewillassume| |=1andε=1.Then,wesetV=H1( ),V=(H1( ))3andW=H2( ),bothendowedwiththeirstandardinnerproducts,andwede nethesubspaceofHofthenullmeanfunctions
H0={v∈H: v,1 =0}.
WealsointroducethelinearnonnegativeoperatorA= :D(A) H→H0withdomain
D(A)={v∈W: v·n=0,on },
anddenotebyA0itsrestrictiontoH0.NotethatA0isapositivelinearoperator;hence,r/2foranyr∈R,wecande neitspowersArand,consequently,setV0r=D(A0)endowedwiththeinnerproduct
r/2r/2 v1,v2 V0r= A0v1,A0v2 .
Clearly,wehaveV00≡H0.Inaddition,weneedtousetheHilbertspaces
V0={v∈V:v·n=0
and
Hσ=H×H×V×V ,Vσ=V×V0×D(A)×H,
endowedwiththefollowingnorms,respectively,
12223242 (z1,z2,z3,z4) 2Hσ= z +σ z + z V+ z V ,
42223212 (z1,z2,z3,z4) 2Vσ= z V+σ z V+ z W+ z ,on },
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
4´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
ifσ>0.Otherwise,wesimplyset
H0=H×V×V ,V0=V×D(A)×H.
OurassumptionsonthefunctionφandonthepotentialΦ,de nedby y
Φ(y)=φ(ξ)dξ, y∈R,
arethefollowing
(2.1)
(2.2)
(2.3)
(2.4)
(2.5)Φ∈C3(R)suchthatΦ(y)≥ c0,|φ′′(y)|≤c1(1+|y|),|φ(y)|≤ Φ(y)+c , y∈R; y∈R; y∈R; y∈R; >0,thereexistsc >0suchthat ∈R,thereexistc2>0andc3≥0suchthat(y )φ(y)≥c2Φ(y) c3,
φ′(y)≥ c4, y∈R;
forsomepositiveconstantsc0,c1,c4.Herec2andc3continuouslydependon .
Wenowrewritesystem(1.3)togetherwith(1.5)inthefollowingform in(0,∞), ( +χ)t,v q, v =0,
(2.6) σqt+q,v = , ·v ,in(0,∞), χ+χ,w + Aχ+φ(χ)+αχ ,Aw =0,in(0,∞),tttt
forallv∈V,v∈V0,andw∈D(A),endowedwithinitialconditions(1.4).
Letusprove
0∈H,
σq0∈H,
χ0∈V,
χ1∈V ,
∈C0([0,∞),H)
σq∈C0([0,∞);H),
χ∈C0([0,∞),V),
χt∈C0([0,∞),V )∩L2(0,∞,V ),
αχt∈L2(0,∞,H).q∈L2(0,∞;H),Theorem2.1.Let(2.1)-(2.5)hold.Then,forany( 0,q0,χ0,χ1)suchthat(2.7)(2.8)(2.9)(2.10)(2.11)(2.12)(2.13)(2.14)(2.15)theCauchyproblem(2.6)-(1.4)hasa(weak)solution(θ,χ)withthefollowingproperties
andthereexistsapositiveconstantC,dependingonthenormsoftheinitialdataandonφ,suchthat,forallt≥0,
(2.16) ( (t),q(t),χ(t),χt(t)) 2Hσ ∞ 2222+ (τ) (τ),1 + q(τ) + χt(τ) V +α χt(τ) dτ≤C,
t
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION5and
(2.17) ( +χ)(t),1 = 0+χ0,1 , χ(t),1 = χ0+χ1,1 χ1,e t .Ifα>0,thenthesolutionisuniqueandthefollowingboundholds t+1
(2.18)sup Aχ(τ) 2dτ≤C.t≥0t
Moreover,forany xedT>0,if( 0i,q0i,χ0i,χ1i)∈Hσ,i=1,2,thenthecorrespondingsolutions( i,qi,χi,χit)satisfy
(2.19) (( 1 2)(t),(q1 q2)(t),(χ1 χ2)(t),(χ1 χ2)t(t)) 2Hσ
≤C(R)eKT ( 01 02,q01 q02,χ01 χ02,χ11 χ12) 2Hσ,
forsomepositiveconstantsC(R)andK,bothindependentofT,where
( 0i,q0i,χ0i,χ1i) Hσ≤R,i=1,2. t∈[0,T],
Proof.We rstshowinequality(2.16)arguingformally.ThisargumentcanbemaderigorouswithinaFaedo-Galerkinschemeanditsu cestoprovetheexistenceofasolutionforallα≥0.FromnowonCwilldenoteagenericpositiveconstantwhichdependsonφandonthespatialaveragesoftheinitialdata,atmost.Ifasolutionexists,thenitiseasytoshowthevalidityof(2.17),duetotheboundaryconditions(1.5).Moreover,wehave
(2.20)
Letussetnow
(2.21) = ,1 , χ =χ χ,1 ,
andrewriteproblem(2.6)intheform +χ )t,v q, v =0,in(0,∞), (
·v ,(2.22) σqt+q,v = ,in(0,∞), χ Aw =0, tt+χ t,w + Aχ +φ(χ)+αχ t , χt(t),1 = χ1,1 e t.in(0,∞),
forallv∈V,v∈V0,andw∈D(A). inthe rstequation,v=qinthesecondequation,andw=Letustakev= 1A t+βχ ),whereβ>0willbechosensmallenough.Addingtogethertheresulting0(χ
identities,wegetd
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
6´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
forsomeC1>0,while,onaccountof(2.3),weinfer(2.25)
φ
(
χ
)
, χt,1 = φ(χ),1 χt,1 ≥ βC1
2e t.
