EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.
更新时间:2023-08-21 17:17:01 阅读量: 高等教育 文档下载
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETICENGINEERING:AFORMALAPPROACH.
JOHNS.GEROANDVLADIMIRA.KAZAKOV
KeyCentreofDesignComputing,
DepartmentofArchitecturalandDesignScience,
TheUniversityofSydney,NSW2006Australia.
e-mail:john,kaz@arch.su.edu.au
Abstract.Thispaperpresentsaformalapproachtotheevolutionofarepresentationforuseinadesignprocess.Theapproachadoptedisbasedonconceptsassociatedwithgeneticengineering.Aninitialsetofgenesrepresentingelementarybuildingblocksisevolvedintoasetofcomplexgenesrepresentingtargetedbuildingblocks.Thesetargetedbuild-ingblockshavebeenevolvedbecausetheyaremorelikelytoproducedesignswhichex-hibitdesiredcharacteristicsthanthecommencingelementarybuildingblocks.Thetar-getedbuildingblockscanthenbeusedinadesignprocess.Thepaperpresentsaformalevolutionarymodelofdesignrepresentationsbasedongeneticalgorithmsandusespatternrecognitiontechniquestoexecuteaspectsofthegeneticengineering.Thepaperdescribeshowthestatespaceofpossibledesignschangesovertimeandillustratesthemodelwithanexamplefromthedomainoftwo-dimensionallayouts.Itconcludeswithadiscussionofstyleindesign.
1.Introduction
Thereisanincreasingunderstandingoftherolethatadesignlanguageanditsrep-resentationplayintheef ciencyandef cacyofanydesignprocesswhichusesthatlanguage(Coyneetal.,1990;Geroetal.,1994).Arecurringissueiswhatistheappropriategranularityofalanguage.Ifbuildingblockswhichconstitutetheelementsofadesignmapontoadesignlanguagethenthequestionbecomeswhatisanappropriatescaleforthosebuildingblocksintermsofthe naldesign.Atoneextremewehaveparameterisedrepresentationswherethestructureofadesignis xed,allthevariableswhichgotode neadesignareprede nedandwhatisleftistodeterminethevaluesofthosevariables.Thisde nesaverysmalldesignspace,smallintermsofallthepossibledesignswhichmightbeabletobeproducedforthatdesignsituation.Attheotherextremewehaveelementarybuild-ingblockswhichcanbecombinedinaverylargevarietyofwaysandwhich,asa
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
2JohnS.GeroANDVladimirA.
Kazakov
Se
Figure1.
ingblocks,
variables,isthedesignspaceproducedbyallthepossiblecombinationsoftheelementarybuild-isthedesignspaceproducedbyallthecombinationsofthevaluesoftheparameterisedisthedesignspaceofinterestingdesignsforthedesignsituation.
consequencede neaverylargedesignspace,thevastpartofwhichcoversdesignswhicharelikelytobeuninterestingintermsofthecurrentdesignsituation.Thedesignsproducedbytheparameteriseddesignrepresentationsareasubsetofthosecapableofbeingproducedbytheelementarybuildingblockrepresentation,Fig-ure1.Examplesofbuildingblockrepresentationsincludeconstructivesystemssuchasdesigngrammarsasexempli edbyshapegrammars(Stiny,1980b).Ex-amplesofparameterisedvariablerepresentationsincludeawidevarietyofdesignoptimizationformulations(Gero,1985).
Theadvantageoftheuseoftheelementarybuildingblocksrepresentationisthecoverageoftheentiredesignspacetheyprovide,whereastheadvantageoftheparameterisedvariablerepresentationistheef ciencywithwhichasolutioncanbereached.
Wepresenthereaformalapproachwhichgeneratesatargetedrepresentationofadesignproblem.Atargetedrepresentationistheonewhichcloselymapsontotheproblemathand.Asanexampleconsideralayoutplanningprobleminarchi-tecturaldesign.Onerepresentationmaybeatthematerialmolecularlevel,wheremoleculescanbecombinedtomakeavarietyofmaterialsandparticularcombina-tionsinspaceproducephysicalobjects;herethepotentialsolutionspaceincludesdesignswhichbearnorelationstoarchitecture.Atargetedrepresentationsmaybetorepresentroomssuchthatthepotentialsolutionspaceprimarilyincludesdesignswhichareallrecognizablyarchitecturallayouts.
Inordertosimplifyouranalysisweconsiderdesignswhichareassembledfrom
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
3
Figure2.ThesetofbuildingblocksforFroebel’skindergartengifts(Stiny,1980b).
some nitecollectionofspatialelements(wecallthembuildingblocksorcompon-ents)alongwithassemblyrules.Itisassumedthattheassemblyrulesdonotaffectthecomponents-thedesignobjectisaunionofnon-overlappingbuildingblocks.Westartwithsomesetofbuildingblockswhichwecallelementarycomponents.Itisassumedthattheycannotbedecomposedintoanysmallerones.Wecallasetofbuildingcomponentsandassemblyrulesarepresentationofthedesignproblemandthesetofelementarycomponentsandcorrespondingrulesthebasicrepresent-ation.Wecallitarepresentationbecauseitimplicitlyde nesthesetofalldesigns(designstatespace)whichcanbeproducedusingthissetofbuildingblocksandassemblyrules.
