宁夏银川一中2015届高考物理一模试卷

更新时间:2024-05-14 21:56:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

宁夏银川一中2015届高考物理一模试卷

一、选择题:本题共8小题,每小题6分.

1.在物理学理论建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法中正确的是( ) A. 法拉第根据电流的磁效应现象得出了法拉第电磁感应定律 B. 卡文迪许发现了电荷之间的相互作用规律,并测出了静电力常量k的值 C. 开普勒通过研究行星观测记录,发现了行星运动三大定律 D. 牛顿总结出了万有引力定律并用实验测出了引力常量

2.如图所示,轻质弹簧一端系在质量为m=1kg的小物块上,另一端固定在墙上.物块在斜面上静止时,弹簧与竖直方向的夹角为37°,已知斜面倾角θ=37°,斜面与小物块间的动摩擦因数μ=0.5,斜面固定不动.设物块与斜面间的最大静摩擦力与滑动摩擦力大小相等,下列说法正确是( )

A. 小物块可能只受三个力 C. 弹簧弹力大小可能等于5N

B. 弹簧弹力大小一定等于4N D. 斜面对物块支持力可能为零

3

3.一辆跑车在行驶过程中的最大输出功率与速度大小的关系如图,已知该车质量为2×10kg,

32

在某平直路面上行驶,阻力恒为3×10N.若汽车从静止开始以恒定加速度2m/s做匀加速运动,则此匀加速过程能持续的时间大约为( )

A. 8s

B. 14s

C. 26s

D.38s

4.理论研究表明第二宇宙速度是第一宇宙速度的倍.火星探测器悬停在距火星表面高度

为h处时关闭发动机,做自由落体运动,经时间t落到火星表面.已知引力常量为G,火星的半径为R.若不考虑火星自转的影响,要探测器脱离火星飞回地球,则探测器从火星表面的起飞速度至少为( )

A. 7.9km/s B. 11.2km/s C. D.

5.空间存在着沿竖直方向的各处均匀的磁场,将一个不变形的单匝金属圆线圈放入磁场中,如图甲所示,设甲图中线圈中磁感应强度的方向和感应电流的方向为正方向.要想在线圈中产生如图乙所示的感应电流,图丙中能正确表示线圈中磁感应强度随时间变化的图线是( )

A. B.

C. D.

6.如图所示,变压器输入有效值恒定的电压,副线圈匝数可调,输出电压通过输电线送给用户(电灯等用电器),R表示输电线的电阻,则( )

A. 用电器增加时,变压器输出电压增大 B. 要提高用户的电压,滑动触头P应向上滑 C. 用电器增加时,输电线的热损耗减少 D. 用电器增加时,变压器的输入功率增加

7.位于正方形四角上的四个等量点电荷的电场线分布如图所示,ab、cd分别是正方形两条边的中垂线,O点为中垂线的交点,P、Q分别为cd、ab上的点.则下列说法正确的是( )

A. P、O两点的电势关系为φP=φO

B. P、Q两点电场强度的大小关系为EQ<EP

C. 若在O点放一正点电荷,则该正点电荷受到的电场力不为零

D. 若将某一负电荷由P点沿着图中曲线PQ移到Q点,电场力做负功

8.1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,加速过程中不考虑相对论效应和重力作用( )

A. 粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比 B. C.

粒子从静止开始加速到出口处所需的时间如果fm>

22

2

:1

,粒子能获得的最大动能为2mπRfm ,粒子能获得的最大动能为2mπRfm

22

2

D. 如果fm<

三、非选择题:包括必考题和选考题两部分.第9-13题为必考题,每个试题考生都作答;第14题-19题为选考题,考生根据要求作答.(一)必考题(共129分)

9.某同学用如图1所示的装置测定重力加速度:实验中所用电源的频率为50Hz,实验中在纸带上连续打出点1、2、3、…、9,如图2所示,由纸带所示数据可算出实验时重物下落的

2

加速度为__________m/s.(结果保留三位有效数字)

10.下面是一些有关高中物理实验的描述,其中正确的是( ) A. 在“研究匀变速直线运动”实验中,不需要平衡摩擦力

B. 在“验证机械能守恒定律”的实验中,必须用天平测物体的质量 C. 在“验证力的平行四边形定则”实验中,只用一根弹簧秤无法完成

D. 在用橡皮筋“探究功与速度变化的关系”的实验中不需要直接求出合外力做的功 E. 在用欧姆表“×10”挡测量电阻时发现指针偏转角太小,应该换“×1”挡进行测量

11.半导体压阻传感器已经广泛地应用于航空、化工、航海、动力和医疗等部门,它们是根据“压阻效应”:就是某些固体材料受到外力后除了产生形变,其电阻率也要发生变化的现象.现用如图1所示的电路研究某长薄板电阻Rx的压阻效应,已知Rx的阻值变化范围为几欧到几十欧,实验室中有下列器材 A.电源E(3V,内阻约为1Ω) B.电流表A1(0.6A,内阻r1=5Ω) C.电流表A2(0.6A,内阻r2约为1Ω) D.开关S,定值电阻

R0png_iVBORw0KGgoAAAANSUhEUgAAAc8AAADOCAYAAABYU4k6AAAAAXNSR0IArs4c6QAAAARnQU1BAACx

jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAKemSURBVHhe7d0HmF1F2QfwIEVAkN47SpFelBKkC9JUOugH0nsUEAQFQQEpUhTpvYMoKChNQAEpAYKIUkNC7yX0ToD57u/sTjJ79+7eM3dLNuH885xnc8+cOWXa298ZFCpUqFChQoUKWaiIZ4UKFSpUqJCJinjWMHz48HD33XeHjz76qP1MhQoVKlSo0DU+98TznXfeCRtttFFYeOGFw8MPP9x+tkKFChUqVOgan3vi+corr4RlllkmzDjjjOGmm25qP1uhQoUKFSp0jc898Xz11VfDcsstVxDPW2+9tf1shQoVKlSo0DUGBPF8//33w4MPPhgeeuihcN9994VHHnkkPPXUU+GDDz5ov6LvEInnzDPPHO666672s63h008/DZ999ln7rwoVKlSoMKFiQBDPt956KwwZMiR8+ctfDrPNNlv4xje+ERZaaKGw3XbbFQS1LxGJ50wzzRSGDh3afrYzRo8eXTgVnXjiieH0008P5513XjjllJPDGWecEc4+++xw5plnhv/85z/tV1eoUKFChQkZA4J4ktgQn0GDBoVvf/vb4c477wz/93//V/zeY489wocffth+Ze8D8VxhhRXC9NNPH+644472s51BOj711FPDtNNOG77whS+EpZdeOqyyyqphgw02CEsuuWTxrkceeWT71RUqVKhQYULGgLF5Ijxf/OIXwxFHHF78vuaaa8KUU04ZllhiiYLA9RU4DH39618P0003XfjnP//ZfrYxHn7wvrDQwguHueaaK/z9738PTz31dHj55ZcLoktavvbaa9uvrFChQoUKEzIGBPGkEt10001qBGz68I9/tHm8UoVOPvnkRRgJqa+vgPiRHL/yla80Vbte//erC4L+3e9+N7z33nvtZ9vwt7/9Lbz22mvtvypUqFChwoSMAUE8n3jiifDVr34lzD///OGxxx4v1LZLLbVUmGyyycKVV17ZflXfIIaqLL744mHkyJHtZxvjyCOPKtSzxx13XPH7+eefD7fccktB3CtHoQoVKlT4/GBAEM9LL700TDXVVIU9cfXVVw9zzz13kbSAKrcvpU6Ikue8885bePp2hfffeydstdVWYaKJJgoHHXRQoVb+4Q9/GDbZZJPw7rvvtl9VoUKFChU+DxgQxHOvvfYqJLotttii8Hz1/3PPPbe9tG+BeLKrfvWrXw33339/+9nOePLxR8Kiiy4avvSlLxVSKinZe2655ZaFw1OFChUqVPj8YJwTT+nx1l577cJh59FHHw1nnXVWQZQOPPDAfiFKkXgusMACRaxpV7jmm