Hence,using(2.1),wehave
(2.26) 2 φ(χ), χt,1 +2β φ(χ),χ
≥βC1 Φ(χ),1 2βC2 cβe t≥ C(β+cβe t).
Then,taking(2.17)and(2.20)intoaccount,from(2.23)wededuce
d
(2.28)dt Aχ 2 χ t 2+2 Aχ 2+2 φ′(χ) χ, χ 2 , =0.
d 222 χ t,χ + χ +α χ Moreover,inthecaseσ>0,usingthe rsttwoequationsof(2.22),wehave
2
Then,letusintroducethefunctional
(2.32)
1/2 1/2 1/222 1 A0χ t κ21+σ q 2. 1/2 q,χ, 2+σ q 2+ A 1/2χΨσ( , χ t)= t 2+ χ 20+2β A0χ t,A0χ +β A0χ 2+αβ χ 2+2 Φ(χ),1 22+γ12 χ t,χ + χ +α χ
1 γ2 q, A 0 ,
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION7and,recalling(2.30)and
(2.31),
let
us
choose,
in
turn,
γ
2
so
small
that
max
{
2
γ
2,γ2κ2(1+σ 1)}≤1,
andthenβandγ1sosmallthatβ≤1/2,γ1c4≤β/4,and(βκ1+γ1)≤γ2σ 1/4.Then,Ψσful llstheinequality
d
dtΨ0( , χ, χ t)+c A/2
0χ t 2+α χ t 2+β χ 2
≤C(β+cβe t). 2+ 1 +γ1 Aχ 2
Thenwecanargueasabove.
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
8M.GRASSELLI,H.PETZELTOVA,´G.SCHIMPERNA
Estimate(2.19)isstandard,providedthatα>0.Indeed,itsu cestowritedownproblem(2.6)forthedi erenceoftwosolutions( i,qi,χi),i=1,2,andthenmultiplythe rstequationby 1 2,thesecondonebyq1 q2,andthethirdonebyA 1 1 χ 2)tUsingtheGronwalllemmaandtaking(2.2)intoaccount,oneeasilygets0(χ.
thewanted
estimate(see,e.g.,[6]or[20]fortheisothermalcase). FromTheorem2.1anditsproofwededucethat,letting
Xσδ={(z1,z2,z3,z4)∈Hσ:| z1,1 |+| z3,1 |+| z4,1 |≤δ}
forsomeδ≥0,endowedwiththemetricinducedbythenormofHσ,andsetting
( (t),q(t),χ(t),χt(t))=:Sσ(t)( 0,q0,χ0,χ1), t≥0,
wehavethatSσ(t)isastronglycontinuoussemigrouponXδ
de neastronglycontinuousdissipativeσwithaboundedabsorbing
set.Similarly,wecansemigroupS0(t)onXδSummingup,wehave0.Corollary2.2.Let(2.1)-(2.5)hold.Foranygivenσ∈[0,1],thesemigroupSσ(t)actingonXσδhasaboundedabsorbingset.