ThekindergartengiftsofFroebel(Stiny,1980b)isatypicalexampleofsuchtypesofdesignproblem.Oneofmanypossibleelementaryrepresentationsandas-semblyrulesforitisshowninFigures2and3.Onecaneasilyextenditbyaddingfurtherelementarybuildingblocksand/orfurtherassemblyrules.
Targetedrepresentations
uallythedesignerisinterestedinsomeparticularclassofdesigns.Assumewehavesomeadditionalsetofcompositebuildingblocksandanadditionalsetofassemblyrulestohandlethem.Wecancalculatethenumberofthesecompositebuildingblockswhichcanbefoundinallpossibledesignsinthatparticularclassandthenumberofelementarybuildingblocksusedtobuildtherestofthesedesigns(eachelementarybuildingblockshouldbecountedonlyonceasamemberofcompositebuildingorelementarybuildingblock,thelargestcompositeblocksarecounted rstandtheelementaryblocksarecountedlast).Thenwecancalculatethefrequencyofusageofthesecompositebuildingblocksandelementarybuildingblocksintheentiredesignspace.Thesamevaluescanbecalculatedforalldesignswhichhavethepropertyorpropertiesweareinterestedin.Ifthefrequencyoftheusageofthecompositebuildingblocksismuchhigherforthedesignsofinterestthanforalldesignsbuiltfromtheelementarybuildingblockandthefrequencyofelementarycomponentsusageismuchlowerthanthatofthecompositebuildingblocksforthedesignspaceofinterestthenwecanusethecompositebuildingblocksinstead
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
4JohnS.GeroANDVladimirA.
Kazakov
Figure3.ThesetofsixassemblyrulesforFroebel’skindergartengifts.
ofelementaryonetoproducedesignsofinterestwithmuchhigherprobability.Inotherwordsarepresentationexistswhichmapsintotheareaofinterestoftheentiredesignspace.Letuscallitthetargetedrepresentationfortheparticularclassofdesigns.Obviouslydifferenttargetedrepresentationscanbeproducedwhichcor-respondtodifferentsetsofcompositebuildingblocks.Wecharacterizetheserep-resentationsbytheir“complexity”whichisde nedrecursivelyas:0-complexityforthebasicrepresentation,1-complexityfortherepresentationwhosebuildingblocksareassembledfromelementarybuildingblocks,2-complexityfortherep-resentationwhosebuildingblocksareassembledfromthebuildingblocksof0-complexityand1-complexity,etc.Assumeanevolutionoccursinanabstractspaceofcomplexrepresentations:initiallyonlyelementarybuildingblocksexistthenacycleproceedswhenanewsetofcompositebuildingblocksisproducedfromtheoneswhicharecurrentlyavailable.Thenarepresentationofi-complexity(andbuildingblocksofi-complexity)simplymeansthatcompositebuildingblocksofthisrepresentationhavebeenproducedduring-thstepofthisevolution.
Differentcompositebuildingblocksofthesame-complexitymaycontaindif-ferentnumbersofelementarybuildingblocks:forexample,assumesomebuild-ingblockof3-complexitycontains3elementarybuildingblocksandoneofthecompositebuildingblocksof4-complexityisassembledfrom2buildingblocksof3-complexityandthuscontains6elementarycomponentsandanotheroneisas-sembledfromoneblockof3-complexityandoneblockof0-complexityandthuscontains4elementarycomponents.Itisalsoclearthatbecausetherearedifferentwaystoassemblethesamecompositebuildingblockitmaybeproducedmultiple
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering5
(a)
(b)(c)
Figure4.Thesetofcompositebuildingblocksofdifferentcomplexityforbuildingastaircase;(a)1-complexity,(b)and(c)2-complexity.
timesinrepresentationsofdifferentcomplexitylevelduringtheevolution.
Thesearchforareasonablygooddesignusingthebasicrepresentationisverydif cultbecausesigni cantpartofthesearcheffortiswastedinthesearchofun-usefulpartsofthedesignspace.Ifthetargetedrepresentationisusedinsteadofele-mentaryonetheprobabilityofproducingdesignsofinterestbecomesmuchhigher,thedesignspacebecomessmallerandthedesignproblemlesscomplicatedandeasiertodealwith.Theapproachpresentedinthisarticleautomaticallygeneratesthehierarchyofmoreandmorecomplexbuildingblocks(ingeneral);oneswhicharemoreandmoreclosetothetargetedrepresentationswhicharecapableofpro-ducingbetterandbetterdesigns.
AssumeweworkwiththerepresentationofthekindergartenblocksshowninFigures2and3andaretryingtodesignatwo-levelbuildingwithwalkingac-cessfromone oortothenext.Thesearchforadesignwiththispropertyisquitedif cultbecauseonlyaverysmallfractionofallfeasibleobjectsexhibitsitandtheprobabilityofdiscoveringthecombinationofbuildingblockswhichmakesastaircaseduringthesearchislow.However,ifweaddacompositeobjectof1-complexity(Figure4)andcorrespondingassemblyrulesFigure5totherepres-entationweincreasethisprobability,andifweaddacompositebuildingblockwith2-complexity(Figure4)thenthisprobabilityincreasesfurther.
