R语言综合实验报告

更新时间:2023-09-17 09:15:01 阅读量: 幼儿教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

学号:2013310200629 姓名:王丹 学院:理学院

专业:信息与计算科学

成绩:日期:年月日

基于工业机器人能否准确完成操作的时间序列分析

摘要:

时间序列分析是预测领域研究的重要工具之一,它描述历史数据随时间变

化的规律,并用于预测数据。本文首先介绍了一些常用的时间序列模型,包括建模前对数据的预处理、模型的识别以及模型的预测等。通过多种方法分析所得到的数据,实现准确建模,可以得出正确的结论。

关键词:

自回归(AR)模型,滑动平均(MA)模型,自回归滑动平均(ARMA)模型,

ARMA最优子集

一、问题提出,问题分析

随着社会日新月异的发展,不断创新的科技为我们的生活带来了越来越

多的便利。机器人也逐渐走向了我们的生活,工厂里使用机器人去工作也可以大大减少生产成本,但为了保证产品质量,工厂使用的机器人应该多次测试,确保动作准确无误。

现有一批数据,包含了来自工业机器人的时间序列(机器人需要完成一系列的动作,与目标终点的距离以英寸为单位被记录下来,重复324次得到该时间序列),对于这些离散的数据,我们期望从中发掘一些信息,以便对机器人做更好的改进或者确定机器人是否可以投入使用。但我们从中并不能看出什么,需要借助工具做一些处理,对数据进行分析。

时间序列分析是通过直观的数据比较或作图观测,去寻找序列中包含的变化规律,这种分析方法称为描述性时序分析。在物理、天文、海洋学等科学领域,这种描述性时序分析方法经常能够使人们发现一些意想不到的规律,操作起来十分简单而且直观有效,因此从史前到现在一直被人们广泛使用,它也是我们进行统计时序分析的第一步。

我们将利用自回归(AR)模型、滑动平均(MA)模型以及自回归滑动平均(ARMA)模型去解决遇到的问题。

二、数据描述和初步分析

下面是我们接收到的数据,数据来源:

http://homepage.stat.uiowa.edu/~kchan/TSA.htm

0.0011 0.0011 0.0024 0.0000 -0.0018 0.0055 0.0055 -0.0015 0.0047 -0.0001 0.0031 0.0031 0.0052 0.0034 0.0027 0.0041 0.0041 0.0034 0.0067 0.0028 0.0083 0.0083 0.0030 0.0032 0.0035 0.0041 0.0041 0.0053 0.0026 0.0074 0.0011 0.0011 -0.0001 0.0008 0.0004 0.0000 0.0000 -0.0009 0.0038 0.0054 0.0002 0.0002 0.0036 -0.0004 0.0017 0.0000 0.0000 0.0047 0.0021 0.0080 0.0029 0.0029 0.0042 0.0052 0.0056 0.0055 0.0055 0.0010 0.0043 0.0006 0.0013 0.0013 0.0008 0.0023