3.Precompactnessoftrajectoriesandglobalattractor
Hereweprove
Theorem3.1.Let(2.1)-(2.5)holdandsupposeα>0.Ifσ∈(0,1]and( 0,q0,χ0,χ1)satis es(2.7)-(2.10),then,indicating
orbit
(t) by( ,q,χ)thecorrespondingsolutionto(2.6)-(1.4)givenbyTheorem2.1,thet≥0( (t),q(t),χ(t),χt(t))isprecompactinHσ.Moreover,thereholds(3.1) 0 χ1,1 →0,
(3.2) q(t) →0,
(3.3) χt(t) V →0,
astgoesto∞,andtheω-limitsetω( 0,q0,χ0,χ1)consistsonlyofequilibriumpointsoftheform( ∞,0,χ∞,0)where( ∞,χ∞)satis es(1.6).Similarresultsholdwhenσ=0.Proof.Onaccountof[39],observe rstthat,thanksto(2.2),(2.5),and(2.16),wecanchoose ≥c4largeenough,anddependingonthenormsoftheinitialdata,suchthat(3.4)1
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION9and
(3.6) ( c+χc)t,v qc, v =0,in(0,∞), σqct+qc,v = c, ·v ,in(0,∞),
χc+χc,w + Aχc+ψ(χc)+αχc c
tttt,Aw = χ,Aw ,in(0,∞),
c(0)= 0,1 ,σqc(0)=0,χc(0)= χ0,1 ,χct(0)= χ1,1 ,in ,
forallv∈V,v∈V0,andw∈D(A).
Weshallprovethat( d(t),qd(t),χd(t),χd
c,qc,χc,χct(t))exponentiallydecaysat0inHσastgoes
to∞,while(t)isboundedinaspacewhichiscompactlyembeddedinHσ,uniformlyintime.
Letusprove rstthat,foranyt≥s≥0andevery >0,thereholds
(3.7)α t
χct(τ) 2dτ≤ (t s)+C
s
(3.8)dt0χ t + χ +2 Ψ(χ),1 2 χ,χ
+ c 2+σ qc 2+ A 1/2c2c2cc2 qc 2+2 A 1/2
0χ ct +2α χ ct 2
=2 ψ(χc), χt,1 2 χt,χ c .
HereΨisaprimitiveofψ.Observe rstthatitisnotdi culttorealizethatanestimatesimilarto(2.16)holdsfor( c,qc,χc,χc
>0andanyt≥0,t)aswell.Therefore,onaccountof(2.2)and(2.20),
wehave,forany
2 ψ(χc(t)), χt(t),1 2 χt(t),χ c(t) ≤2 +C
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
10M.GRASSELLI,H.PETZELTOVA,´G.SCHIMPERNA
obtain
d
qd, A 01 d
σ +γ
2 χd 2,
wehavethat,forβandγsmallenough,
(3.12)1
dtΛd+cβ,γΛd≤Cβ,γ
Thus,onaccountof(2.16)and(3.7),wecan χt 2+ χct 2apply[39,Lemma Λd.5]anddeducetheexpo-nentialdecayofΛd,sothat(cf.(2.20)and(3.12))
(3.13) ( d(t),qd(t),χd(t),χdt(t)) H ct
σ≤C(R)e,
providedthat ( 0,q0,χ0,χ1) dHσ≤R.Moreover,takingw=χinthethirdequationof(3.5),weobtain(cf.(2.28))d
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION11whichyields,usingtheYounginequality,(2.23),and(3.13),
d
dt
Wealsohave(cf.(2.29))
d +σ ·q c2c2 cc2+2 χct,A +2 ·q =0.
(3.17)dt
+β χ +αβ χ +2 ψ(χ),Aχ 2c2cc χct + Aχ +2β χt,χ c2c2cc
2c2c2+2(1 β) χct +2α χt +2β Aχ
cc+2β ψ(χc),Aχc 2 c,Aχct 2β ,Aχ
ccc 2 ψ′(χc)χct,Aχ = χ, (χt+βχ) .
Observethat,onaccountof(2.16),
(3.18)
Therefore,setting ψ(χ′cc)χct,Aχ ≤C1+c≤C χct V Aχ . χc 2L6( ) c χct L6( ) Aχ
2c2ccΛc= c 2+σ ·qc 2+ χct + Aχ +2β χt,χ
+β χc 2+αβ χc 2+2 ψ(χc),Aχc γ qc, c ,
forsomeγ>0,usingtheYounginequality,wecanchooseβandγsmallenoughsothatd
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
12´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
Thesecondequationof(3.6)cannowbewritteninthestrongform,namely,σq
c
t+qc= c,
sothata.e.in ×(0,∞),
σ( ×qc)t+ ×qc=0,a.e.in ×(0,∞),
and,since( ×qc)(0)=0,wehave( ×qc)(t)=0foranyt≥0.Consequently,thanksto(3.19), qc(t) Visuniformlyboundedaswell.