mvDxBNPHLbddtvw3//+N1x99dWFxBpVuBUqVKhQ4fODcU485ZNFuBBQxJINEZHyW/xnxBtvvBGeeeaZQkXKMQfR7Q1Eb9tZZ5212wxDBx98cEHUTznllOK3d73qqqvC448/XvyuUKFChQqfH4xz4vmXv/ylsHX+7Gc/K36PGDGiCPsQtpImLbj55pvDt771rSL+U/KEG2+8sb2kZ0jT8/3jH/9oP9sRdltZd911i0QKXV1ToUKFChU+PxhnxBNB4nTDfhhth5yDJETYe++9i3OrrbZauPfeewspTzgLAoaoUu2SRHvDw5XalmfvPPPM02WoCkcixJUz0+uvv95+tkKFChUqfF4xzojnm2++WaS248G66aabhl/+8pdjkiHIbfuTn/yk8Ga94oorinOAeCJyTz75ZPuZnmPUqFFFhiHetv/73//az44Fwr3DDjsUxJwH8L///e/2kgoVKvQl+CDccONNIXzwUhh2/enhrPMuDpdeekk4+4zTimxfZ5xzfrj1ge7DyyIwwGkGMb8vvPDCwvxz333/Lf7/9ttvt5dWqNAc44x4khpJnyRNCeBJlvVwziFJ/B//+Mew8cYbhznmmCMce+yxha0y4pNPPil+N7pHM5AkV1lllcLmefvtt7efHQv3Fkrz29/+Npx//vlNY0ErVKjQO/jOd74TBn1hkvD0iHvDPTeeFbZdYeo2LdW+vykY752+OWuYeuZ5w/F/f7S9RmNIaDJ48OBw+OFt2csee+yxQpMkzAzxvPvuYYXD4g9+8IOivEKFMhjnNs8yuP/+B8LJJ59aJE8waTj2xPhPkuHxxx9fJDpYffXVwg+33jocduihhS0Vd9ksL+5LL71U2DynnnrqKr1ehQoDBKTAGA521TV/L85du99Std+zh0sfbM/u9eStYfXJBoUpvvLTMJaV7gwhaDKD0WgBD3n3TXdR2mmnncKkk07aq1qtChM2xgviSaLsKlmC3U2mn2GGYjKkx5STTRZmn32WsNZaa4Wf//znhVrmrrvuDs89+1T46MN3CokSouQpScP1119fnOs/jA7vvf1yeOXll8JTtUn7Ro2QV6hQoS00bI455ix8HHbfY0hx7rK9lqjN7TlqxLN9LXjy+vCN2lyfa6PjQ3e+9yeccEIhxX788cfFb5tNWCMiMYV99923OMfbv0KFMhgviGdXEGvJBmrQr7zm98JOQw4P6++ya5h/tTXCVLPPWTs/cVEWj5lmnj58c6Xlw6477xQOOeSQcPnllxfEd8EFFyzUNn6/++57Lal/6/FZ7d/oz0YX4TYvvPBCEZLDe/jqa64Op196ejjltFPCUUcdGb6/5RZh5RrxXrz2Dgduv32V5q9ChRpojS644PzCJ+Lmm9sI2mV7LV2bx18OW+17VDjj7AvCYUOWCRtvdWgY9vhHRfnoV54JV51xVrj3f/eGay+7ObzQTmOXX375cMwxx7T9qOGSSy4p1oN//etf7WdC4V8xzTTTFI6IFSqUwXhLPBGi6Km78YYbhuFPPxnMFUra/731bvjj0HvCoYedEbbfbruw4oorFCn/vjjpXGHQxDOPIaaOSSaZpPhrL1FS6tZbbxN2332PcMQRRxQcK4clz7KXJzVPPKiQ2Ug5Idx2220FIb/ooosKtfKBPz8w/PjnPw677blb2GzTzQovXR697LXxeY2Ob6688hiJuEKFzzuGDRtWqFMj/rQnte0sYbf99g3rL27OTB4O+/NY6XH0q8+Gc3f5VvjFiaeEv1x2W3jpgxAef/yxsOyyy47ZF5ijoiQnwt4OPfTQ4hztE9MNhlq+aqagChWaYbwknmwY9tNEcNZff4Pw9NPPtJc0JjzPPPN0QfD+dOkt4cyLrgs//fVh4Tvrr19suG0fTwno5aytJ2YOdhAbdM8555wF8UsPTkaOmWeeubhHo/oO+3+6DwJNUhbHut566xXqI+okqinXyXQ0fPjw9reuUOHzDYzpNtts0/4rhL/sTW07d7iqNt1Hj/hzWGWS2vyabvlw2n1vtl9Rw6fDw5At9wlxFv36178ukqBEPPvss4XXPomW9zzNEMbXOiB+XKrQSvtToQzGO+JJ/YlrRGw2rEmcTz75VHE+d7yPeu21Ih0gL97ZZ5+9UNn89Kc/DSeeeGI48MCDahLo1sWkk/1I3tt4ILjCWhBNDg329vTbtbYqUw9RxMW6l/tzRLrhhhsKe8oDDzxQeA/LkoRQfu973xtDYBHg3/zmN+1vWKHChIpPw2s1aW+HIQeFk/50d/u5z8IjD14TVl155XDOzW0hY0NrxHPb7bav/e+j8MqzD4cjN6Y1mjj84oLbwqtvhfDoJUeH2TCo864ULr7jyfDG62+FZ+68LZwwZMewzSG3hA9Gh3DqKaeECy64oLhfxK9+9auC+ZbFzHxkull++eXCSiutFP71r66zjFWokGK8Ip6PP/boGMIpNjOqYky8VvHGG28WOWpJj9EG8umnnxUOSmyV1DjCYOIhFvXpp58uCK8EC7x1/Y0pA9XjmFCGez3ssMOKb0F8ZU7y/xVXXLG4f4UKEy4+CP/8101hmskXDdsf3BbH/fxNp4avzzpxWKvGEO99aZsq9s6hd4Ttdti5Nr1fDleeulvYcbuta/Nkq7DDTnuFS/7Wpm36yzlHhC032yT8cLffhNtuuiecfdT54bqb/xx+uP8p4akage1KBStMzjxlJvF/x+jRlcmkQnmMN8QzqlsQGLub3HRT26bZPcVLLz5XqEunmGKKQn3TX2BDJdVS5x5++BFjdpb52te+VkjXFSpM6Nh4xfXCjocKD3svHLrpV8Psy2wf3qwRsFfbHX2obbfddqzatkKFgYTxgniS5nbbbbeCuFCTUoH2Fl5+6dkiRnTKKb8U/vrXv7af7Vuws3CE8D0YgoMO+mVhV6U6lni+jNMQj+DKsaHC+IzvLLdu2OXI2lz+9Pmw1ZKDwreH/ChMOdXU4fxrbivKC7XtttsW/69QYaBhQBHPxqrOj8LJJ59cONvYbUVart6C54169YXCld39//73tmDsvoYcutTEEuJzUuC4wGGJLWZChri65557rki79qMf/Sjst99+xTen+YLlMnbewW7MM9IB1PTs0spsWZdme7Ljjs0FlEntSK0e8dRTTxe74rTV3b9IxxZBFa/e/vvvX9RL8xtT0XM4UY9mIKZ3M26uvvra4p7q7bPPPrWxM5ahow5ku1bPd9rEAKPDe9TzjGF1PO/Pf/5ze622+/Lwdt4h0QcthDrANifv85577hnOOeec4lzEeeedX9zTe8r9nDJgMmR5D+XmUhqKRdviWeIcJQ+IsZDAVp+WpenreJp7lnJeq+mG8LQqsZ+00Ysvvth+/p7at7xa9FXtY8N3l18v7PabWru9+UJYfaqJwuzzTBe++IUvhoWW37+4fujQsQ5Djz46oojXdk9/x5psQmFacT4+017A8ZnMKt5PmXe95557ivMgNacxpg/VS8tkJdL32kzbpWEt77zzbjj22OPav3+fDkx3TNqinr5K04sqO+2004p6jssuu6y9pC2T2SmnjB0XF1xwYXGeSeh//3sg/OlPfwo//vGPi3r1ex3/4Q9/KMaEfjr99NOLcDtpRI0nz1DHfb2X74oghKin/He/+12HhDLGrDra7YgjjqzN0bEhPPpem/g+7cdkFeG5sR/MUe0fwdGzba4p+0Vt/j7WXhKK5BTeX1/o35isgilMZjfnlLl3mkZVP//iF78Y8zzv/dBDDxtefY4+JZ5sdxdffHE488wzi0FjAhrIUt39/ve/L9JlOXfSSSeFo48+ulg4xGPJcytU5KyzTg977TmkiMEkpe26665FKr/ewqeffhIeuP++Qm07+eSTF4kUPvmk76U5TkTUtVKExThVhNRAJnlqA4Mytpu2MiksgmJRTQhOEMpMHL+189lnn13U8dcCbaF0XrlnOq+9LQrKTUKLcHoItdEO7uv/zvl/eo17Of72t78Vzk+NmZ7O8Fx9bfFEXHyXbxA+EMGJyiRXhgggGDFc4YknnigmuTLfRpUfwT7t3pEZSe3GJpjv/f3vj6/VP75GxMd6NNMCsD3rB+PRrj4R3ss7eJ73jYQVMVt55ZWLcew9tKnQpQgLoff2HepZULyDkCX30B++Q710lx7tKNzJfR0czNjC9TlYpNUxPmyHF6H5//rXq4oyY8oikvaJBcX8ck+LcKqx8AyLD62H903rCcFyT+d9T7oNIEcbDnOIm3GVLspiNGM/afe4uPIsP/PMc2pj+Yzi

98aDvxv2OPaWED54Pqwy9aCw3Tm3hTvPPS6sMPO8RTkP+Sh5Pvnk07X7nVDcUz8bdxGYHGuH91Qm6YmxC/oqziHtli68YjrNK++45pprFsQpwjrju9zzqKOO6sBUab/vf/8HxTjz3FtvHZvWU5n5E/vXblAptLV2U5YmZeFn8ec//2VM31999TXF+SuvvLIYA+5jLClL+x70r/t5JoZrxIjHat/zreL7EEjfrUx8a7p+al/3Q5A4QqZbQGIk1PH9Z511docybei8/hQjnzJVGOTY99oGgxJhLpln+qh+/mKA1FNHufkM5gefFNe7p2tSxhhz4bxDn2uHzTffomjPvkafEk+dLS0WiZE3KSLhmHjiSWqS1tjf8UjDRXieTjHFlMX/ERZcUMGx1tAbSQxAmj8JChBOz6YSPuGEk/q04a+88qraQG2TNBHQ+L1p+3R1uMahPR3xXH37poe40kkmmbRW3jFhhCNt7/T/9YeyePjtefpHViYTsywQxnTgl4GFkcRWFiSgNHNMWZB4y4IZwcKTA8SF5JpKaGVAiiOtlwWiFjdYyIHn5IIk0VXmr0YgsURC+t47b4S1llojbPXzP9QknlFh77VmD+scUWP0fn9wWGnxpYtrUuKZA/2P0cqBNtZ2ZWFxz30GIDQ5z8F03Xnn2K0Zy+CDD94vYtNzBA39z2kqB8ZZqgFoBt9C65QD7ZwyLs2AmLYylltBnxJPorTFVjID0sNWW/0g7LjDNuFHQ3YNu+y8fdjq/7YstiJzkBgcQj2+//3vFxy0uggbbqIvQGXm/pEg+EuFUcbmWBY4+Xg/i8ciiyxSPFMuXc8T4ynhPZWFxNRCV/yV8UQsmvZw+L922mKLLYry7bffvrjGuY033iRsuunGYcstNhlzqOMax9ZbfT9ssfnGxfGD729W+71l2Pr/tqhxtD+oXbtxrb03H9PukmV7B3/tduPwjPgu8Rrf4f2pUypUyMMn4XcHbFSMH8ef77wnjH753rDUDFPUfs8Qzr6jzWGusnlWGMjoU+KJIJgccTeDsqAmJG06TqyJ8O+8Q2XQ++pU9qSYfJpURZK6/PKxdojeAOJJUsZBSYzgWWJCv/SlLxWEk90gVYeNL6C28S0Tup22Ql/gszDyobvCX//21/DXK68Iz7VLyg/ceku44oa7wjvtU73N27YinhUGJvpF8vzdb0mO5aS56667bowdUP0x+Kx3VLUpqDVikgIHacp2RX0BNkpqWgfPWs8j1Y2PuTQxBGxFvoHNpCzYP3JVitScOWpL6tFoLykLzA0bWmoL7A6uZ0Ioez3QPqjTbJeferAFvfnmWHtTM7D1pjbkMuAk9Pjjj2er7XxPjtrW9TmqxFaJJ/Xga6/lbVrPNqpeWZi3L7xQ/voIatucOG6MdW7ct/7kcFPWvKXfXZ+rcRMj//zz5eda7rcDW2tqG20G10fzXl+jT4knxwUL7CmnnFz71XyhYUPhvKMO9WT0MkydGHobxx77uzGp9TbYYIMOnp+9BbY++wl6Bhuwv3LtsrmOr+DY5DtybJ6M/pw3ckDVzcuuLHhFdmC6SsBks0iXXdjZVXbZZZcOTjLNwOuQ+jt1SGoGi5nnROeRZkDMfQenkRxgTr7zne/WFra8RYcDX+qF2gw77rhjlq24VeLJP+LCCy9u/1UOxiZHxbI488yzws9+lm+y4KW98847t/9qDsKEjGU5kHVtk0026+Cs0x1GjBgZNtts8w5OQWVw+eV/DkOG/Kj9V3MwkxkDOeAoZQ6UhYiJ3PZqFX1KPNnDLLAchxrBZI/cO853jTXWKK7n+ZazyPQECFj05uVV19uE2oA0YNyfWpgDD3sn78XxGUceeWTxTTxoy4L6nrdcDngL5ky43OsB8eQ5WFaKIg2yU+eo23Hcq622WpYzk7nBxhy9bZvB9Qg0j9ocPP30U2HFFVeqSd/lOXzwbtdcU46wA7NF6l3cDOam78nFkCFDwhlnnN7+qxxssI/oloXUm7vvvnv7r/LgKavdyoJX+2abbdb+qxyGDx9RG2trhFdf7W6X07GgbbMpRq4WjFdxmnu4GXiZ51wPxhcfi7LQvvwz+gN9SjzF9Fhgm0knOF8N5Frp6Uig/QVu9dSobJ7CMHobOlMYgG+LTkk77LBDh3i68RGIpm9BRMsiutrnwGKbw3ly/8/h7IHKNod4UgtvvvnmWZ6zxjimMId4UrtR7aexoN0B8UTUhSTkAGGX1zUN/ygDhI1kVBYbbbRRp9CN7vDZZx8Xkm2OahgwTzFUpSysUfwPysI4lrglF5df/pewxRblGQKMUy4DIVRl9dXXLE08H374kWJs5qr7EU9hNGUhDItGMQdijXPqCOfKeaeeoF+IJxVfV7CoxLyucrzGQPT+AnWamD3SZw5XXAZUwFTBKeGM6ff6UhXdH4jEk7ReFlz0c9z0wfj45z//2f6rOdhHqHpzQP2KySlrI7KYe6ccG5Fn4KJzuHvEkBoqBoyXgffK1dqQoMXsvvtunuOa+aJ/ykI8IpX3GHz2brj1yrPCxdf8u/g5+u23wtU1BpZq35px+eVDw9tvv9chjrAMbrnl1uwUlxj2228vHxIicUcrZhcatptuKs9ACIfJYVCAtkudsmYI9mHjP9fmbZzddFP5zcOph//xj/JzGYx9BLQsMIC0T/2xvo5T4onTEW7hGl6vY2w1NY4zfPJe7W95h4xWYYESJIyo5XLenaDDPm1zCBldW1gPOuigImdujI+cYYYZikQHEwIEJfsmyRwqVCgLjMdDD48Id/3z0vD7w4eEOaccFL709b2KsndHDA9fq42pQbX5whN96aX3rBHbN2qMx/jnjV5hwkc/OQx1Jp44VjZRwf2SE3TkrmpE81NcUP9IZ9I/ye5TVvLoAO9ZvGsbPmv3Cv7TZZeNsaU6OArJ8oJYTwjgPey7MAgVKpQFCU+qvffffTOMGvVCOHD3tcJ0y7URz3dGjghL1cbUP6Lm4JNPC0k1V/KsUKE/0KfEUyqqRsQTkWKXihl2qE07Z7ioSZ/9IHkC9SonkJZQEE/qkbGEfuSjD4bll1+h+LaY+YeTQG52mYGMGKoid2lZ+H6hGrwA9bfMQTL7pOolGWikBlNONUbNGW0x+sl5h3rpokr16H7qyGKSeg4qk6VEPfdOPao9W9kjjzxclKWhNN5VKrL4zJink0rI/72D856bjh8MUlovqjZ9h3uye8Z69W71MrbEemyRvjGGt1CTxbJ61SynD+epK2lQUrUV1V+s59kpA8fD1nfzCPfsVBXNtusd1UP00jAb3+96PgPaL2U8hXzEespj//p+xHCsDfOz8Jt91w3TfGPP4te7j40My9XG1MaDB4fdf3lyeLL2uNdHvVqMG30Y21u6w9Q+p9zz4jN9f/Qp8Kz//Oe+4rwjevCD9cZ44QHs+1LvafW9e6yXhj8pk1fZOFOWhlJod6aJ+C5p/yrzbtrNM9OwOGWyb8XnxTLv6Ntj/zrqs3TpX+khPVP/64toHkj73nPTfjIuvYf2pE5Ox0V936c+GvpePe2jHdJ129yKfeG+qb1aP3k/91SWzl/zNdZz+Gbwvto39r0jzaWrz4xfdfw1vvprne0Xta2A+hQm07LLLluUxYPaFkE9+ZRTw3/uq3Gen+YZr8c93gsPPPS/cMVfrhjj/BQJp7hVnQ7pojY+g13Kt+UQT+EA1NYWWx5xDs5AkSgBm3fMriTJBueXmMVIvZhtScaq1K5lQdlxxx2LvKa2eksdc0xwYRXq8fYz0SJMtk022TTMOedchROQfK4RCCknEvU8l80OLEw2Ymerj++ahodYTHhuOu9gTzThZXuyEHGcimWp17WxIfez856njEkh2uJl2vJM5fVzStuqM8cccxReoOkiKUdrfB5bdboQXnLJHwqnJJu7S/adLoSSmsf2Fv6Thj6wrc4333xFvl6JzNOFkNNWrKfdI/Pgvbz3WGLzcTjiJ+uMJZ4jHw1Ltq8HjmW+v1945bU3im/R1xzt3NPfuFkAIEgxO5nQFl7NMVk75kDognrKU3u4vvfNxo3NsVPPcX0s1616jnS7QoSbY5bctp6bmmIwHzRusV7qvIU4cTLi26Fe6tSkHv+BWI83L+h7bc+ZMZbVO2Dq3zgueA0jmFtv/cOCsNAQxXq0RJEogTGrvdZff/0ixj1lSIzZWM8YTAmWeRDnmh2p0nGBiMe+N7dTppLDkG83Z8xfDFu