Geneticengineering
Geneticengineering,asusedinthispaper,isderivedfromgeneticengineeringno-tionsrelatedtohumaninterventioninthegeneticsofnaturalorganisms.Inthege-neticsofnaturalorganismswedistinguishthreeclasses:thegeneswhichgotomakethegenotype,thephenotypewhichistheorganicexpressionofgenotype,andthe tnessofthephenotypeinitsenvironment.Whenthereisauniqueidenti- able tnesswhichisperformingparticularlywellorparticularlybadlyamongstallthe tnessofinterestwecanhypothesizethatthereisauniquecauseforitand
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
6JohnS.GeroANDVladimirA.
Kazakov
Figure5.Thesetofadditionalassemblyrulesforhandlingcompositebuildingblocks.thatthisuniquecausecanbedirectlyrelatedtotheorganism’sgeneswhichap-pearinastructuredforminitsgenotype.Geneticengineeringinconcernedwithlocatingthosegeneswhichproducethe tnessunderconsiderationandinmodify-ingthosegenesinsomeappropriatemanner.Thisisnormallydoneinastochasticprocesswhereweconcentrateonpopulationsratherthanonindividuals.
Organismswhichperformwell(orbadly)inthe tnessofinterestaresegreg-atedfromtheseorganismswhichdonotexhibitthat tnessordosoonlyinamin-imalsense.Thisbifurcatesthepopulationintotwogroups.Thegenotypesoftheformerorganismsareanalysedtodeterminewhethertheyexhibitcommonchar-acteristicswhicharenotexhibitedbytheorganismsinthelattergroup(Figure6).Iftheyaredisjunctive,thesegenesareisolatedonthebasisthattheyarerespons-iblefortheperformanceofthe tnessofinterest.Innaturalgeneticengineeringtheseisolatedgenesareeithertheputativecauseofpositiveornegative tness.Ifnegativethentheyaresubstitutedforby“good”geneswhichdonotgeneratethenegative tness.Iftheyareassociatedwithpositive tnesstheyarereusedinotherorganisms.Itisthislaterpurposewhichmapsontoourareaofinterest.
Onecaninterprettheproblemof ndingthetargetedsetofbuildingblocksasananalogofthegeneticengineeringproblem: ndingtheparticularcombin-ationsofgenes(representingelementarybuildingblocks)ingenotypeswhichareresponsibleforthepropertiesofinterestofthedesignsandregularusageofthesegeneclusterstoproducedesignswithdesiredfeatures.
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
7
‘‘good’’ genotypes‘‘bad’’ genotypes
Figure6.Thegenotypesofthe“good”membersofpopulationallexhibitgenecombinations,X,whicharenotexhibitedbythegenotypesofthe“bad”members.Thesegenecombinationsaretheonesofinterestingeneticengineering.
2.Buildingblocks
Thus,weestablishthatdifferentbuildingblocksde nedifferentdesignstatespaces(whichare,intheirturn,thesubsetsoftheentirebasicdesignspace).Moreform-allyweassumethatforthedesignspaceofinterestasetofcompositebuildingblocksexistswhichissuf cienttobuildanydesignofinterestfromit(orwhicharesuf cienttobuildasigni cantpartofanyofthesedesignsofinterest).
Wesearchforthesebuildingblocksusingtheconsequenceoftheassumptionmadeintheintroductionaboutfrequenciesofcompositecomponentsusage:onav-eragethesamplingsetofdesignswiththedesiredcharacteristics(the“good”ones)containsmoreofsuchcompositebuildingblocksthanthesamplingsetofdesignsthatdonothavethesecharacteristics(the“bad”ones).Insomecasesitiseventrueinadeterministicsense-thatonlythedesignswhichcanbebuiltcompletelyfromsomesetofcompositebuildingblockspossesstheobjectivecharacteristics,alltherestoftheentirebasicstatespacedoesnothavethem.Onecaneasilycomeupwithcorrespondingexamples.
Inthenextsectionwedescribeanevolutionaryalgorithmwhichgenerates“good”and“bad”samplingsetsusingthecurrentsetofbuildingblock(setofelementaryblockatthebeginning)andusegeneticengineeringconceptstodeterminenewcompositeblockswhichareclosertothe“targeted”onesthanthecurrentsetofbuildingblocks.Thesetwostepsproceedincyclewhilethe“good”samplingsetconvergestothesamplingsetfromthedesireddesignstatespaceandthesetof
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
8
JohnS.GeroANDVladimirA.
Kazakova
bFigure7.Theassembly(transformation)rulesusedintheexample.
complexbuildingblockscomescloserandclosertothetargetedset.
Ifthebasicassumptionaboutmorefrequentuseofsomecompositebuildingblockstogeneratetheparticularclassofdesignsisnottrueforsomeproblemthenthetargetedrepresentationforthisproblemdoesnotexistandthealgorithmwhichisproposedbelowwillnotgenerateanimprovedrepresentationbutwillbeequi-valenttothealgorithmforsolvingtheroutinedesignproblem(GeroandKazakov,1995)andwillsimplygeneratetheimproveddesigns.
Ifthesequenceofassemblyactionsiscodedasarealvectorthentheproblemof ndingthecomplexbuildingblocksbecomestheproblemof ndingthekeypatternsinthecodingvector-thecombinationsofcodeswithinitwhicharelikelytobeassociatedwiththepropertyofinterestinthedesigns.Thevastarsenalofpatternrecognitionmethodscanbeusedtosolvethisproblem.Essentiallytheyarejustsearchmethodsforsubsetsinacodingsequencewhichonaveragearemorefrequentlyobservedinobjectswithdesiredcharacteristicsthanintherestofthepopulation.