Summingup,wehaveshownthatagiventrajectoryoriginatingfromHσisasumofanexponentiallydecayingpartandatermwhichbelongstoaclosedboundedsubsetofVσ.ThereforethetrajectoryisprecompactinHσand,duetotheintegralcontrolsof(2.16)andto(2.17),weinfer(3.1)-(3.3).Finally,itisnotdi culttoprovethat
ω( 0,q0,χ0,χ1) {( ∞,0,χ∞,0):( ∞,χ∞)satis es(1.6)}.
Thecaseσ=0iseasier.Infact,arguingasintheisothermalcase(see[6]),wecanprovethebound
( (t),χ(t),χt(t)) 2V0≤C, t≥t1=t1(R)>0,
providedthat ( 0,χ0,χ1) H0≤R.HencethetrajectoryisprecompactinH0andwecanconcludeasabove. FromtheproofofTheorem3.1,wededucethatthesemigroupSσ(t)hasaboundedattractingsetinVσ,foranyσ∈(0,1],whileS0(t)hasacompactabsorbingset.Thereforewehave(see,e.g.,[28,47])
Corollary3.2.Foreachσ∈[0,1],thesemigroupSσ(t)hasaconnectedglobalattractorAσwhichisboundedinVσ.
Remark3.3.Theaboveresultisa rst,butessential,steptowardtheconstructionofafamilyofexponentialattractorswhichisstable(robust)withrespecttoσand,possibly,toε(see[20]fortheisothermalcase).Thiswillbethesubjectofafutureinvestigation.
4.Convergencetostationarystates
Letusset
E(v)=1
2),η>0,andapositiveconstantLsuchthat
(4.3) (v) φ (v),1 1,|E(v) E(v∞)|1 ρ≤L A0v+φV0
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION13forallv∈V01suchthat v v∞ V01≤η.
Thenweprove
Theorem4.2.LettheassumptionsofLemma4.1holdand
let
α
>
and
σ
>
be
xed.
If
(
0,q0,χ0,χ1)satis es(2.7)-(2.10),thenthetrajectory( (t),q(t),χ(t),χt(t))originatedfrom( 0,q0,χ0,χ1)issuchthat
(4.4)
where( ∞,χ∞)satis esω( 0,q0,χ0,χ1)={( ∞,0,χ∞,0)}, 1 ( 0 χ1), =| | ∞
χ∞=(χ1+χ0), A(Aχ+φ(χ))=0.∞∞
t→∞(4.5)Moreover,(4.6)lim χ(t) χ∞ V=0,
ρandthereexistst >0andapositiveconstantCsuchthat(4.7) (t) ∞ V + χ(t) χ∞ V ≤Ct
dt
where
(4.11) (t),q(t),χL( (t),χ t(t))= q(t) 2 χ t(t) 2 t(t) 2+ h(χ (t)),χ t(t) ,V α χ (t),q(t),χL( (t),χ t(t))
1=
2 χ t(t) 2,
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
14´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
usingalsotheYounginequality.Therefore,from(4.10)wededuce
d
(4.12)
χ
t(t) 2+Cαe 2t,2
forallt≥0.
Then,combining(2.29)with(4.10),weobtain
d
φ (χ )) ,t≥0,
where
G= A 01χ tt,A 01
dt(A0χ +φ (χ )
φ ′(χ )χ t)
= A 01χ t,A 01(A0χ +φ (χ )
φ (χ )) 2
α χ t,A 01(A0χ +φ (χ )
φ (χ ))
+ h(χ ),A 01(A0χ +φ (χ )
φ ′(χ)χ t) .
Observethat(cf.(2.2))
(4.15) A 01χ t,A 01(φ ′(χ )χ t
dtM+Cµ,νN2≤0,
forµ>0andν>0su cientlysmall,where
M(t)=1
φ (χ (t)) 2
V0 1,
forallt≥0.