E/o3PUz8yCOaqMD+0QT1lcS0FzIl3UU8/myMHHHBAv6yz/UI86z0ycSOS/bJr8HL8xje+MWbCOBZZdI6w186b1AjRXwqOaCAC12UQWWBOPfnE8KOf7RGWXHbJMMXkUoyNdRASnhLTC+rQCYV4RsmTdqEshKrkxIWCRTrHe1af5HjnwosvvhS+970NO3DJ3cGCgHiWvR5Mchu5pwtGGVgwynrbAkIoJCAHvkeYWMrElIE0kTk7EZnrEtGPxegxxLOYFR++H+6/6YbChPODH2wYZptphhqBe6mDRFgGCKINEnKAqGMCykIyeSExuZDoXbuVhbCjXA/V4cNH1vpzrdLeto8/LlTlW9lxnjLBxU0bykDYTW6oCmehnFAdjk8TlLdtvUdmlDxJZhYHHJhFFWc+//zzFXUcX6oRHhwhzgIH1WOHnhaBY7Sw4HhIAwaMXQhsK5baNSevMQMzzTxTkXSBk5C/uL1ULTmh4He/a3MYyrF54uzZfXPAc46kURYW85zrAWHDfadqye5AkmqFeH7zm9/sIC03g3FHi1E2zhNjhnhapHLwzDNPF2aGp5/Oi/O0qOV4gtq7tt5z+rifbRCmXeGnxf9f/eDTMLy9SY85ev8w9dTTFNJhLvEkgSBuObD+8HsoC/HKuUwa8LjOIYb6Up/mQJznSiutEl55JfFs7ga8YEnrOZ7gYE3OZQSs9znQXuZaWWBOcpmNVtEvxNM2Mymojag9ItEhyq+zzjqFhEFVR+3BRkgtJKlAQZgmn7zIPkRs5+GpUanj2FdSVUSroBrCeXGNZq+iehLLhYvFMSPiVGIkyfje/s8RyF6gnJ4WW2yxwms3qmtJGjmppcYnnHPOucU35iSGJ62nW0KVAdtLThYb7d1RumkOKkccbtnQE8yQ8ZGqRpsBAaD6S+2tzYB4IjZlU5ohnjfddFMxL3Lg+//ylz9nzyOMSmrTawaEFgM82rZ/o58IO/7f2mG6qcylL4Vl190jXHTdf8NcCyxWMNbzLzBrWGWVzWvE89Va2+XZsKj+c3fvYRLICZOjfm8lrE5f5kjr2jc3hO7tt98JV1xxZWmmw16dri/LPEawwxpvZUGLmPst2iunjmdE80pfY5wQTzDwSKSyjsQkAg5ORPaIYxMgqSCoq666apHIAKFCsBBS17HT2MjaNWwCFlmLswnqwLXiphBFi5bf9PMWF9dSh+GG2Bfc49vf/nZhLyNNega1slATvz0bUfRXyAkbAUcnafYigXd4P/UwBDlc+fiG6G2L0alQoSwwN6+Mqkk4n74QDt5v57DV1tuGHbf7Ydh058PCQw8+Hk7ed6tC0jrlvAtqTPan4ZXanE3tqRUqDBT0KfGUk9QC210WGtw+7truHPThyy23XCHJRWKEcDEYUyuQPO1IQqJjrP7KV75SEF4ELl7v/wggosqOQ+Qnxn/3u98t6qy99tpFeYy9jAfCOP300xdED6GeZZZZCimSQwSiykY700wzFTu9pPWoZmefffbivb0/aZXKCPdTVpIZHxEdhnJsnhUqmBM5EjvPyVxbXIUK/YE+JZ5xS7KyKdmonXCmpEHqwO99b6Mw+xxzdCBWiCMVKu5USqlFF100fPWrXy1UvCRWhI8K1e+U0JEOET/E1oGAIshSXzEws3nJBuQv9SvvX/d1HUky3gcx5+BErSyR9BlnnBluuP6a8Pzz/ZPJf6AgEs8cyZONMMdOCB9++FEYNWqsp18zRNf+XFigyzpzuS53QUc0aEFyGCrP4eWYYzP3Xrnqt/huZb8/gndm6p3bDK7PIZz8DHh95voMkFRz7aSuzxk3rk29U8tCe+XUi+akHOhH/ZmGnnQH1+VcH2Eu55ghjMvcNlMnR/NgrLTSL62gX4gnN/pW8NqoUeGuof8KF198UeFoYvsw0mEkZA7qWypWRA3hnHPOOQvHDHk0SawIKWlyqaWWKoijc347uFkjoCussEJBKBFX90rvTyJVtuGGG9WI5SGFAwu9em/YWcdntCJ5cqmXkCIHXN8PPrj8bhdCEXL3GOVtyrZdlugIYeGZmcMIIAQc4oQRlAWixomlrM3H4mfO5djUgF2Zq38ay1gGwnHS0J5mEPqRhgk1A9t1blJ04NWdmxyf2Scn1aTrW9nL9oYb/hH23ru8V6++z9lVCJ555tmw7bbbdQgv6Q6PP/5EMTZz1eMYmxwPZX4Cwl5yYD7nJOxng81tr1bRL2rb7nLb5gB3JDiccZ+3GzUpdSzPV1ImQkod66/NpkmpQkb89n/qYOejQ09KINkySZkcmQwIizy7qIBn9lPcTCZjPkGDh7S2y5E8DzvssDFhO2XRtktKee/ZXO9ciN62ZYkhYos5y2GgPIPtfqDuqrLCCoNr4zxPe+JZHPfKgrdtjjPH7be3tiUZRkgoVQ542+YQAn4SrSSGR3ByEr2LIW3F23bVVVcvHarC8YcWz/qaA34POaEnxnHO9cCRj8NmWYjvzdm1pifoF8nzpJNOaj/Tu+C1yybCIwuRM9BMAINNwDuu1VY7gwevVEidJuJ2221feOxaYBF3k0aDW9QQSdxXrvri8wjMhb7NyW2LeOZw94AY4orLwmTLXXCFniCeZVV9iCctSC7xpBGR5aUsqOwQ6b7eVeWpp54Myy779awE9OBZOcSTc6BdVT4d/XE45aTfh/U23iS8UceRPnP3ZeG731krnHXnK+HB++5piXhy/ssNVeGXkbMPpGQEEkDkgsd1TigFRiiXeEp/uMoqq3bIptQdOFDy7cglntaAHM2AuNCc0BYwn821spD4wdrfH+gX4nnEEUe0n+k/RMeEd995K7z68rPhvTE7Rky4Tjz9iehtm2ZlaQYe1tSwObCgx2wxZYCRoh7KATtUWekOMGwSEeQwWexWMqyU3aA4wmKQE3ZBssmRbgHTcPHFF2fboxGCnFAsMYsvvvh8eOKFN8KgiWYJ000zdXihrg1/d/DOxbja/29PhZEP/qcl4mnBTTMQlYH0bznjxvU5YRoRxmcOwyGphkQsOWCH1J9lmUFaNUQ611ZOC5jzLQ899GCHTE1lQCrO+X7XmwP9gX4hnmwQ4xZj05HJalKh57CXn77N2c8zgsaAhE9yQ4hSRxVlzseyFAUzVDsXy1LnE4TMOQsAxil1zPF/ZZ7pb6MyqC8DC1B81zStHbz33vtj3jV9F4gOKOrWO9Vwaoj3rHeGQcDiPbuq56hfGH23Otqynqi7Z1fP84x4L2VpX3DWiu/iHmmZep6jTv27pP2krP593q191kG7/TzMO/204fmkbPSLd4at158nfHHa+cMhVz8ZHn3g3jEqePdwL9/h3ml767P4fbEvI2K9WNZozCir71vfGuu5d31fKPdc5R980JHopH1Yf1911FWWEqu2542tV99Pad/Xl7lP/P76vojjwtGoDxvVgXQeNqqXtklalva9v/V9H7/dM9Oy2Jbx6DwP2+7pSNs07UN/+xP9QjxjnsYKEw6kP9O3VLG54ARBnU5VylElVS+xM7NjK6OuSlWJQ4cOLZJpUP/JvJPuDUr1RMXJPkJFnyZjkNWHKkc95Wl+UypYqid1lacJFkiJFm/nPZdEE/HGG2+G7bffoTgvlCm1M1pA2MOUCauiroqwaOyzz76F/U8bpHPDQiCPqeexQdn2LQUNjvupV6/NwcQIw3JfWZ/SxYfZRD3lvNjTxUc/KqMa49CTLugXXXRxUcex++57FMH0ESQIz4rmEItpBGlEmWPLLX9Qk7Y621IvP+7oMNuXp0mI59vhmC2WCFtutHD4ztprhl9c+WR4Yvj9Y2xk+jr2EXWxxOIRpA3jQd9qc8k4Ikh6vOmd9x2pzZWDFDWiseZgIojwPfreN+gLmWsiaBG0lW93z3PPHZufWLtb97ynULlzzz23vaStTN/EMZP6guj7X/zioOJ+sX9TosTc4T30Vb22R/+6n4NDTkqUjC/n3VOe5pTAUO9T13pXjmkpUSa5quddZVRLN0zQv+7n+2V/k6gmwvxRR3uyPaZJNO64Y2itTlsfmY9pti39a967p35My9hwN910szFjKt1HlQOee3lefVlfo18chnLtDxUGPo477ndF3/7yl+UTw1uYcasmGwIqvpe3ZjppJbKgDnOYiOwwuEpAZC1w6rGdpS7pFjTnq