Letusillustratetheexecutionofthecyclejustoutlinedusingasimple2-dimensionalgraphicalexample.Wewilldescribeitinmoredetaillaterbutfornowonitissuf- cienttosaythatthereisonlyoneelementaryblockhere-thesquareandthatadesignisassembledfromcubesusingthe8rulesshowninFigure7.Anydesigncanbecodedasasequenceoftheserulesusedtoassembleit.Assumewearetryingtoproduceadesignwhichhasthemaximumnumberofholesinitandthateachdesigncontainsnotmorethan20squares.WestartthecyclebygeneratingasetofcodingsequencesandcorrespondingdesignsFigure8.Thenwenoticethatanum-ber(4)ofthedesignshavethemaximalnumberofholes(designs1,2,4,and7-the“good”samplingset)containthecompositebuildingblockandthatforthreeofthemtheircodingsequencescontainthepattern.Wealsonoticethatonlyafew(noneinthiscase)ofthedesignswithoutholes(designs3,5,8and10-the“bad”samplingset)containthisblockandnonecontainthispatternintheircodingsequence.Thenwecangeneratethenextpopulationofcodingsequencesusingthe
asanewrulewhichusesthecompositebuildingblockidenti edsequence
inthedesign.Assumingthatweemploysomeoptimizationmethodtogeneratethisnewpopulationwecanexpectthatthe“good”samplingsetfromthenewpop-
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
design 2design 39
good{3,2,2,6,5,8,2,1,4,4,3,1}design 6
{2,3,2,3,4,3,5,6,5,1,6,2}design 9
neutral{6,4,1,2,3,4,5,2,1,7,4}
Figure8.Theidenti cationofthepattern
inthegenotypesof“good”designs.andcorrespondingcompositebuildingblock
ulationisbetterthanthepreviousone(thatis,thedesignswhichbelongtoithaveonaveragemoreholesthantheonesfromtheprevious“good”samplingset).Thenweagaintrytoidentifythepatternswhicharemorelikelytobefoundindesignsfromthis“good”samplingsetthanfromthe“bad”one.Thistimethesepatternsmaycontainthepreviouslyidenti edpattersasacomponent.Thenwegenerateanewpopulationofdesignsusingtheseadditionalpatternsequencesofrulesasanadditionalassemblyruleandsoon.
Thesizesofthesamplingsetsinrealisticsystemsislikelytobemuchlarger
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
10JohnS.GeroANDVladimirA.Kazakov
thantheonesinthisexampleandmuchmoresophisticatedtechniques(PearsonandMiller,1992)shouldbeemployedtosingleoutthesekeypatterns.
3.Evolvingbuildingblocks
Foramoreformalanalysisoftheevolutionofthebuildingblocksweusetheshapegrammarformalism(Stiny,1980a).Itconsistsofanorderedsetofinitialshapesandanorderedsetofshapetransformationruleswhichareappliedrecursively.Aparticulardesignwithinthegivengrammariscompletelyde nedbyacontrolvectorwhichde nestheinitialshapeandtransformationrulesappliedateachstageofrecursiveshapegeneration.AccordingtothediscussionintheIntroduc-tionweconsideraparticularclassofshapegrammarsimilartothekindergartengrammar(Stiny,1980b),whereanyshapeisanon-overlappingunionofbuildingblocksandfeasibleshapetransformationsareaddition,replacementordeletionofthebuildingblocks.
beasetofcurrentlyavailablebuildingblocks,andbeasetofassemblyrulesapplicabletotheseblocks.,,,,Thenthecontrolvector
de nesthepopulationofdesigns,.,isavariable.Thelengthofthecontrolvector
Ifweaddnewcomplexbuildingblock
andnewassemblyrulesforitshandlingthenwegetanewextendedsetofrules,,and.
whichcorrespondstothevectorwhoseNowwecanproducethedesign
componentsbelongtotheextendedand.Notethattheadditionalbuildingblocksandassemblyrulesaregeneratedrecursively:theyarecompletelyde nedintermsofthepreviousand.
Weassumethatthedesignproblemhasaquanti ableobjectivevector-function,andcanbeformulatedasoptimizationproblemLet
(1)
Theproblem(1)overtherepresentationwitha xedsetofbuildingcompon-entsandassemblerulescanbesolvedusinganyofoptimizationmethods(GeroandKazakov,1995)butthestochasticalgorithmslikegeneticalgorithms(Hol-land,1975)andsimulatedannealing(Kirkpatricketal.,1983)lookmostprom-isingatthemoment.Wehavechosenthegeneticalgorithm.
Theevolutionarymethodhasthefollowingstructure:
Algorithm
.Takethesetofelementarybuild-(0).Initialization.Setcounterofiteration
andcorrespondingassemblyrules.Generatesomeingblocks
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering11
randompopulationof,calculateand.Settherelativethresholds;theyareusedduringanevolutionforthedesign’sranking
stagetodividethedesigninto“good”,“bad”and“neutral”samplingsets,thatis,thepartsofpopulationwhichexhibit()best,()worseandintermediaterel-ative tnesslevel.
(1)Evolutionofcomplexbuildingblocks.Foreverycomponentoftheobjective
dividethepopulationinto3groups:function
,“good”(
“bad”(,and“neutral”(therestofpopulation).