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION15Letusintroducetheunboundedset
ηΣ=t
≥
:
χ
(t) χ ∞ V01≤
dt d|M(t)|ρsgnM(t)=ρ|M(t)|ρ 1
(4.21)
Therefore χ t(·) V isintegrableoverJand τ(t0)
0≤limsup(4.22) χ t(t) V dtt0∈Σ,t0→∞t0 ρρ 2(1 ρ)t0≤climsup|M(t0)|+|M(τ(t0))|+Ce=0.t0∈Σ,t0→∞wherewemeanthat|M(τ(t0))|=0ifτ(t0)=∞.Ontheotherhand,weeasilyget N(t)dt≤Ce 2(1 ρ)t0.J2 ρ|M(t)|sgnM(t)dtdt ρρ≤C|M(t0)|+|M(τ(t0))|,
Noticethat,foreveryt∈J,
(4.23) χ (t) χ ∞ V ≤
Supposenowthatτ(t0)<∞foranyt0∈Σ.Then,byde nition,
χ (τ(t0)) χ ∞ V01=η, t0∈Σ. tt0 (t0) χ ∞ V . χ t(s) V ds+ χ
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
16M.GRASSELLI,H.PETZELTOVA,´G.SCHIMPERNA
Consideranunboundedsequence{tn}n∈N Σwiththeproperty
nlim→∞ χ (tn) χ ∞ V1
0=0.
Bycompactness,wecan ndasubsequence{tnk}k∈Nandanelementv∞∈D(A)suchthat( ∞,0,v∞,0)∈ω( 0,q0,χ0,χ1), v ∞ χ ∞ V1
0=η,and
klim→∞ χ (τ(tnk)) v ∞ V1
0=0.
Then,owingto(4.22)and(4.23),wededucethecontradiction
0< v χ ∞ V ≤limsup τ(tnk)
∞ χ t(s) (tnk) χ ∞
k→∞V ds+ χV =0.
tnk
Hence,τ(t0)=∞forsomet0>0largeenoughand,recalling(2.20),wecandeducethat χt(·) V isindeedintegrableover(t0,∞).Thisyields(4.6)byprecompactness.Ontheotherhand,onaccountof(3.1)-(3.3),(4.4)holdsaswell.Finally,arguingasin[23],wecanprovethat
(4.24) ∞
N(τ)dτ≤Ct ρ
t
1 2ρ, t≥t .
Thuswehave
(4.25) χ(t) χ∞ V ≤Ct ρ
1 2ρ, t≥t .
Therefore,rateestimate(4.7)isaconsequenceof(4.25)-(4.27).Inthecaseσ=0wecanproceedinasimilar(actually,simpler)way,notingthatq= . Remark4.3.Thedecayestimate(4.7)for canbeslightlyimproved.Actually,usingthedecomposition
(4.28) (t) ∞ 2≤2 d(t) 2+2 c(t) ∞ 2,
weseethat,by(3.13),the rsttermdecaysexponentially.Concerningthelatter,onecanuse(3.19),(4.27)andtheinterpolationinequality v 2≤c v V v V
v∈V.Thus,(4.28)eventuallygives,holdingforall
(4.29) (t) ∞ ≤Ct ρ
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION17
5.Appendix
ThissectionisdevotedtodemonstrateLemma4.1.
Let
us
introduce
the
functional
1E(v)=
(v∞)=0.φ
Moreover,v∞isacriticalpointofEonV01.Indeed,itiseasytocheckthat,owingtoourhypotheses,Eiscontinuouslydi erentiableonV01,and (v∞)hdx(5.2) E(v∞)h= v∞· h+φ
(v∞)h = v∞· h+φ
f V .
ConsiderthemappingF:V02→H0,F= E|V02de nedby
(v) F(v)=A0v+φ
(v)w.φ
Hence,inbothcases, 2E(v∞)canbeviewedasaboundedperturbationofA0restrictedtotherespectivespaces.ItfollowsthatKer 2E(v∞) V02anditsrangeisclosedin(V01) andH0,respectively.Moreover,thereholds
(V01) =Ker( 2E(v∞))⊕Ran( 2E(v∞)),H0=Ker( 2E(v∞))⊕Ran( F(v∞)).
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
18´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
Now,wecanapply[9,Thm.3.10]and[9,Cor.3.11]toobtain
|E(v) E(v∞)|1 ρ≤L E(v) (V01) ,
and,consequently,(4.3).
References
[1]S.Aizicovici,E.Feireisl,Long-timestabilizationofsolutionstoaphase- eldmodelwithmemory,J.
Evol.Equ.1(2001),69–84.
[2]S.Aizicovici,E.Feireisl,F.Issard-Roch,Longtimeconvergenceofsolutionstoaphase- eldsystem,
Math.MethodsAppl.Sci.24(2001),277–287.