N7qM/m4DlF2T89Nc7jiqk04qh5lqcepMoQ21osJzi1OPBmVOe+d0hzMyu06ocyBAXDu3XffK75/2LB7im9QL1XJWiypA2MZ+yhiGzl8WW0s/u5Zn+YPs6CORV4ayXQBpV5TR11EJyWsns87l2rcO6f1nnzyiaKOg7qdJBqB6VBHXe0Q3xEQrPie2j0u2P5Gye/CGnGYfZqxxPOPF50e5lvsh+HxJ28I239r5bDj2f8LB+67Z+EBbyFXN44L/Zx6khof+lCZ51qwIxOgzDt4F2PDe0cYd8af9sYYpX3oezBrytwzVU8r8zzjTNkTT4ytpw+1sXqel/ZvHBf6yPvUq+Opmt1PP0bG0LN8ux1cnFduHKSg2o39a/y0jbU2qS8ts+tI2vcIj3dUZq6lUjmGxPPU1b/pHDVHnNdm6qaSq7nlnL7QRrHvwfyJ80wfpnPUPHdOu6kb5zZGj/ewMvUcKbMd+zft+/SZfYk+JZ4xw1BvedtWGDggcerbHG9b7v3UvTlACMTTloUFKNejl5SRE3Jj8ua63Es+v8suu9YIy1PtZ8qBFGPBKAsOXKlkXQYWP84yuQ4jdoDJSbdI8ok7YvzxmGPCHNNOG4onfvpG2H2DxcIS39snnHzaIWG5hb4aBs2ydDjsl78onGs4jOWEONm1Jjc5PqcsHvxlwRZdv7NNGQwdemfRbmWBgOWGXjz33PM1iXCn0qEq4qj32mvvMUxqWSC4OT4PxnGuwyA/iZy5ZuyjO/2BfiGeZZMkVBg/gLumXtS3OYnhqaJyxwJuMmfnBosNVVIOSErURSTNMiC9UBPmcLg4YjHFOc48pARhDel2Z92BpEFV1kqoyoorrtRSqEqqym4GbUwaMX5+W1sQZ5l66jCsJv28+/qjYf/vzR7mmWPm2phq2+N3hplnKTRWxhmtgoTiGINUldkVqFTT7b7KgNd9TjyhlKO2WMsFaT0nVEVf5nqPPvqoRO9rlA5VoZloJVQFIyxyoSwwKNKu5sD4oqYvC5ItU1B/oCKeFVoCaVDf5m5JxsU/B7nEkBoxJ7QFhCixmeQQT2kfUztfMyCe0kPm7KqCeCLSZaUo13uv/FCVp8Jyy60QnnwyTypmK87xtmTTuvLKvxaLtbETjz/efHNR/vwLL4eD9/5hmHemGcN+lz8aHn3g32NsnqQi40AoWjMCqv9zE7OQVnPiNlvdVeUvf7kiK7yDh3LO9fDww8PDSit9szTxHD780YKxyyWeubuqUL/nMgLGV06oDpX4BBHnGYln7oJZYeCDg4q+pVYsC2qeXJUiO1S62XAzcBwqK6lFsK/golObT3cgcVoI6j0puwPp6fTTzyxsumVBkrRAsXeVAaJy/vkXhHvvHeswUwZsT5IK5DADgEjn7OBy4YUXhYceeriwp33lq18N8843X5EB7Ib/3Bfefufd8MtDjwwjh54f9vz+puGovz8Tht9/b4dQFe2NwDUjoPqfbTEHbJ85IQ7sbLkhJOD7jZ2yYLPM3WJOf3IEK6sZefXVUeGss87u5MXbDByzckK8mFRy5jKwC+d8Pz+B3PZqFf1CPHP04hXGD+hTfWvX9goVcoFRicwKBzJewNEe6vynNeLI3lUf54loIqDsp2VUuBUq9BX6hXiO+zjPCr0N9id9m5NhqEKFerz/3vuF05mUm/XoKj0fD1Qp+BDQChXGFfqFeLYSSF9hYIPDhL7NSY5NUsiVFlyfhkGUQSsSSSvvlYtW6+TUy70eWqkD1Mo5qL9++M0Xhp/+fL8xEufHrz4czq2Nq5PPvabwwh12Z/e5bTnsKK9XN/ZXG7TSZtDTdiuD3O/pj2dAK9fn1GnlnVpFnxJPHKUFtpVA+goDG+edd17RtzkOQ8IN0oQBZSA2LYf5cn1uOkihJxi9NEFAd5A8gZqxrIMRsHXutddehWdvWVjQzB224jJw/cEHH1zExOXgpZderBGiIbV3LOdgEuFZObZFnrP33tcWo/jnsw8I888wKPxgyFgnnd9vvGoxphzHnHN+eOiRh8N23RBPNlCJDDh7pX0nhCQ3RRtbXE5IHXtnTmhLhHjZnFAVfamdc/Dss88VoSdvvlnOAUjcJk/j3FAVMaI5oSfGca4WUnvlmIbYrvtLG9anxFMYg4lQSZ4THmwRp29zYjAtGq0kho8p2sqAt62whhzwhLUAp8He3YG3rbCLnMXGM/p6VxXettz6c0NVJIZvZVcVz8rJVSqzzK233VEjuHeH/XffKBz7663DLvuP3cnk4I32DHvs//Ow0HRfDhv9ZM9w28iRYcduiGdEzAIVmRkJ2wfqripXXXVVljcoos7jOgePPJK/q4rMRa142+bskuJbZHvKAW/bnF1VMDW5Hr2tok+JJ+7cAmuhrTBhIdo8c4gnFW8uI4UY5kzQ6667LjvOS/YYqcjKSpIypUgFlhPnSeK0q0punCciXZYYIrauz/HmBMRz6aWXrf0tn+QdhMUgBmVhUbMmLPy1r4WRjz0VHvvXCWGbH43dmeTFZ18Pb7/xZlh2vjnCFrvuG/4zckTYvgTxBGEsiDOGhoSfm5gFU5cTtyl1ot1bciHOMydukaZGO+dAnOfgwd8Mr7xSzrMb8cTY5RJPmqQcYuhbcnaUgZgGsix4WufuQtMq+sXmmaOmqDB+wGKTSzypeaTRygFXdbuRlIWUYzm7sACimfMMoS1nnXVW+69yED4g6D9NLVYGsjKluVqbgZt+zrZnQOI+4wyhDeXV0CD+NGcbM9+CgFoXYNhfDwvb/nis9PbB038NK0z8hTDxdEuGK/8xMjz0v46hKs0gP6tYUhJOIwek7kD9nCNFMw/kJIiIENqTk/1I39tEPgeIIOahbOgRhkMO3txQFSFUac7fZsi9HtTJmWvGPom4P9CnxJOu2gLLM67ChAVqMX2bk2EowsKGaxdkztaSphGT7k2qOCoxEkSaa1ZOT9IBtRwVW7pwC/QfMmRIUZdtDRGNsFO+ZOzqKU+Tikt47Xpj1TtF5xWwCLHpek9ZjtIYVQRHHfdUnqbQIwFiKtSx+KeLMtscFaFnKU8TGnB0kFpQGUmqXoLU5lSUytKE44D4uZ82Q6RJrREIaqxXn2xe1hffcOCBBxQMURq7SgXmnt6HrUqsaoQcpNpbP2m/VIUtxMR59xUHjHEQfiLpeZpq7u4rD+1APN98+KIwd21MDZrzB+HpTz8I9w27a4zWQbzjj3+8Z3FPfx94YCyDYIx4Du9bm+JLdh4JgTAYz9RHjrR/o63bPY2ndKMB30NK9u36UKarCBoHDnNxzKT2VX0f+1ebp7Gg+uS0004r2ktfpDGP6knsoJ42r09jiYB4Dxl63COFcRL7ybNT0Fp4lnJjK7UN09JIKKGvjBnvEHHttdcX7bXrrrsUczzdSk/OX/ezrrPJpwyhMu3pnvokjWumddGm7qvMnI3AVMR6viONH9a/+ke5I52/+te91HPkMJo9RZ8Sz6jayzV4Vxj4wNlONNFELcXwmhicOuwGYdKmHDIVknsjFMrS3RwQRIuWMunX0t0cJKR2PVuURSgtM7ktPhYdz0wTcnu2gHL3tbikalULKNWUeohOKtFZhGKZe0rIHYEIKnNPTiXpZOc5bEHzjd5VuroUiJn7Oepz2iLCvs27sAWnuO6664v7eSbuPiWenqG9PdNinnojcrBQz2ExT+shNO6nXS3QqU0YI+M9ZA/TF6nKGxHyntqGFIDYUL3V25XriefoUf8Lx9cI4DIzzBDW2WGfcP09D4Wdd2hL5yZf66mnnl70/SmnnFobC2MX3pjkQVv7BrlQ7cDCzqwPSW7KvW/av/qe45v39I0yH0X4HmNGu/jGlLAizKRH36083aNW22JWYh9q3wjESftrU0fqCKYejYl2Uy8l1uC379OPTBkp3EcddT07JYLKfLe+ZztPmaNhw4YV76+eMdmx7+8pyrSNNkoZJ23onupp23SDBnMk9r32SVXB5q/z+sKcSzdoMF/Vc/jOdP4iwOrEPkznL8Y7lqmb9mFfYwzxTCdUb0HKKwusvxUmLJiIX/jCF7KSsJM+0glaFrmhKn0NcyUnu1CEOrnzTHv1xdzsT3BGaWQjfvSm48KuicNQbNFhh28eBi26UTjmsjvCj3fNy1McgfBtvPFGHRbo8REIYf74/6yYa+P7uAHjP2UGyqCVudkK