Determinecombinations,ofthecurrentbuildingblockswhichdistinguishthe“good”samplingsetfromthe“bad”onestatisticallysigni cantlyusinganyoneofthepatternrecognitionalgorithms.
.Addcorres-Addittothecurrentsetofbuildingblocks
pondingnewassemblyrulesto.
(2)putenewpopulationusingavailablein-formationaboutcurrentpopulation.Thecom-ponentsofbelongtothenewextendedand.Thedependsontheop-timizationmethodemployed.Ifthegeneticalgorithmhasbeenchosenthen
istobecalculatedusingstandardcrossoverandmutationoperations.Becausetheupdatedgrammarincludesthegrammarfromthepreviousgenerationthesearchmethodguaranteesthatthenewpopulationisbetterthanthepreviousone(atleastnoworse)andthenew“good”samplingsetisclosertosamplingsetofthedesignstatespaceofinterest.
(3)Repeatsteps(1)and(2)untilthestopconditionsaremet.
Thestopconditionsusuallyaretheterminationorslowingdownoftheim-provementinand/ortheendofnewbuildingblocksgeneration.
4.Example
Evolvingthetargetedrepresentation
Asanexamplewetaketheproblemofthegenerationofa2-dimensionalblockdesignonauniformplanargrid(derivedfrom(GeroandKazakov,1995)).Thereisjustoneelementarycomponenthere-asquareandtheeightassemblyrules(trans-formationrulesintermsofashapegrammar)whichareshowninFigure7.Ifthepositionwherethecurrentassemblyruletriestoplacethenextsquareisalreadytakenthenallthesquaresalongthisdirectionareshiftedtoallowtheplacementofnewsquare.Itisassumedthatthetransformationruleatthe-thassemblingstageis
-thstage.Thecharacterist-appliedtotheelementaryblockaddedduringthe
icsofinterestaregeometricpropertiesofthegenerateddesign.Inordertodemon-stratetheidea,assumethatthegenerateddesigncannotconsistofmorethan32
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
12
0.9JohnS.GeroANDVladimirA.Kazakov0.8
TOTAL FRACTION OF COMPLEX GENES 0.70.60.50.40.3
0.2
0.1020406080100GENERATIONS120140160180
Figure9.Thefractionofcompositebuildingblocksinthetotalpoolofbuildingblocksusedtoassemblethepopulationvs.generationnumber.Theobjectivefunctionhastwocomponents:theareaofclosedholesandthenumberofconnectionsbetweenholesandtheoutsidespace.Theinitialsetofbuildingblockscontainsonlyelementarybuildingblocks.Evolutionproceedsuntilitnaturallydiesoff.
elementarycomponents.Wegenerateanewpopulationduringthestage(2)oftheAlgorithmusingthemodi cationofthesimplegeneticalgorithmtailoredtohandlemultidimensionalobjectivefunctions(GeroandKazakov,1995).Weimplementaverysimplepatternrecognitionalgorithmbasedonthestatisticalfrequencyana-lysesofdoubleandtripleelementbuildingblockswithahighcut-offthresholdfortheacceptanceofthepatterns.Formorecomplexsystemsmoresophisticatedtechniqueisneeded.
Duringthe rstiterationwebeginwiththesetofbuildingblockswhichcon-tainsonlytheelementaryonesandsearchforthedesignswithmaximalareaofen-closedholesandmaximalnumberofconnectionsbetweentheholesandoutsidespace.Theevolutionwasallowedtoproceeduntilastableconditionwasreached.TheresultareshowninFigures9and10.Byplottingthefractionofthecomplexbuildingblocksinthetotalpoolofbuildingblocksusedtoassemblethepopula-tionatdifferentgenerationsFigure9,onecanseehowcomplexbuildingblocksbecomedominantandhowitsfractionreachesastablelevelafter110-120itera-tions.ThefractionsofbuildingblocksofdifferentcomplexityinthetotalpoolatdifferentgenerationareshowninFigure10.Onecanseethatduringthe rst40generationsthetotalfractionofcompositebuildingblocksarisesmonotonically.Forthe rst10generationsthisriseiscompletelyprovidedbytheincreasingnum-berof1-complexitycompositebuildingblocksinthepopulation.Then(from15to30generations)thefractionof1-complexityblocksremainsstablebutthenum-berof2-complexitybuildingblocksincreasesandprovidesthecontinuingincrease
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
0.8
1-COMPLEXITY2-COMPLEXITY3-COMPLEXITY4-COMPLEXITY5-COMPLEXITY6-COMPLEXITY7-COMPLEXITY8-COMPLEXITY130.7
FRACTION OF COMPLEX GENES 0.60.50.40.30.2
0.1
0020406080100GENERATIONS120140160180
Figure10.Thefractionofcompositebuildingblockswithdifferentcomplexitiesinthetotalpoolofthebuildingblocksusedtoassemblethepopulationvs.generationnumber.This gureshowsthebuildingblocksofdifferentcomplexitieswhicharesummedtoproducethetotalfractionshowninFigure9.
inthetotalfractionofcompositebuildingblocks.Fromgenerations40to70thistotalfractionisstablewithapproximatelyhalfofbuildingblocksof1-complexityandhalfof2,3and4-complexities.Thenthenumberof1-complexityblocksandtotalnumberofcomplexblocksdeclinessharplyandfrom70until110generationatransitionalprocessoccurswithacomplexredistributionofpopulationsbetweenrepresentationswithdifferentcomplexities.Attheendofthisperiodthebuildingblocksof8-complexitysaturatethepopulationwhenthefractionsoftheothercom-plexbuildingblocksareshiftedtowardsanoiselevelonly.OneoftheevolutionpathsinthespaceofcomplexbuildingblocksisshowninFigure11(a).SomeofthedesignsproducedareshowninFigure11(b).Herearrowsshowwhichpre-viouslyevolvedcompositebuildingblocksareusedtoassemblethenewbuildingblock.The0-complexityblockanditscontributionsareomitted.Aswealreadynotedcompositeblocksofthesamecomplexitylevelsometimeshavedifferentnumbersofelementarycomponents.Coincidently,the5-complexityblockisre-producedagainintherepresentationsof6-,7-and8-complexitiesandisoneofthedominantblocksattheendoftheevolutionaryprocess.