0.0043 0.0013 0.0013 0.0045 0.0037 0.0015 0.0013 0.0013 0.0029 0.0039 -0.0018 0.0016 0.0016 -0.0003 0.0000 0.0009 0.0017 0.0017 0.0030 -0.0001 0.0070 -0.0008 -0.0008 0.0009 0.0025 0.0031 0.0002 0.0002 0.0022 0.0020 0.0003 0.0033 0.0033 0.0044 -0.0010 0.0048 0.0019 0.0019 0.0031 0.0020 0.0017 0.0014 0.0014 0.0039 0.0052 0.0020 0.0012 0.0012 0.0031 0.0022 0.0040 0.0038 0.0038 0.0007 0.0016 0.0024 0.0003 0.0003 0.0057 0.0006 0.0009 0.0040 0.0040 0.0035 0.0032 0.0068 0.0028 0.0028 0.0048 0.0035 0.0042 -0.0020 -0.0020 0.0023 -0.0011 0.0062 -0.0021 -0.0021 0.0000 -0.0019 -0.0005 0.0048 0.0048 0.0027 0.0009 -0.0002 0.0079 0.0079 0.0017 0.0034 0.0030 0.0025 0.0025 0.0004 0.0031 0.0057 -0.0003 -0.0003 0.0006 0.0018 0.0022 0.0042 0.0042 0.0055 -0.0005 -0.0053 0.0028 0.0028 0.0005 0.0036 0.0017 -0.0043 -0.0043 0.0066 -0.0016 0.0055 -0.0011 -0.0011 -0.0049 0.0047 0.0056 0.0057 0.0057 -0.0002 0.0056 0.0037 0.0012 0.0012 0.0018 -0.0025 -0.0011 0.0027 0.0027 0.0039 0.0058 0.0003 0.0040 0.0040 0.0042 0.0000 0.0056 -0.0029 -0.0029 -0.0026 0.0016 0.0019 0.0015 0.0015 0.0007 0.0007 -0.0044 -0.0030 -0.0030 0.0013 0.0029 -0.0010 0.0009 0.0009 -0.0016 0.0000 0.0000 0.0014 0.0014 -0.0003 0.0009 -0.0068 0.0003 0.0003 -0.0012 0.0037 -0.0019 0.0023 0.0023 -0.0033 -0.0002 -0.0010 0.0021 0.0021 0.0026 -0.0002 0.0011 0.0028 0.0028 -0.0004 0.0026 -0.0015 0.0002 0.0002 0.0018 -0.0005 0.0004 -0.0008 -0.0008 0.0018 0.0019 0.0029 -0.0022 -0.0022 0.0010 -0.0033 0.0020 0.0000 0.0000 0.0003 0.0007 -0.0009 -0.0035 -0.0035 0.0010 0.0007 0.0028 -0.0008 -0.0008 -0.0034 -0.0010 -0.0018 -0.0021 -0.0021 -0.0006 -0.0018 -0.0046 -0.0017 -0.0017 -0.0001 -0.0029 0.0020 -0.0049 -0.0049 -0.0021 -0.0027 -0.0018 -0.0015 -0.0015 0.0051 -0.0002 0.0000 -0.0006 -0.0006 -0.0012 0.0012 0.0000 0.0021 0.0021 -0.0001 0.0022 0.0055 -0.0010 -0.0010 0.0048 0.0006 0.0026 0.0004 0.0004 0.0000 0.0000 0.0008 0.0044 0.0044 0.0002 0.0036

这一群数目庞大的数据,以我们直观的判断,它们错综复杂,且毫无规律可言,根本不能从中得到有用的消息。

三、模型建立

1.数据的平稳性检验

设Y{t}为工业机器人动作的数据序列,首先我们利用单位根检验方法来检验该时间序列的平稳性。

2?ARMA模型的ACF和PACF分析:

画出样本的ACF和PACF:

AR/MA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 x x x x x x x x x o x x x x 1 x o o o o o o o o o o o o o 2 x x o o o o o o o o o o o o 3 x x o o o o o o o o o o o o 4 x x x x o o o o o o o o x o 5 x x x o o o o o o o o o x o 6 x o o o o x o o o o o o o o

7 x o o x o x x o o o o o o o

3?上图表示该模型可能是ARMA(1,1)模型,用最优子集ARMA法为这些数据设定 模型:

因为具有的BIC值越小,阴影颜色越深的ARMA子集模型越好,经过分析,最上面一行包括观测时间序列1阶滞后、误差过程的3阶和12阶滞后是最好的模型。我们建议用 Yt-1来建模。

从上述序列图可以看出,序列不是很平稳,由于对数据序列建立AR模型,需要序列是平稳的,所以我们要对原序列Y{t}进行平稳化处理。

4、平稳化处理

取对数后的时间序列图:

对数差分后的时间序列图:

本文来源:https://www.bwwdw.com/article/scwh.html

Top