[3]S.Aizicovici,H.Petzeltov´a,Asymptoticbehaviorofsolutionsofaconservedphase- eldsystemwith
memory,J.IntegralEquationsAppl.15(2003),217–240.
[4]S.Aizicovici,H.Petzeltov´a,Convergenceofsolutionsofphase- eldsystemswithanonconstantlatent
heat,Dynam.SystemsAppl.,14(2005),163–173.
[5]B.Aulbach,Continuousanddiscretedynamicsnearmanifoldsofequilibria,Springer,Berlin,1984.
[6]A.Bonfoh,Existenceandcontinuityofuniformexponentialattractorsforasingularperturbationof
ageneralizedCahn-Hilliardequation,Asymptot.Anal.43(2005),233–247.
[7]M.Brokate,J.Sprekels,HysteresisandPhaseTransitions,Springer,NewYork,1996.
[8]G.Caginalp,Thedynamicsofaconservedphase eldsystem:Stefan-like,Hele-Shaw,andCahn-
Hilliardmodelsasasymptoticlimits,IMAJ.Appl.Math.44(1990),77–94.
[9]R.Chill,OntheL ojasiewicz-Simongradientinequality,J.Funct.Anal.201(2003),572–601.
[10]R.Chill,E.Faˇsangov´a,Convergencetosteadystatesofsolutionsofsemilinearevolutionaryintegral
equations,Calc.Var.PartialDi erentialEquations22(2005),321–342.
[11]R.Chill,E.Faˇsangov´a,J.Pr¨uss,ConvergencetosteadystatesofsolutionsoftheCahn-Hilliard
equationwithdynamicboundaryconditions,Math.Nachr.(toappear).
[12]R.Chill,M.A.Jendoubi,Convergencetosteadystatesinasymptoticallyautonomoussemilinear
evolutionequations,NonlinearAnal.53(2003),1017–1039.
[13]A.Debussche,AsingularperturbationoftheCahn-Hilliardequation,AsymptoticAnal.4(1991),
161-185.
[14]E.Feireisl,F.Issard-Roch,H.Petzeltov´a,Long-timebehaviourandconvergencetowardsequilibria
foraconservedphase eldmodel,DiscreteContin.Dyn.Syst.10(2004),239–252.
[15]E.Feireisl,F.Issard-Roch,H.Petzeltov´a,Anon-smoothversionoftheL ojasiewicz-Simontheorem
withapplicationstonon-localphase- eldsystems,J.Di erentialEquations,199(2004),1–21.
[16]E.Feireisl,G.SchimpernaLargetimebehaviourofsolutionstoPenrose-Fifephasechangemodels,
Math.MethodsAppl.Sci.28(2005),2117–2132.
[17]E.Feireisl,F.Simondon,Convergenceforsemilineardegenerateparabolicequationsinseveralspace
dimensions,J.Dynam.Di erentialEquations12(2000),647–673.
[18]H.Gajewski,A.-J.Griepentrog,Adescentmethodforthefreeenergyofmulticomponentsystems,
DiscreteContin.Dyn.Syst.15(2006),505–528.
[19]P.Galenko,D.Jou,Di use-interfacemodelforrapidphasetransformationsinnonequilibriumsys-
tems,Phys.Rev.E71(2005),046125(13).
[20]S.Gatti,M.Grasselli,A.Miranville,V.Pata,HyperbolicrelaxationoftheviscousCahn-Hilliard
equationin3-D,Math.ModelsMethodsAppl.Sci.15(2005),165–198.
[21]S.Gatti,M.Grasselli,A.Miranville,V.Pata,Onthehyperbolicrelaxationoftheone-dimensional
Cahn-Hilliardequation,J.Math.Anal.Appl.312(2005),230–247.
[22]M.Grasselli,H.Petzeltov´a,G.Schimperna,LongtimebehaviorofsolutionstotheCaginalpsystem
withsingularpotential,Z.Anal.Anwend.25(2006),51–72.
[23]M.Grasselli,H.Petzeltov´a,G.Schimperna,Convergencetostationarysolutionsforaparabolic-
hyperbolicphase- eldsystem,Commun.PureAppl.Anal.5(2006),827–838.
[24]M.Grasselli,H.Petzeltov´a,G.Schimperna,Anonlocalphase- eldsystemwithinertialterm,Quart.
Appl.Math.(toappear).
[25]L.Herrera,D.P´avon,Hyperbolictheoriesofdissipation:Whyandwhendoweneedthem?,Phys.A
307(2002),121–130.