Usingtargetedrepresentation.
Thesetoftargetedbuildingblocksevolvedduringthisprocessisthenusedasaninitialsetofbuildingblocksduringthesecondexperimentwhenweproducethedesignswithmaximaltotalareaofholesinsideandmaximalnumberofconnec-tionsbetweentheseholesinsidethestructure.Herethe tnessesareclosetobut
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
14JohnS.GeroANDVladimirA.
Kazakov
Figure11.(a)Anexampleoftheevolutionarypathsintheevolutionofacomplexbuildingblock,(b)someofthedesignsproducedusingthesetofevolvedcomplexblocks.
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
015TOTAL FRACTION OF COMPLEX GENES020406080100GENERATIONS120140160180
Figure12.Thefractionofcompositebuildingblockinthetotalpoolofbuildingblockusedtoas-semblethepopulationvs.generationnumber.Inthisexperimenttheobjectivefunctionisthenum-berofclosedholesandthenumberofconnectionbetweentheclosedholesinsidethestructure.Theinitialsetofbuildingblocksisinheritedfromthe rstexperimentandisthetargetedrepresentation.notthesameasthoseusedtoevolvethetargetedrepresentation.Thisexperimentisusedtotestwhetherthetargetedrepresentationislikelytobeusedmorethantheoriginal,elementarybuildingblocks.Ifthetargetedrepresentationisusedratherthantheelementarybuildingblocksthenwehaveachievedourgoalofevolvingarepresentationcanbeusedtoproducedesignswhichexhibitdesiredcharacterist-icsmorereadily.TheresultsareshowninFigures12and13.Onecanseethatthefractionofthecompositebuildingblocksusedtoproducethesedesignsreachesthesaturationlevelduringthe rstfewiterations.Thevisibleredistributionsofthepopulationbetweenthecompositebuildingblocksof5,6and7-complexitiesarepurelysuper cial-thisredistributionoccursbetweenthesamecompositebuildingblockswhicharepresentinalltheserepresentations.Evolutionoftherepresenta-tiondoesnotoccurduringthisexperiment-nonewcomplexbuildingblockwereevolved.Thiscanbeinterpretedasanindicationofclosenessofthetargetedrep-resentationsforbothproblems.Soifthetargetedrepresentationisevolvedforonesetofobjectivesthenitcanbeusefullyappliedtoanyoftheobjectivesetswhichareonlyslightlydifferenttoit.
Effectsofincompleteevolution
Inthisexperimentwerepeatthe rstiterationbutstoptheevolutionprematurelyafteronly60generations.Afterthiswerepeattheseconditerationusingtheevolvedincompletesetofcompositebuildingblocks.TheresultsareshowninFigures14
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
16
0.9JohnS.GeroANDVladimirA.Kazakov0.8
0.7
FRACTION OF COMPLEX GENES 0.60.51-COMPLEXITY2-COMPLEXITY3-COMPLEXITY4-COMPLEXITY5-COMPLEXITY6-COMPLEXITY7-COMPLEXITY8-COMPLEXITY0.40.3
0.2
0.1
0020406080100GENERATIONS120140160180
Figure13.Thefractionofcompositebuildingblockswithdifferentcomplexitiesinthetotalpoolofthebuildingblockusedtoassemblethepopulationvs.generationnumberintheexperiment.
1
0.9
TOTAL FRACTION OF COMPLEX GENES 0.80.7 0.60.50.40.3
0.2
0.10102030GENERATIONS405060
Figure14.Thefractionofcompositebuildingblockinthetotalpoolofbuildingblockusedtoas-semblethepopulationvs.generationnumber.Inthisexperimenttheobjectivefunctionisthenumberofclosedholesandthenumberofconnectionsbetweentheclosedholesinsidethestructure.Theini-tialsetofbuildingblocksisinheritedfrom rstiterationwhichhasbeenprematurelyterminatedatgeneration60.
and15.Inthiscasetheevolutionoftherepresentationcontinuesforaboutafur-ther10generationsandweendupwiththesamesetofevolvedcompositebuildingblocks.Thesaturationofthepopulationwiththecompositebuildingblocksisalsocompletedafterthese10generations.Thus,onecanstarttoevolvearepresenta-
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering
0.9170.8
0.7
FRACTION OF COMPLEX GENES 0.60.51-COMPLEXITY2-COMPLEXITY3-COMPLEXITY4-COMPLEXITY5-COMPLEXITY6-COMPLEXITY7-COMPLEXITY8-COMPLEXITY0.40.3
0.2
0.1
00102030GENERATIONS405060
Figure15.Thefractionofcompositebuildingblockswithdifferentcomplexitiesinthetotalpoolofthebuildingblockusedtoassemblethepopulationvs.generationnumberinthethirdexperiment.tionforonesetofobjectivesandthencontinueitforanothercloselyrelatedsetofobjectives.