CuLp5aI4j+Mizkslhou77LI/1biyM2qc5yUdtuVp48ovLCQPCygOM6rfvDxOjVcZ4slRAjfx+9+fGP7wh0vHXIfzw0V51nnntXHquB0eVpFjwfEwNHsGrgvngQPFpUV1AU7QO+Oe2NVwhVQp7h3VBgYTVdOJJ55UcCnUZZ7r3jhUMLlxY+xy6roHSQCXHyehgcxbkGHaM72ra9SJEhTu2nuQPjzHtRwr2EhIVqCdXaON43Nc635R5ehZpBbPUT/XoN+X8D65WgVcse/MATWMPi8LEqCxlgPjiDNT2UXK+GXHz7ERqUNllROqYuHgYJVKNt3BPKZiM85zYGxT96bqtzKgsuvOtqg97ftIXevdDjvs1zWJpk0K/88dV4W9tl83LLfySuHMc88tCOfPTriskPI2/8bsYb51fxTOvfGBsPtOeYnE4dhjjws333xLMdaiBNoMf/zjZcX6UhYkSFJULu688+4sYYIaNNfJ7oUXZGw6oINE2B3st9pKqMqNN/6j9m7lvedpUg49NC9s0XqcE3rGtNJfwlonyZNI/JWvfKVYGOuPdFGir66/LqoaGNMXXHDB4tzEE0/c4RpHNJi7fsYZZ+xUTqKJHoYWw+mmm67TNZNOOukYuwBRvdF9Jp988sJJASwQiy22WKdrHMR9kEd1iSWW6FTuPnFisZ8ttdRSna5xRBsVAtnVs6LnMXvd4osv3vSaeeedtzjne3McGvoaCKH3yonBYjfLkVQhN1QFQ5JzPbSSGN6inLPYWMBbSQwvKXicC82AQPE0TG1pZeD7l19+xdp4K0/YgfMPZq8RMONxw+TIlGjj629ocxg7Yq9vjRnvU0w/fcB2Lr3kkmPODf7+z8LVwx4Pu+xQ3mEoYueddxpD2KgceaumasBGOPro3xQ23LLA0LHd5eKKK66s9Wn5UArzLNd71ObRK6+8aulQFeunjbtzmXMCU45nO0ElJ5E8GF8530+oyn1Gq+hk82TnsAGtIxqvt956q8JYnXK0JELOFBYRg5MLckxgzbjP7oCAkDwR0rhbvx3ro66f3cRC57yDC7e/POZIW2BicxLhEs24zYHAdTotBmjjmN3HedcoExtE8o0B4wYG7sq9vQO3duokMVTRESQGv6vrvGcxtjNER8aAdEra9s224/EMz9VhuCTwLG0Td0xn5DcAbEXEmQJIqTgkC8yKK65YG+yrFBy666OdhL3P9kqRMciV2voSUfLk/FAWA3VXFUxKK8SzXg3ZHXpCPMv2u+s33HCjDk5IZWCO9eauKpgK7VMfYrTBBuuHf97cZuM9dv/vjCGUM841V8CG7Lzeim3nplg4XFZjgh6srQ853rYRiGAqFVrkzdfunEnMRdJ3WRAkWiGeubuqYJxyrofhw0cWxLOsJqFtV5XVWyKeOYSK0JRL2GjrckJ1xumuKgYYSQ9hiRwjNWwjlRZO1wJislh46nXsxG3EkzcUVabDterEa6m+4rl4+J16hVG5er7n+b86aTk45/7xGvdJF0PnECznEX5qNIPLgLHogHfyHM93r3i+HvG7Xes9XF+vwtNm8T7uq7y+Dd3f88UNPv/8iwXxdt8U6iPeFpVcN+++BG9P75TjbYvg5krPiE2OqzpvXWr5HHA4IRE3GuONYPzQRJS9HqjQPCP1Hm4G44MZI3VG6g7G5XHHHV9azRsR1dbRnFIWCFT9ji/afumllx4TjpKCJ+gD7de/8PTwQiU5tMZM3lP7PjPtzScfLM79+/62NhpaY2pbIZ4XXHBhB2ccuOSSS2uM6trh3/++p/1MRzCdXHBB+XAlzD2zTC6GDbsnnHxy+RhUfc8ZKAdMVb/5zdFjzEjNwBnr6KOPKc08Rugrjkhlcdddw2oS+wntv8rBTizMeWWBfnH+qqdFfYFOxJO0Q2o0absiHmVBHTrZZJN10ln7sP74uAkF7GsIVW78Yl/CAPVOlSd1hQiEk8klJ2Vjd7ijReLZFWihqJFzY0ArVGiETsQTSE0ktZ4SOCo6troczqHCWGh/DIzFCKEaSGpbKhvvlGPzrDDhAuGcZJJJSuUV/XT0x+GOPxwdVlthhXDQJe2EbPR74dwDti1MGBtutEl49c2Pw7B77w7bbtN7xBOYRJhtoomlQoVW0ZB49hZ441lgc7zY+hscCXgG40odvGY5PKVBweMatABzzDHHGDvwQABnLX3bSD1X4fMFMXs0TGVjfp968OHw3YVnCLNOPU3Y8ND2Mf38P8KSM7bZQB2r73pquOqe+8Mu7XGevQl+B9/73oa1v0Pbz1SokI9OxJO+nI6dl1dP1bbsKCbCQEsML+RG+IiMJLzMeA1PNdVU4Utf+lKYeuqpw3zzzVckmvb+OFVSOPS0PVqF97Vzfa5Nqi8RJc+c1IskZ+2eAzbMHM0FGxFmIwc8sWUEKmvDZKc2pnNsRJgxzCRno7Iw3jCemLkycD0TSZoJqQzMeVl4chlGQfAyv/CoL0M4SaUkvvfefje8+vhVYYtlFw8bH9LucPTsreGOWy4LQ4feGX67/RJh0CLrh6Muvb2lOE+22PokEvX4179uDWut9e3w97+3XSduOcdWznaPacgFh8wcj3NOkbmbKcTxnCY26A7GpLWu3t+iGWIChrKwluZcD+ZzTm50c4XGc5zYPG+55dYwySSTFp6B9U4wuYjqxtzO7ysgPhaw5ZdfvlAxRS6XVOd7xaPOP//8BRcdy2aZZZbCW5ancY6DyIQO4RDaJyfDUCu7qogNy/GepTnI9YK02LCFlUX0ts2ZoOI7V1tttcITPQc8ucvuqgK83nOuBwnEl19+hfDii3kJBdZcc82CcJZ1aOFZPsZu/9kjYcOvfTVsfGh7ftikKR89d5sw7Yr/F06++t4wZOc8z2mQNq6MIwtCziOeJz3/jJw0ohi6VtKO8gbPSaZOiMndVUVi+FVWWa3o1zLgxKYvc71trQE53rM8h3Nt2JgUEQhlwSkxN/l8q+hEPG+44cYwzTTTFN62uZxIPWJ6voEgeVq8dHQkiqRLg1+H8ui0gFLhinmyYFsQdIJcma4XLmLhj1Jof4I3qPjbnjIzvQlu59olZ38+3K0geN6dJGmcKykpleD0g/MOXDpCEENVSEaxHi42ney8Wd3L+yBSqZSOA1emnvqeEcGb2RhYZpllCrV4Gg+ovXH+sR6vaLDY0FgI04j3Fe4RQQL07rGepBe0Bxg03oMOZY401RhizJnFeSn1EFrhTTEumnkh3tM9ItTj9ep8TEiSEnbp1JSpqx6v3IjHHnu8uP+CCy4U/va3qzpoV8Q9x/dEaNLxFx3GvB8PxzSri2+N9bRPXEeEYiEeBd6/L2y4yAJjiWc73nz14bDJN+YNPz6j1v//eyDssF3bYpv2vbZJpWR977xy40JoA6kYeJxS08byem9ncaBzzTVXEaqUjmVe9LyWY700uQUmmsSN4fK8mNQEtLu2Us8Rk6KAdv/tb48PK630zaJeGrakntC9WC+mgkQ8EQ/rkvdw6MO0f42TWI+m5qGHHqmNg1Vq68ZrY+opI8Wl/eS99Y9kN8sss2yH+WQ8x3uaA+kc1b/en8lGHmFzKEL7xnr6KaUh2tr16npu+jxrXKzn8BvMyZVWWqm43v18SxqCI6LB/dTh/Xv66WfU1u0tO7RPX6EB8byhIJ62aOrpYm0wmmDjknhqRNzLcsstV7zL1772tUI9owOaEUIdY2CKd1XXwbu0vwmoxXCGGWbIzhzTl5AQQnvkZP+QlYVd2eSX4Fn8rkUonQyIjtAcZWJu9V1Mgo6wkCqViX9NpTiLlKTvpFQLepqHVi5dMXwxqXwaykFlqX/F0vlrAkZYoL2Dep4bc80aF87HRNXeN413tLgK4Yn1hBipg/lCyKiV1FE33c3F4mrOOK8ezl6YTsyNSzqK9VL1lzFOVe287xCzmBJB7afM+3h2On5l1vHdm2yycfFNqXYF4xLrUQPGxQ7h/OIXv1hI395HvTSbDek/9qF2j6pqWooxjjoNiee7Yc8tVg6DplyqSJpw7913jpFUMA7uF4+UeUDkPc93+EtTFOOpxfAaY+poU4tvhL6nHVPOdJMm1/A9VNm+3zGG6NeAGfPNJEj3TR35tDsm0Xs4Ui0AwkX7ghiql4ZgqUdFH+tF4q/vqaGFxXh/76Lv0/5lQon1qDiff/6FIvOPvlQW+9B

cTYmZ+agsJpU3RiNIcLGedkjnqHXIs7Szuikzeuuttxdl6vmL0EZoQzH4ztsBJ03+bi6bv3FTiMhYYC4xzwQd5x1prmhMTaxjTTjtNHluz6jNpXFAPGVoQTypM3qqpjRZxHmOS+KJc4lZejRys0wjjYALZadgD6Xu9V25MVE9wYEHHli8f26MZF8iZhgq412ZohWOMJWUKvQNyvYLjQyzRv2uLmXQ8RlPhS0WXzh8/7g2IlcjH+HMvTYICy2+SrjpgTamfdhdd4RtetnbtitYhGkGcmKK+wvV+B+Y6EQ8ZXRAJKhtqTx60nHj2uYpq0u0b+JKyhrQGwHXKNUf9a10faSAVghBKyDtasdW9g/sK9hNwTvlJEmoMH6DHVGft0I4U7xXk2BPP3yvsOjMM4bF1t4unHnVv8Mjd10TZplsUFh6ue+GE078fTj6/KvCn66/Pey8Y77Ns1WQhFZYYYVCvVihQjN0Ip70yjxPBw8eXKguekI8LazjinhST/Cm9XyqvLLZNprhuON+WxDj2WefvdC19wci8aRKGSiINi8qqgoTPqiFqWp7SjjhheHDi7ETj8lW/1U48+C2zdXHHDOsHg77w+1hr912aq/VPyCByl3dX8nFK4y/6EQ8EUx6ecbg+hR4uWAXMBHGBfHkQTfFFFMUjkG56coao03KfOet18KW329zPJIntz/Ut5F4DqQMQ7hz75Rj82QXZBbIAdtHjiTAcSZ3gWfbZG9KnSm6gzlCfZlj1lCHvTE3PR9pr7ucrCmi7TO125aBrGK80LsKhaJl0df16ei0QX16vu7AVjfyscfCe6+/Ho454IBifXD89o93hPtvvysc2v7b2nPASX8Mf7ju9rBLC5Kn92R3zQGTSLQ/c7JZYIEFuh3b7Hf1G1aXwb333lfY5cqCnT/N01sGL7/8SjjmmGNLCwy8rI866jcdHH/KgBNPTno+/gxlPbMjOFHlPIM9NCfkqCfoRDzBIpLrttwI40pta6FilPds0mcz9apyDiepUbw73H770DDjjDMVcaH9IQ3GdhxIatsY51m/c313wJTlXA+ILceEsrCo5brD8yxk4y/LCPG6laUmdbBoBhINr8HUw7IZEE8bCkRv22agJeJpmp8Y/snw9a8v13BXFUwFH4hG49y75djhOSE2i79MMezO1myenFVoRnJgjeLEEsHRhRMRpqIROPFxlsmFxPA5oSd2IhGulINHHhkRBg/+Zm09KxeqIjH8Kqusmr3mY1JyQ1VyE8NjuHlClwXnvJzQlp6gE/E0AXmqWbR66lUa1bY50klvgDcY1fM888xTKsDcoLFDStlMSLyQeeb5Ngt7Xxv0B6LDkAXaO+XktrUQ5QQ8Q+6WZIhn7q4qFko76ZQlnjHOM4d4trqrCgJVNi2jccjbtpUtyZZbbvlOu6qQEvg/MOU0glCuHIbOIhg9lsvAOtRKbttWiCc1bUo8AUONgDZavxBPHp65MId5g5cFx7z8XVVGhFVXXb30lmS8lVuJ80Q8c3YwQTytszkwvjCqZcGDeJzFeWpIOn+xcj1xsIFIPHOy0PQGLNKey/26DHQQKVLcVtksPhYBXoeSKpTd9aJVkNZmm222IpZpoCB621KzlYXJkxvA30qGkbJMUISYMqEYZc0Urs/1uKYapY4sszFzBOLJU72s2cH15lzuOHnppZc7hQxJAvDlL3+523vpl5wk69YBISdlcXuLxFP/N9oqrTtgUKin64Gx+upXv9opGUirm2FjCHLsqVSj9c9uBqEqck7TwJWBbxSOksMMgjUwR6soTC3XlkzVm0M/xKTm7hncKjoRT1IbQkLF0lN7XkyS0J+SJ+4Jhz/llFMW2ww1gwGGG/Ke9jBN48C6g5AXnrx2kchdrHMhmNlA7Q1Vem8hetvmTuwKAx/NJM7ewJsjbw3HHfHrcPnQKO1+Vmi6br7lX+E3tcWPzuuuoUNbIp69DQIFAtpKRqEKEy46EU+5R6k8icotOwx91hbAe+QRbVtpdWU36AvghOecc86w8MILF0HQzYATtGl3jAW19ygOvhmoyKI6tTe9eccX4CB9e+Q8+ytsp0LfoozE2RNYU54e8WS48nfbhaVnnSGsfUA7g/vR0+H0Iw8PSy+2fph2ikmLzbHvqUkRA4F4AkevnXfeNRx88EH9niSlwsBEJ+JJrUZqk34sV4xP8e67bxTZJCywOLYPPuh7r1SgGvT+6Wbe3UHiBFI2D83pp5++SNVVVsIj2fq+73zne32atJ36nJ2trDdoXyESSDYyNj/fbnHjpTeu361CzyGrTV9LnP/5z31hxOPPhU8+fiBssvjCYeNDo3r10/DRBx+EMw76ZZhrhukHHPGM2Gefn9YY7J9WzGKFxsRTiAebZ6vE8+OP3itsSPbylGEIURIPGDk2A6+vnGyiqpgjT7MFfeTIxwuXdHYl6lvfLIaT3rwMSLmeteSSSxZp1/oKbJ7s0Dn2or7CRx99XHhAaid9K2EEp6Ey0jrbMrOAfqH2drCzpWOBM5ZztAb+ytXJsxdILfG8I2WOjC12RfZBu12kfe//6sW6aT3vjRkQRsEemZYZp+4Z68Z0leYF+xiGJpbV54EW/hK/EXNBM6EOCQZzJqWZevV+BcqcV49tlXpcG4Brlalbz+C5v3t7BjtZCvXcT92YMzTCe/tG2hMSJ7tUhHvG91Svvp8QW+n21E+JyYcf6sOx/RTnvXfjAPbW2+/VOuzBhrltzz/ssDBHbb2oJ56xf+P31/d9PO/v2WefO0Zy1vfqeQ9lqSlKvfiOvDQx3hGx72Mfxnqe++Mf711juNcuvKBfeeXVWvuO1TrVj5n6cSHsSLspS/tQ873+elvfO6K9Ut8bA/oivkt937s2frsyz7dmqOP58Z4Y/LQPlaknOYSc02moiv/HevV9r0ybcSo99dTTO8x94yLW8x5p2bBh94RTTjm1eKb6aR+mc1R5nL9CoWI61Vge5yHEcaHcnLN2e0Y6HvsKnYgnQ7gFsSeS57C7bw/zzNOmBrXI+jvTTDOHvff+SUFEebXJ+MNILZTEb44nytKDPc3h/4iiA1GmBqYu5PFmkAjloG61iC+77LLF85xr1oCHHHJY4YgjvsvCzMFI3Z/+9KftV7RBpzjqwZnF9SRd+RcRYe/KwO3wf4uyOCXqMIf3ZVOykHC48H3ymfo230UdGg8xe66J38Q13kBS12D3PHVd41qGcu3i8Hxlnue5yhEVh+fH94ll7qe+OuqbsOLYpCtj09XW5557Tthvv/3DVFNNXbxP7NuZZ565FGH3fd5fXlKaARI/bz0TIsKiZzs4oSNs0bwmhwwZUpRxHlh33XWLcu776TPlxhSmseiii4bpppuuiA+L4OGqzD15fKaSlWdLVo1htOtHSjxMStoT9SQ1j97OFiGZaDiYOdSLBB5MfGPJefe2KLuXb+bQtN9+PyvK/E7j3ixQHHc8Tz3tjqiZk2CMqONIbc3GubblMak/6kN7jEHz2TdwWorEDHhNY8zUU56CNib20y677Fb77rGEFyOEOcZ8GpfpWnHttdfVvqGtn4QNxKTq3/nOd8Npp50R3n2vtvh9dH9D4nlubdw2Ip7GDFOS/teHqRe9xT+W0Ygw2cRYX2W8L5X5vjQ/NEIkdEJdph5rSITv0Y7qYKrTrfT0JS9c837NNb9Va8Ox3s3alheu5+mP+nR/2oOjoT4W9xvxySef1tbAA4vnGRuxfz2Xt7lx4j2MC+tKCuNE/+qnAw88oEgMv9pqa9SIYxuTF/veOpv2k/zUnvX1r389zDrrrAWxjeCx7X7e0xhEnCKELSkTQy+MKZ2/4mvVMS94Cce+B+ugNUOZNk/jl81X40Xf+htzU1sPRE3wUFZPu6bMIXu0e6njGnTkhz/ctjaXxgHxtNBInq7jcRxlJIp6XHrpH4utikgmGsv/Tc7+PHbfbdfaqtK1zdZAkSxe52t8k4jtU13fH3fQAJx7vYQAkXg2O7RDmXPdHWkb5tZNj7J1OULpu0gg47n4/1jmnAPn3gwWBERY25s4FkScZcqB4pyVOUjzCFaMp9MHsQxHnnL1/u9+FivhHelCoMzkjHVTFbtnm6Arr7xywbXWl5nEsZ5FEyy6EmQIyPYeNBDORSCCiLn3UYaTNp4sfgj+iBEja/f7T1GWjjNEUIB+rGfhsSBED2ULhTHnXUjLKWKZxbXeC5Q3pfs5hF+kTKXFho/D4osvXjw3hW9S