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
ASYMPTOTICBEHAVIOROFANONISOTHERMALCAHN-HILLIARDEQUATION19
[26]D.D.Joseph,L.Preziosi,Heatwaves,Rev.ModernPhys.61(1989),4173.
[27]D.D.Joseph,L.Preziosi,Addendumtothepaper:Heatwaves[Rev.ModernPhys.61(1989),no.1,
4173],Rev.ModernPhys.62(1990),375391.
[28]J.K.Hale,Asymptoticbehaviourofdissipativesystems,Amer.Math.Soc.,Providence,RI,1988.
[29]A.Haraux,Syst`emesdynamiquesdissipatifsetapplications,Masson,Paris,1991.
[30]A.Haraux,M.A.Jendoubi,Convergenceofboundedweaksolutionsofthewaveequationwithdissi-
pationandanalyticnonlinearity,Calc.Var.PartialDi erentialEquations9(1999),95–124.
[31]A.Haraux,M.A.Jendoubi,O.Kavian,Rateofdecaytoequilibriuminsomesemilinearparabolic
equations,J.Evol.Equ.3(2003),463–484.
[32]S.-Z.Huang,P.Tak´aˇc,Convergenceingradient-likesystemswhichareasymptoticallyautonomous
andanalytic,NonlinearAnal.46(2001),675–698.
[33]M.A.Jendoubi,Asimpleuni edapproachtosomeconvergencetheoremsofL.Simon,J.Funct.
Anal.153(1998),187–202.
[34]M.A.Jendoubi,Convergenceofglobalandboundedsolutionsofthewaveequationwithlineardissi-
pationandanalyticnonlinearity,J.Di erentialEquations144(1998),302–312.
[35]S.L ojasiewicz,Unepropri´et´etopologiquedessous-ensemblesanalytiquesr´eels,in“Colloquesinter-
nationauxduC.N.R.S.117:Les´equationsauxd´eriv´eespartielles(Paris,1962)”pp.87–89,EditionsduC.N.R.S.,Paris,1963.
[36]S.L ojasiewicz,Ensemblessemi-analytiques,notes,I.H.E.S.,Bures-sur-Yvette,1965.
[37]G.Mola,Globalandexponentialattractorsforaconservedphase- eldsystemwithGurtin-Pipkin
heatconductionlaw,PhDthesis,PolitecnicodiMilano,Milan,2006.
[38]A.Novick-Cohen,OntheviscousCahn-Hilliardequation,in“Materialinstabilitiesincontinuum
mechanics(Edinburgh,1985–1986)”,pp.329–342,OxfordSci.Publ.,OxfordUniv.Press,NewYork,1988.
[39]V.Pata,S.Zelik,Aremarkonthedampedwaveequation,Commun.PureAppl.Anal.5(2006),
609-614.
[40]P.Pol´aˇcik,K.P.Rybakowski,Nonconvergentboundedtrajectoriesinsemilinearheatequations,J.
Di erentialEquations124(1996),472–494.
[41]P.Pol´aˇcik,F.Simondon,Nonconvergentboundedsolutionsofsemilinearheatequationsonarbitrary
domains,J.Di erentialEquations186(2002),586–610.
[42]J.Pr¨uss,R.Racke,S.Zheng,MaximalregularityandasymptoticbehaviorofsolutionsfortheCahn-
Hilliardequationwithdynamicboundaryconditions,AnnaliMat.PuraAppl.(4)185(2006),627–648.
[43]J.Pr¨uss,M.Wilke,MaximalLp-regularityfortheCahn-Hilliardequationwithnonconstanttemper-
atureanddynamicboundaryconditions,in“Partialdi erentialequationsandfunctionalanalysis”,Oper.TheoryAdv.Appl.168,pp.209–236,Birkh¨auser,Basel,2006.
[44]P.Rybka,K.-H.Ho mann,ConvergenceofsolutionstoCahn-Hilliardequation,Comm.Partial
Di erentialEquations24(1999),1055–1077.
[45]A.Segatti,OnthehyperbolicrelaxationoftheCahn-Hilliardequationin3-D:approximationand
longtimebehaviour,Math.ModelsMethodsAppl.Sci.(toappear).
[46]L.Simon,Asymptoticsforaclassofnon-linearevolutionequationswithapplicationstogeometric
problems,Ann.ofMath.(2)118(1983),525–571.
[47]R.Temam,In nite-DimensionalDynamicalSystemsinMechanicsandPhysics,Springer-Verlag,
NewYork,1997.