Ifwecommencebytreatingtheproblemasoneof ndingimproveddesignsthenfromacomputationalviewpointthisformofevolutionspeedsuptheconver-
(intermsofthenumberofgenerationsgencetoimproveddesignsbyupto
required)whencomparedwithstandardgeneticalgorithms.Itappearsthattheuseofatargetedrepresentationcanleadtotheproductionofdesignswhicharelocallyoptimal.
However,ifweusethecompletionevolutionapproachpresentedinthesecondexperimentwegetfurtherimprovementsinperformance.WewillleavetotheDis-cussionsectionfurtherdiscussionoftheotheradvantagesoftheapproachpresen-ted.
5.Discussion
Theanalysisjustpresentedcanbeeasilyextendedtoincludegeneralobjectgram-marsoftypesdifferenttothekindergartengrammar.Theproposedapproachcanbeconsideredasanimplementationofthesimplestversionofthegeneticengin-eeringapproachtothegenericdesignproblem.Fromthetechnicalpointofviewthealgorithmpresentedisamixtureofastochasticsearchmethod(whichmaybeageneticalgorithm)andapatternrecognitiontechnique.
Thegeneticengineeringapproachcanbeappliedinasimilarfashiontotheproblemofthegenerationofa“suitable”shapegrammar(GeroandKazakov,1995)wherethecomplexbuildingblockscorrespondtotheevolvedgrammarrules.
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
18JohnS.GeroANDVladimirA.Kazakov
Asalreadymentionedintheanalysisofthenumericalexperiment,theevolvedrepresentationsarehighlyredundant-thesamecompositebuildingblocksareevolvedmanytimesalongthedifferentbranchesoftheevolutionarytrees.Theredundancylevelofthecurrentsetofcompositebuildingblockscanbereducedinanumberofdifferentways.Thesimplestisjusttodeletealltheredundantcopiesfromthecurrentset.Inthegeneralcase,wehaveto ndtheminimalrepresentationofthesubspacewhichcanbegeneratedusingthecurrentsetofcomplexbuildingblocks.Theintroductionofideasandmethodsfromgeneticengineeringintodesignsystemsbasedongeneticalgorithmsopensupanumberofavenuesforresearchintobothevolutionary-baseddesignsynthesisandintomodi edgeneticalgorithms.Indesignsystemsbasedonsuchmodi edgeneticalgorithmsitispossibletocon-sidertwodirections.
The rstistotreatthesequenceofthegeneswhichresultsincertainbehavioursor tnessperformancesasaformof‘emergence’,emergenceoftheschemarepres-entedbythatgenesequence.Theuseofthegeneticallyengineeredcomplexgeneschangesthepropertiesovertimeofthestatespaceswhicharebeingsearched.Thisallowsustoconsidertheprocessasbeingrelatedtodesignexplorationmodelledinaclosedworld.Theprecisemannerinwhichtheprobabilitiesassociatedwithstatesinthestatespacechangeisnotyetknown.Clearly,thisisalsoafunctionofwhethera xedlengthgenotypeencodingisusedornot.Ifavariablelengthgenotypeencodingisusedwiththegeneticallyengineeredcomplexgenesthentheshapeofthestatespaceremains xedbuttheprobabilitiesassociatedwiththestateswithinitchange.Ifa xedlengthgenotypeencodingisusedwiththege-neticallyengineeredcomplexgenesthentheshapeofthestatespacechangesinadditiontotheprobabilitiesassociatedwithstatesinthestatespace.
Thesecondistotreatthegeneticallyengineeredcomplexgenesasameansofdevelopingarepresentationforpotentialdesigns.Afundamentalpartofdesign-ingisthedeterminationofanappropriaterepresentationofthecomponentswhichareusedinthestructure(Gero,1990)ofthedesign.Thisispartofthataspectofdesigningcalled‘formulation’,iethedeterminationofthevariables,theirre-lationshipsandthecriteriabywhichresultingdesignswillbeevaluated.Inmostcomputer-aideddesignsystemsthecomponentsmapdirectlyontovariables.Fur-ther,insuchsystemsthevariablesarespeci edattheoutset,asaconsequencethereisanunspeci edmappingbetweenthesolutionscapableofbeingproducedandthevariableschosentorepresenttheideaswhicharetobecontainedintheresultingdesigns.Thegeneticengineeringapproachdescribedprovidesameansofautomat-ingtherepresentationpartoftheformulationprocess.Thelevelofgranularityisdeterminedbythestabilityconditionoftheevolutionaryprocessorcanbedeterm-inedbytheuser.Thetargetedbuildingblocksprovideahigh-levelstartingpointforalllaterdesignswhicharetoexhibittherequiredcharacteristicsasevidencedintheearlierdesigns.Itisthislatterrequirementwhichismetbythisformalmethod.Thefollowingsimplepicturecanbeusedtosummarizethemodeldescribedin
Abstract. This paper presents a formal approach to the evolution of a representation for use in a design process. The approach adopted is based on concepts associated with genetic engineering. An initial set of genes representing elementary building blocks
EvolvingBuildingBlocksforDesignUsingGeneticEngineering19thispaper.Agroupofchildrenareplayingwiththe“Lego”gameusingnotmorethan50squares.Theyjointhemtogetherandwanttobuildtheobjectwiththelargestnumberofclosedspacesinside.Aftereachchildhasbuilthisorherob-jectthesupervisortriesto ndacombinationofsquareswhichispresentinmanyofthebestdesignsbutispresentinnoneoronlyinafewofunsatisfactorydesigns.Thenhemakesthiscombinationpermanentbygluingitscomponentstogetherandaddsabunchofsuchpermanentcombinationstothepoolofbuildingelementsavailabletothechildren.Thenthechildrenmakeanothersetofobjectsusingthesenewbuildingblocksaswellasanoldones.Thesupervisortriesto ndanother“good”compositeblockandtheprocessisrepeated.Thus,twostepsoccurineachcycle: rstchildrenmakeasetofnewdesignsfromcurrentlyavailableblocksandcombinationofblocksandsecondthesupervisortriestosingleouttheadditionalcombinationofblocksthatshouldbeemployed.Iftherearenosuchcombinationswhichdistinguish“good”designfromthe“bad”onesthenwewillnotgetnewcombinationsbutonlytheimproveddesigns.