x7s+/PAjY6QB0BYWZc/yrSlBJo3FNtO/0XcCQb3++huL/4cP/xs2qhHPTQ4bm3AdzmuXPMlA/06Ip773fu6pzdP5SBLSv8r93WKLzcckVicxavP4PqnUFvvX/TAt++yzT3tJm0bC+It9kRIIwHBiuKyT9TvjxD7UH2n/AqK++uprFO+iX1I8/vhjY/pJQnvAeBkDaR/Gsoj6/n3kkUeLUBVjmTbFeyjzXul6Hvv36quvKXbjSdvGmFVW34dAkFCGQbd2pvMXzVAn9kUqJWLGEWvt7UgJuf+r41AW57bc5Iixd4jlad/rX+c80/OEz+Rs+dYTdCKeJj4Onz3PoGwmvTWCRQi3EBdZf+WE3XvvfWoS1THFInrUUW0S48EH/7ImHf22JvEcUZxLD9fhtrnf4wod++23XyF9/vrXhxd1cGGuPfroYwuumuTheeuuu054/72uJWcqh6WXXrrgvA0E0oh0exZFk6JMoDmC4VkkHZKNd/O+JiFpCQdqUnpvf9lXSdx+u8aOEw7nHc6nuweQytVbYoklCqLXtmPGMYWE7VoScrx3+sy4o4HfUbL32y4J8fAedmn44Q9/WDxbfdemdeN7GYwkMETMd0499Zc79C0vZW3YDCR8Qd85cN+cUBUTKNdVHaE1FsvC4sFZLAeIjb6uJ3rNYKznpIE0H1LpqjvQOmAUqbqNo3p1YDPQfFjUysL8uOee9h0xRj8QNl50wbDp4R2TJlx4+OFhzhrxtFTfW1uHWrF5kuhyQ1Uuu+zymgRXfqNmcx+jZp0wN+qJa1e4++57whFHlN8ow7pkDOTgueeer421vUv356hRr4X99/9ZB2JWBsZldBgsA2tubuSFsWlNLQvXG5f9gU7EM6IVohmBQ9WoQl4srnJimjippJAL7xOPrqDssMPaPHyporpKheb9SJpUfylHBeIXEapGZSlw2giQZ+EMLY7x3fzFhODy4jvHc4763+l5f9WLdXF11Caek0p38R7pkdZ1pPf2LQ7n3dP7+41B0h7xHo3qusbEcv61116tEd9dCpWVdiK5Y25SqaQreF7KpZaB9/T8svCOqV2rLHIYRdfljmV1vJf3y0Hss7JwfZm+oMqde+65x0hNGIiy3x/hWcZHWWgzz3i1JlF/c+6ZizE9aJIvh+W2PSm8+/GTYf/1vh6mbGfI5qwx37+qSXd7tKvsc+C9Ukm4DD788KNa/4yVkppBG8dnUI1ibFOtRVf47LO2uVgWueMfPIPEl9Of3im3/43L3G8pMzZTuD5nPntG7hrTKjoRT41OF87mlduYKXzwNttsU0wENodGas++wF//elVtQZ+2kHS78hpkr7Hwe7/IbcVFgK7fO7NLdJd6D2GWbs217IV9CdKg5+DcBgJeevG5sMMOOxXvtMMOO4Y33+yfvq3QO6BypBnKkRp7E+/UJPfD990vHPCLg8IBP/tpOPSsf4QPP3k1/Om3vwr7/exn4aCDDy40IafX1qFddt21vdbAhjZlzywrgVYY/9GJeLL/TDvttEW6slwuuR7EbQtsjmjfU4wa9XpYfvkViudS49YDQ8CozaFDwvF6iQPBpQY1EVLvu3ogZGxFJK/o0NFXsJD4nlxVVF+Cl513ysn+UWHcg81ZTHO6kfhAxT3DhhUM7viCKIFG23iFCRudiCfVIKJgEOSoZBohpufrLx10BCcIz2XPSXcrh7LSNMm5O5VEjGHlLVrv/t/bYNv0rNTjb1yD16x3yslti2nJ3caNA0TZ3K6gv3NTANKK8JYtq1Ki4nR9jnpIOIH9YFOvxWYwVpkRykqI5ivNSVeez7wdeVbW59d9443Xg50+cjUI7H2cUMqCI+F7GarRu+4c2lJieEymEJocGJfyIpcF21qjDGYcqHgop05EKbSXPi0LfV/G/yIFG+bZZ59T2rRg/TI2c80dnHRy5hrnrJy5DJi8uNtNGXhGTvv2BJ2IJ5UmBxhEoaeSp/yKFtjUrb4/wI2dPcezEfCegio79RozKCVTkNc2hrBYHKlsLN6cQvyfV5ztoTgxcRaJsVu5QKB8y0BKDE+b4J1yskdxfMh1GLCg5UgfvPNyd27gkcj1vqxtiQclD8AcB4tWdlVBDDGx3WlAUpivHN4aJYanVhSukHoFR8RdVZ56qnzeXfCsMikwI3bYbpNw5j4bhj8ee2jYdcOlw8rrbBBeSxj0f197ZlhjySXCkt9YPZz098fDHUOHhR22zyeeHNtytrEC45kPQ1mwGXeVO1s42De+8Y2GjIVtBfVpWSCcPFpzwNt2pZVWrknA5VTI1qxVV83fVYXmLsez1bfkJm235glPKQvEOXcXmlbRUPIULG3bnJ4aXi2WuQtsbyFKa8JPeqqi4rIe74E7M/jd2wIaob2ocHGdnJVkapH71qB07QwzzNDB4ScHUYLP2c6prxFV8jmerTGONQe5u6pQp+eq+rj6iyEry3lLjsCskUM8EWhhJDnJNBBPjEBZ7h7xtHDUE0/SkLHqvRsB8Vx++RVrBL5j6EQzCAnKMSXsuMMPws0XHx82W2qhsPwCX64x6TOGF8YQz9fCCkvPV4yp4vjS/OHYky8IP/7R7u3l5cFHIIaqlAUPXeaRshB3yRO9KwiZIOXX9zc/ihwCQorKIbZgV5VVVlmtRjzLaTlod4SQ5BJPoSc53tC+hcYuB4S5HObBGsuBsz/QiXjiJBEBk7Ylte2n74fXX3u1NiGfHqPatJghPrmeVj2BQSt2zfOFZuR6rDWCxYlzEE9Tkmeq5kEkxTsC7sdzxSuB/0ui0Ar0AU9l9+hN4skrrScOYWyd3okNrSyohnJUMCDsKceumrsLA9AS0AyU9Rxk0xLakaPmIvFZbNOg8WbQ90Joym7s7Hp2/nScCEdBOLtzZOH8tu2229feMc/ZhXlEbuiyOPiXvwofjA7hnddeDn/Yb70wx3Qzh+fb15jnbjomzDb55GGbY68IZ/98zfCF2tj6zW9Igx23CSsDDFquiQMhyBnLtAHNfDk4XSKgqQRKPazdysKm/pLJ5AATtPPOuxTq+DKgScFwpLHRZYBxqk/Y0B1sbpFj5gHt1ch3pSvY2CMn7Kwn6EQ8Y2J4KokctS0375tvuqH2ofvXOIUNw4orDq5JsG2ZaISqiFUkQSA+dlPvycJdFrhDWVBkTBKX1xOPXwslVQ2Vtm866KCOHUS1IJGBGEnB464RE4lo+j8CngttZEE0edyjN9W2VM89UcuTIr1TjiSJYLfyzP5kusrCt+RAX7aiydFerc4V4586ukwIRX/A98cvuXif9cLsBfH067Pwp/2+E2aZe/NQhP8/+dew0vSDwqFHHp2lSk2R2z99BVqARhJoWZj/rYyboq37YY3taxj/2iAH/bVedCKetr+iXhJAX2YAfhbeDdf+66qw6cabhhlnnKlYUOMh5ROX+BjvGQ+p+370ox93aVTvLeCkJAhA1BzSvdVn5ygDnJn2IHF6/003lXKso33IIoVQ0+sjoK7DZZG2/L8r+0gZUAEts8wypbdLK4OeLMrqxR1lWtlujvqQepWERKpKHRtefPGl4rzy+jISXyyTCEAu0AhOD8ocuPU0nSJ1lHupp0z2lAgaCffCFStPY4OVaXPnHanUaILyzI5lVF8RJjtbdyxLJQ9zinQcy+pNCrIWxbIHHhjrKKTNZYqJZbKqpOAk5LxvsVBj9DB0JE7vFutxpEkXI+8W28w7p8xNWk9ZKplrC3XU1Q7pAs/mH+vx3u/suPJJuPAn67YRz2IIfhbO/fFaYY6V9gtFj74yNGy2wETh4MPHEk8MQOwjf1OPVkxxfBflKbMg76yUi/F90v7FEMc+VD/N+KN/ST2xXprcQjtwGFJHWX2GIdoS572Pe5JAF1pooSLhh0xQ8Z4xBR2ox1cjlunfdH7SYsWy+oQknIpimXuk9YyFWHbXXXfXvmvsms7WGdusvu/RgVhPO6Q+H0wQzvt+ZakGRvsqc19jMTVtGIvOKfc37Sf/V8c9HakTpnU81nNNOn+NrTi3leU45PUUnYgnmDQmY9oJjWCBOuzXh4RpZpi2WEglgOeUQLq0COg4HSTri49jV1COyLiebZC6JO203oYFkH2ONO2Z9uWTTePOO+/uVk1nMeDcwXbCdqmugzT54INjB33E4MGDi3IDBMfv/5wDDEL/z9X1p/CeFqvOi9C4wxFHtDkMteJJbeGR2UibUBelKsVhw/5dqPm