[48]H.Wu,M.Grasselli,S.Zheng,Convergencetoequilibriumforaparabolic-hyperbolicphase- eld
systemwithNeumannboundaryconditions,Math.ModelsMethodsAppl.Sci.(toappear).
[49]H.Wu,S.Zheng,ConvergencetoequilibriumfortheCahn-Hilliardequationwithdynamicboundary
condition,J.Di erentialEquations204(2004),511–531.
[50]H.Wu,S.Zheng,Convergencetoequilibriumforthedampedsemilinearwaveequationwithcritical
exponentanddissipativeboundarycondition,Quart.Appl.Math.64(2006),167–188.
[51]Z.Zhang,Asymptoticbehaviorofsolutionstothephase- eldequationswithNeumannboundary
conditions,Commun.PureAppl.Anal.4(2005),683–693.
[52]S.Zheng,A.Milani,Exponentialattractorsandinertialmanifoldsforsingularperturbationsofthe
Cahn-Hilliardequations,NonlinearAnal.57(2004),843–877.
We consider a differential model describing nonisothermal fast phase separation processes taking place in a three-dimensional bounded domain. This model consists of a viscous Cahn-Hilliard equation characterized by the presence of an inertial term $\chi_{t
20´G.SCHIMPERNAM.GRASSELLI,H.PETZELTOVA,
[53]S.Zheng,A.Milani,GlobalAttractorsforsingularperturbationsoftheCahn-Hilliardequations,J.
Di erentialEquations209(2005),101–139.
DipartimentodiMatematica“F.Brioschi”
PolitecnicodiMilano
ViaBonardi,9
I-20133Milano,Italy
E-mailaddress:maugra@mate.polimi.it
MathematicalInstituteASCRˇ´,25Zitna
CZ-11567Praha,CzechRepublic
E-mailaddress:petzelt@math.cas.cz
DipartimentodiMatematica“F.Casorati”
`degliStudidiPaviaUniversita
ViaFerrata,1
I-27100Pavia,Italy
E-mailaddress:giusch04@unipv.it
正在阅读:
Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term07-17
高速冷冻离心机09-04
销售与收款循环审计10-06
中科院模式识别大作业 - 人脸识别01-15
基于频率域的平滑滤波论文 - 图文09-17
蓝海职业学校2013年学生技能比赛方案06-07
完形填空专题二03-24
质量通病防治措施专项施工方案09-18
惠农11-07
杨善洲电影观后感12-25
- 14B Mid-term test(1)
- 24B Mid-term test(1)
- 3Final Examination of Organizational Behavior 2009 SWIBS LNU
- 4EFFECTIVE BEHAVIOR OF SOLITARY WAVES OVER RANDOM TOPOGRAPHY
- 5Abnormal Crowd Behavior Detection Based on the Energy Model
- 6Anomalous critical behavior near the quantum critical point
- 7Abnormal Crowd Behavior Detection Based on the Energy Model
- 8A two-scale model for the periodic homogenization of the wave equation
- 9Low velocity impact behavior of composite sandwich panels
- 10Low velocity impact behavior of composite sandwich panels
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- nonisothermal
- Asymptotic
- behavior
- Hilliard
- equation
- inertial
- viscous
- Cahn
- with
- term
- “买伊利纯牛奶_拿健康好礼”大型消费者推广案
- 600456宝钛股份关于变更签字注册会计师项目合伙人项目质量控制复2021-03-02
- 大学团课结业考试试题及参考答案
- 新桃园煤矿井口启封及排放瓦斯安全技术措施最新版
- 游戏中地图的即时生成算法
- 醇基燃料添加剂性能
- 模拟I2C读写24C256、PCF8563
- 2013西城区二模数学理科试题(含答案)
- 转速器盘夹具设计说明书
- 鄂人19号湖北省机关事业单位离退休人员计发离退休费等问题的实施意见
- 600236广西桂冠电力股份有限公司关于持股5%以上股东增持股份达到12021-03-02
- 注射用重组人尿激酶原
- 招聘专员面试技巧培训
- 2011澳门特别行政区驾校考试科目一自动档理论考试试题及答案
- 广告发布合同--与商家
- 最新经典个人简历模板—word版可编辑(二十六)
- 大学英语四级考试听力技巧
- 小学五年级我和书的故事450字作文
- 体育单招数学模拟试题(一)及答案
- S7562如何通过音乐播放器显示并同步歌词