Style
Thechoiceofparticularvariablesandcon gurationsofvariablesisadetermin-antofthestyleofthedesign(Simon,1975).Thelabel‘style’canbeusedinatleasttwoways:eithertodescribeaparticularprocessofdesigningorasameansofdescribingarecognizablesetofcharacteristicsofadesign.Thus,itispossibletotalkaboutthe‘Gothic’styleinbuildingsorthe‘hightech”styleofconsumergoods.Preciselywhatgoestomakeupeachofthesestylesisextremelydif culttoarticulateeventhoughweabletorecognizeeachofthesestyleswithverylittledif culty.Anappropriatequestiontoposeis:howcanweunderstandwhatpro-ducesastyleduringtheformulationstageofadesigningprocess?Thisbringsusbacktotheconceptsdescribedinthispaper.
‘Thehistoryoftasteandfashionisthehistoryofpreferences,ofvariousactsofchoicebetweendifferentalternatives......[But]anactofchoiceisonlyofsymptomaticsigni cance,isexpressiveofsomethingonlyifwecanreallywanttotreatstylesassymptomaticofsomethingelse,wecannotdowithoutsometheoryofthealternatives’(Gombrich,quotedfrom(Simon,1975)).Ifweuseaparticularstyleasthe tnessofinterestthenitshouldbepossibletoutilisethegeneticengineeringapproachdescribedinthispapertodetermineifthereisauniquesetofgenesorgenecombinationswhichiscapableofbeingtheprogenitorsofthatstyle.Forthistooccursatisfactorilyaricherformofpatternrecognitionwillbeneededthanthatalludedtohere.Wewillneedtobeabletodetermineawidervarietyofgeneschemasinthegenotypesofthosedesignswhichexhibitthedesiredstyle.
Theuseofgeneticengineeringinevolvingschemasofinterestopensupapo-tentialsubsymbolicmodelofemergenceincludingtheemergenceofdomainse-
正在阅读:
EVOLVINGBUILDINGBLOCKSFORDESIGNUSINGGENETIC ENGINEERING A FORMAL APPROACH.08-21
武汉理工工程材料模拟试卷10-16
2016-2021年铝合金橱柜市场前景预测及投资规划分析报告(目录)06-30
妈妈练车作文350字06-30
猴年的第一场雪作文250字06-13
关于管理专业实习日记11-21
春天真美作文500字07-01
高三后期班级管理要求细求稳04-19
- 1Computer Methods in Applied Mechanics and Engineering
- 2Disordes of Fluids and Electrolytes--Physiological Approach
- 3A Novel Approach for Automatic Palmprint Recognition
- 4The use of formal models in the design of interactive case m
- 5A Unifying Conformal Field Theory Approach to the Quantum Hall Effect
- 6An Implementable Formal Language for Hard Real-Time Systems
- 7交通工程课后题答案—Traffic Engineering
- 8ENGINEERING, PROCUREMENT AND CONSTRUCTION AGREEMENT合同范本
- 9Open Framework for Collaborative Model Based Engineering
- 10An Evolutionary Multiobjective Approach for Community Discov
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- EVOLVINGBUILDING
- BLOCKSFORDESIGNU
- SINGGENETIC
- ENGINEERING
- APPROACH
- FORMAL
- 论文关键词:少数民族音乐 兴趣
- 新概念英语青少版1AUnit1-8复习
- 霍尼韦尔DCS Experion-培训_系统(第一部分)
- 酸性染料的染色
- 2015年1月17日雅思写作范文分析-智课教育出国考试
- 世界名校校训
- 2015事业单位考试公共基础知识:天文地理常识(1)
- 测控技术与仪器专业发展前沿报告
- 中国育儿网络 年报 2018
- SYB完整饭店创业计划书
- 幼儿园申请程序
- 海淀商务管理学校基坑支护工程设计与施工组织方案
- 四柱金口诀
- 西方发愿文
- 少数民族语言与文化研究6O年:回顾&183;反思&183;展望
- 大学英语四级词组及固定搭配2011汇总
- 杜威的_教育无目的论_对新课改的启示_吴培启
- STM32F103中文手册
- 州市级配送供货承诺函(范本)
- 园林绿化工程施工方案.