VUXOmi51FQsIITgrUUiNGjCVYxhn7S8yelC5MFizPUU++UkQowmRTJqMS5gphizChhS2pp8wEjtAX1One05HasxFIqjnn1U1tlvpS/uB4zzTjkvmmPWO9M88cmxdVmXnlvPJ6hxjjVNvQ7sw++xyFDTcuMpiveE/PTpli6kd9QW3NRyGdE8avd1SP3T1V61motBnnHHXTRdJcV88zMa+NnJQu2HudDsTzvD3XDnOsuG8oltOXbw+bfHWi8MuEeCJQnuVdaHNSj2IECnPqmY6UIaHC3GOPIUU94wphi9C/7JzK1E/73rpBNR/bjSNaBMc/7WisKU8dujAm1ptYL9qfeWfLxMXeyR9Decy/C9ZAeaidd+jfdP21prifo1697D7Oq1efjctz47sceuhhhYYwwphlnjMnqKBTBohKNva9sZzaQzEjyow14yIlgtow9oP2SecvOiCDmvfR3mk/WWuNQ33kMJ8jrH3u5V3M8XT+EmxiP6hfJtNZb6Eh8TRJ6nMy1sPHcpKxgE4xxZSFdy7updkCb+CZlBIAt9WdovDGzbEf5cKCwDMs2kAdbJYmocTjjNIWW52Jk7Jo7bvvfoW0F3PKYgxIWyl3msKE4E3J8L7IIosUddTnQISwmhgTEn71q3yHIeMjN4QAl5vjaIVgdJUcoytYNIyBZsxihLGaG9trTp1//oU1ianzBgPdwc4d9dJpd0B8t9lmuw6ErhkQPm2cq+76xz9u6iABNsO11/wtPDviwfDhu2+GP+z3nYJ4RrJ6YY2YzrHE7qG424u3hPXmGBR+dURralvEO11gy8D16aYAzWC9wATmgARqIwrvVxaISG7ohTWWb0FZZvvdd98r1uTuhIlGQANIiWWBAcoJBwJ18kLVRtSu/0vpudwTdCKeBgVupLt8ohoNUbB4yg976R8uqk3AvDAM3CiONUqhOJIXXhgrjvcFSMI4numma5OU44GAUy9TrcwyyywdyhyIIu6ybIeYJOrlDKzugGMTV4mQDARoB1y5b8zJO0vFm5t3VhticsrC9TGRfFloV2EXKefdHaid7d6RownAdEm+nUrEzaCdMagIaBmwQ8uMRVWaA+/GR6HeFNEMvBpzFsO9hvxfOHKzRcN/b7wy/O2w7xfEM874O0/eMUw10RzhzAffCsMv2S18uTa2jswMH4kgEUlYkAOSFwmmLKjFaSxywYGLQ2Yq5XYH646ELTl45JHhtbEmVKWcChOBXmONNbO9bWk0csLCZK4jZOWABJzz/RxeN9lEjoJxQDypCyyKiFkjQy2uhurBNXaJyOGK62GxOv74Ewo1k/vtssuuWQtSK8Bd4fw44ZAI55hjjiI0x/PjQcUrNpOLOFXZWFtXrT0+a86dU6G5Ty6X1RWit21OWEBfI4Yh5XjbIZ7aMwe5xJA6MYfYgv7NDVVB1HLGKgJtvuQ4jph/CFQzzhuR1R8S+2+00YbZSSKefvqpGvFcqfCQz4GFkMReFnvs+n/hj4dtHzZcfNEw14xThy8MmigsuMgiYd09zgofPzc0LDzn5OFLs8wfZp+6Ng+/MFc49sSLWwpVoSpuJVQFQ1gW4mZbIZ7//ve9hfTpqN93tRFInbnEc/jwkbWxtmYW8SQM5RJP0i1VaVkYx/Xb5TWD8ZUTt4l4Uhn3BzoRTw4uHHwQz0aSFocYu2nYY7K39Ms2L8Uxc8jpr+wQwB5pAOugSy65OJx55hmFGpcKg4G+k+rrM8SzuX3WbgvCVnLUM90BR4xQ5SxUfY1o181JgGFBS+08ZUDVm5PoQn/muqrTgrDfpU4R3YGN1gJd9npgW6X1YH8tC7ZJBLFZqIrv9T6Iv/1Wc5kszAAJopFtsjuQCnOkXElTPqlJBNu0+wfEY9ZV2kIRjtpzvbZzk80fDrj4n+H62+4NO+2Qt9gCRiJ39x6JDXLGsnHcSgKW6667vqjHFsoU1Kyv2NmZhHLwzDPP1gjIDzs4zXWHxx57vEYEt8lS9QPTBZ+AsrB+5X4LM1rOMziT5VzfE3QinhY4oR0mer3kSV0bHWPqN3ntCRjncTDuy0Nw3OSGzNP3dwfef7g539UbiMSztyTZ3gDbmnfKcRgiqeW2CU1BDkdMm5EbkoRJpFFpxCw2AueOXC7dXPJeuc5x6nSlTnZPCzFGN17zxhtvZhF18E68G8t+f4Q2yLGTaWN4/sknC+eveIx4qt1h7L2Xit8Pj2xzMrnnrjtCK+n5PCd3nBmbOePG/eP35EB7xXrMO7Rc3cWk6tfc5xgX+rN+/e4Ksf/LXh+BWct5N+Myd96k7VUGuetFT9CJeLIVkAKJvmljaijcuQWTfSj1ouoK3LtTt+LuQP1LVUrqzZVOegoc/ujRH9cG0cCIDasHtaV27y1JtqewyEZVcpUYftzAgseBzZzMIWDjE26/446W9vMcn8AbVhx8Wbt2hYGDTsSTLp9alutvSjx5ltltxVZfZRxhEFvSJLtA6hrfHdgdLMiSDJQhzp8XRKZlIBFPEo93aiXOs0LPIDYTo4mBmSAI5/svFF7YjsdeGGtHlr1oQieeQAIVCdDXuzNV6F10Ip5sBSRPht1UxcRL0mJZT1S7guBy+VyFhJS18wgMVgcnNpCcY8Y1Yp7eNNZsXCIlnrwOy4KHYW6oCu1Fjq3X9eweOaCCY+cuy+S53vjsSp3aCOxJ1HNp8HczmGdU9en84a3LyY3UWQ/XW4Bzk49QV5J8cnL1gjYY60zXHN6tPgRu1CM3ht2+tXAxlhzTLbB6OOOmNifEoS0ST8w9D/Uc8N/ICVWxo0grSUuYcxqZX7QjuzNJNIWY+9zMYtSc2rqsA5w4TU5muYwYM16OKYl2MXcN45fS3b7K9YiJPfoDnYgnxwaOAJwQYtyXRYKbPYeeaIjvbqFRxoHBZCDFSkxdBjqRSlg9Xpy5NpgJFVdddU047LBfDxhpXL9wZBEDK4SmLKh4c5MqmAg5CyhCm+vRZ0EXd1zWTsbBRrLq3MTwuaEq5pGQmOg9S+KUtasrVTlm1/zJdZaRGN4uIE8+OTaLThnwRs9hbPgzpM5Pn771aPjx4LbsY3Mv8o3aOywZppl4UJhsrnXDnaNGh/v/fVdLxJO/Ru6uKsZld4ne60FLJpNYLjBpXSWG57DFizudIxwoncvBo4+OLBLDl822g6DzBM+1FYqdtzlAWRiXOaEtgEEzpsuCR2+ud3Kr6EQ8waTltBOJ18iRj4XZZ5+9iIGU/gm6I2wkjIUXXriInUQ8JabG1ZQhhgitycQ9Odf7a0LFQGMivA+3fjG6OcRTHGJusojcOE/SQ+6iFuM2U01Ld3C98ZnjmEOyyA1VAaEqPC5x4OZTs2TkFqecoHJ48cUXwsorr1JjIhrvutIVmGVypPz11luvg1Qw6t6zwzy1uT7l4puGmE/mj/uuXsz/PS99uMZo3Be2a4F4ih/PGZfAXJWTgJ1jZStenb5fBp2uwEMW88djGGgrcggU2FUlJ1QF8yhUK5d4ikGVtrQsMIE5OyQB5szcLIvumJPeRifiaWEkjlNLxEX7xhv/GaaaauoiY04zT1iEVxZ8C4WOn2+++QpumRddGXWvxZJEs8ACCxQquAptHmRlVTD9AeNC2MFEE01UhKyUBcaIMxiNhkWCCpOKKR0X0fOPFkIZV/W4E4OxZYIr8zdlKmIZFQ8Jov6eaT3XRgimHjFiZLFAIYppmft7B/W8b0xtFlP6cYZT5qjvH6rQWIbIqoPYUCuRWN2vUT1en7Gee/h2HL69Y6lqScfaR1aYFM57hhRm9XGe7733fnE/z6yPTTW2hGVhcOvNK947vgtGNm1vfciEQ6XoPevL0j6MfaHNSGzyF8NbD18aFq8RyolnWyqccs2wcPedN4bdv922LdlWh10f7hjxQNixnXimfejeHfvw01pZWz8pQwSj9B37MI63NIuSet7dfZml0h0/0r531DNKQls8xz3rNRY2Fe+qnjhkaRTVq+9DbWxsRAmU9k2olvXUM+I96zUe9WXidbfeepviu2IfdtX3yqzNpDVtERHLHPV9/+GHH9Xe/40i4qI+1jXte39Hjx7LkFIlYwyUebe0L/RvrOOIY0a2MN7kad/X92HsJ38R23EWqsLuuMoqqxROKnGAIoLCV6SeSxuxEagAZOQRDK9BcM5iHsvu6SlNFjspuyciXmFsML

K2HShg88Tk5KjHTEKTWWygzQfkOUa00ty2//rXrUWSfYcyY8DEAfZS6lVlVDkPPDBWBcqeYo9NoVSYvFQ9Kg+q6z0Ph50Gp1uo1l9/gyLPskDx1O5lQiIQa6+9VvG+V1891g5PgrQQeBfzIt3t3+S2QK655prFXIrbsPkOE5xJQxnHOBlnIswtC2UsY/9C2Gh9OGaddNLJxbNWW2318Otfd3TUsruNevavJXmZexEnnHBSWHXV1YrvozFIFx9x3SuvvHKRUpLEnhIljizuqR5VqIUrQjA6pyXtTdpNF16qNsTYQbUbN2OwgGNuoj3ys/efC4dvsmhBLNuOicO8iywUph00Udj8wGvCbQnx1IckEH1Igk0z9DzxxJO1/v1eoRbWH54fCYXsSd5PPWWpnZIZRJn7UVvLmBOhn/S9b9c+qTTv3sqMM/2R1tPuu+++R1HPmEkjB5Tpe+0mo89xx43NUYsIIMb63fvob2PIPNMnmA5jiVCCyKfrsPusvvpqxbvwj9C/UWWLYfUe3mevvfbuQLAvvPDCoswzmSFSRs54dl670fykQtM111xbq7dGbZ0fXLRpOn9pSZzT95tssmkRcxqhX+QHUI45SO3SCHis5zv8BiZD2g19r8w1GOoI5hDrhPP6nw02Had9iU7EU5IAEoXwiNhBBoeF0gs2g4WCypYEiQvCPZkYBmA9h9YIFsuvfe1rxWbSuY4PEyqoebRhbtq1voJx0YraNgJR4qDhQBxSx5tRo9rKaD6U4YAjLGjOtx3/rS3YY9X6xhbGzyKLsKUqf+NQWaybTi73N4kRX2XeLcJ7mcTOeyeLf4qooVGWhmRZCBFv522QkCYfUOb9lDnqHW7YNZ13bws95yBJyMFCgbl0UOOmQKDU8x00Nuniqp73UG5ORa4eqOx8g3qO+jLPUs/3pETXguk79JH2S4muhVsd91WeLsr6MO2b8PHz4bc7bhxWqhHh7x/w+/D7/dYPk9XG+o6n/zv875H/hu3biac+dC/3dLhPROz72BeptOf/xkQsa9T3ylyTSnS+xzl1tF1KILQDDYI+Up72r3bXjs5rO9qMCGX6Tbspq+97zHGsZzx5PzZfBFQfek9l9RoCkqbzyuvXzDhm7rvvP7XnDu/QT5gHZdrVmEn7Ppa5p75P5yhCqk2c1w5pe5sjvqGtTe/vMH+1b5xn2j2VhJU57/DcdIy4R+x790770LPTsnRc9DU6EU8Z+9kp6bLjBBT7afHG9aSN0QgkTbkb6Z11PM5GXfbSdFeKroCjtGcmSbcinm3cqnbUhinHNS5hXOBwWyWeFZoDMRS+wBY3wWL06+G/998XXmxfUl7698Vh8PyThUFTLBIuH/lOePg/w1pyGJqQgGjRCNAmVBhY6EQ8qVstimlnIZ4TTTSoUAl1Z4fETVD/sIfhHqjHLPhUNxZ/0kqqTmoE3LZtw6gM6t3aP4/A5UpYof1yQzD6Cognb1sMjmTPZYFTxXXngBRTNok24JjTbafKAAdMXdtsbEZgINliyl4POGTOImVUSiQQc43KjSRKeigD/UI7US+VNgOun7qrjGYohWfleIDztH3hhSQF4KevhsN3WCnMNM+CxaYMs36pTX270k8uLDbNvmvo0JaIJzthLuNNw0CaKgvjOHdXFZB8/+aby2uQSLXGvzWAYJJKjl2Bavb6628YY6NvBip316fSZRmQgMvk540wLnO1Z2iA/iwL0nzOO/UEnYgnbz6SJ9tLBK+qL35xssLxx4aqjUDkZ9glaUZ9ewSJkyqYnaC7DrKwGPQGSKpC+DzDgsaYb1Hpr/ilZrBIs90gnjlhEdSPbDc5oP7PSQyvjXI9+kh5bKllnbKit229A0Z3QADZrKj6ugMGAwPKSQhocMp6zyLm9ptN7a9lgCFefvkVskNVjMucUBW2vKuvTrd++zhcc/QPCjWt8T1o0mnDVgdfGp5qb9ZWkySw0ZUNj4uwO1COdEdDl+NpGvHnP19RCBNlYe3l7wDqafOx7dcYQlVWXnnVTutwV6DOZUePvgVlwSafE3qC0c71hDW+jOmysLVe7s4traIT8bS4kTxTt22OGgin5AldDUpeZFLrNeKOcAImB+LaHdgteLFF8OTkYRgPsafez0DP3TlifAWJRZtqP4RkIMAizZnBVm45ifwRz1Z2VclZpFzPuSUHuFsTNId4WshyiSenDTafroBx5C8Q5xgG0kLQXe7TFK43VnJTvdlVZfDgb9aIaN6WZDx7c4LetRlmK223zz58MzzRbm999PGONsBWiScimLurCm/b3F1VOFXmAjHI2fUD8YwEx7qqDY3V1P5cD8RzzTXXbhoZEUEi5M+SSzz5t3QXdlMP49i6kQPjKydUhSMbIa0/0Il4Ili8Y+2wHkFNxZPRAt5oMJu0OH6DiftyB4eAGqjRSA/N0k+RUEk0Ebz9BAw7EMzjjz++jUOtHblZN8ZX4DKFXvhm3moDAYgn6c5WbjkbVctGlBPaAtT4ORKBMZRrH0I8cfep40N34DxiHuQQTwQXYeNg0QjUhmycKfNosbQpQNksLvrFe4l1ywGPVN7IuWYS75ajhtPGCGJZtEo8pS2sz9TTDNaWVNvWDIgzR55c6MscZtCcT6+31tJ68I7tSgKlQdh00806Obh1BerX+lCVMsCk5cRUWyuaCVD1MJ9z4rzRIeOymXTeG+hEPE2gn+3/s3DRhRfWfo3lbk45pS15wZJLLtnJnuBFTVyT3d96lavz1LXKuoJrdER3AcEGq/R9uTat8R1syYKmef8NBMRFmuSZI+XwhMv1hiMNpp6OzeD6shx3hLHHtlR2wvl+3pD147w7xDqNJIaYq7aRtMSUUVYi9v6ekUPUwfer1938bARqwbIMB3hGjl2tVeLJYzr1nC0D4zL1tG4G92/Fs1Pf5IxnZpv66/WTUA8MT6O+juO5bH8ak67PGc/g2WVs+BG+pSxBj1CnrPoZGrVXX6ET8YRPRn8cRn9k8I1dTB566OEw99xzF7bL3BRrZUANS13cSEQ3CEhf9r/L4VwnBPQHB5ULk5PKTixubiq4Ch3BvV6MqXjLzy8+K8Z5/VBvlXh+HqC9aANXWGGFbEahQu+gE/GkcrUgUsekCzcCFhOUyxpEPM7lVLoDqdO9qQ/qgXCyufaXF9VAgjbG3bFL4KoGAhBPdgXE06a+FVoDG78kBM3MGRMuPg4jrj4+rLbYrG07Ns32tTDkt9eGN9uF04p4dg9rA/vniiuumK1tqNBzdCKeCKc4S8SsnjhS18qqgcjJIpTrEt8dvv71rxdSbb3qiv5a3Gj9DgZUmOyg9QHDExr0gXywMqDkuNL3JVLJM4d46rNc1TN1Uo62gW1RGEkOqEWFAfmuMqCqZIspez2oIxwmqvr0pXAsjnZdQd8b9zmhKjfddEvhPZwDkgsfglzmTL/on7LwrVS3EY9ff0yY+4uDwuSLrRN+/etfh53WX7y2tkwRNjm2zcZ7Z4uhKt4rNxuXQPu7727L210GvKZzdwgCoRQ58dr6vpldmf0zlUAJQMZns5j8CGOSbTU3VMU4y/mWJ554qjY+y+9cA+zxObvdMDua//2hsetEPKV+Qhy7Mp7zZppzzjmLaziN5NiXLAapzUfnShHFkcCO6lS26QRmKBcO0YhocKzwDhM6126Bjt629QzEuAItBCO+XXZybJ5SyOWGqlg4chws2MPtCpQDi00jjUdXENuY63JvEeBtqy6nIc8rE7/KByAn0buxUtY7N8LiiZDn2vCkJ8yJwePoIlwhrgF/+MlibWvNVe1ets9eHuav/Z5yk98UP+++szXiKd9qrretNJN7710+J6pMbKlTZVlIbZfjoarvy4Re6AtaDOvnc8+9GFZffc3wyivlbH9ib9daa+3s/ucAlBMWdvHFl2R5GkOudzKHLIx9f6AT8cQBivNMkySnQAANHJ6WBj4X57EhFN1T+zZuoG3i8AiTwFd4i/uQZOs9EeX0ZGc1IHCs6WERVg8xn5ChzRAq35pu5zQuYQxYoPRdTsiQsWXsUFfyunMIiUodAhAUHtfKOEnxmoxbRZFaYz0LV+q4RgOhHjWW9I5pPCUNCWZQPddI5RXh2bQbxhltS0oMMIbeIT4zSrScHsQz77HHkIJQK0vjHXHwtg2L9XD1xizi4f8LLrhgWG655

QoziFCECH0tfjDWI9UjHtGjWQhLLKsnDmymzs8777yFt3HqLCKkINbjVZpKzJdd9ufiGcwiHPJS6cPcivV8T+pQg5FjvhEfK4QstbsZp7Gedo+JFDbffIuw/fY7jkmUce9FQ8L0X5g4rLHdGeHVT98OVx6wefjyxFOELX7btp7ccfvtYwiNvrZeuKe+j7lPgXTmm5Xp3+WXX35MTtlnn32u9g4/H/M+qbSof727Otafn//85+0lbQyFslgvDRPjlYqpMc70f8rAa3ex8rFeyviYN95dkn/1Ys5jUI8neqwXbeDmF8KI6Yhl9fmkjSHnrRHyu8r5LNfv22+/NabMQVOX9pMx6z0QJ9+SOv8wy8V6+j4t0/faDLGmEUudgOy6FevxejbuI84995wiAY5nageOchH6N9ZzRFpA6uSkaq7EuZbOX5omIUbO+6vtzeNxInmSDsRzxi1xGsHkMwnZKXSYCatDR70yNglwV3j3nbdrk/KvhaeYug7Jghtlz7Eg0udbqOoPagrB5ANFGutLiFvUTgMpPZ+FhoNXDocvVMWiRrUiIbrFQjhSGtqkzxFYcXSIh0TiMeaYmsg4U4/mIVUZ8rBzTrjUqquu2iHswiLpue7p3qmqH2NmzFtwjel0QrMjWeDUk2VLAgN4/fXXwve+t2E45pjjivt5n3RCWyQtds77TszCRx99HAYPXqm2ECxR1GEecd96lRxCqZ4Dsd55513GJKTHVbufoz5Uy+IuVeLSSy9dxNOmi4e5FetZ6L1fhKQnzAIyGmnbtAwj4T28p/dNtUKYE21mERXrm6oIETbtpa7+jUR3m222rY2XszomkT/kB8XYnmKadiZ62xpxby/j4xAlTwTYWHNP35lmOtO/3t0zPU/fXHRRW+ar1157fUzfK08ZLgRSmUMS83SDcWp2Ob09L/ZhBAYD84h4IHKp97/2Q/BivTQLkT5BwKxpGKF07VKGsfKeDmpXEOeojc392IeuS6HMt8WEAtZlWg6gwo7vgpCnzJEscN5DEnpzJp2HtH3qeRdJN1Kiq+8l8cDUa4PU3mpupX2fxo66jz1t9aOQxpSwIoLqqOuIc9sY8C36yLxRlgpZxpZ7qau//L8VjUAraEg8LYq4hu6otzIfNM88bVsIiQ3VkDxxLXg6TecIfsb5m4jUSTvssGNhw1THc3BId955V23Qdf0sHV5/pJz1hAyMigWEPXigMAr6HkHT5wZzWZgQOencwKRNiV0zaC8TMRfdpZ2sh/GX806AANozM8d+C48//kRBAMoC05Abrwe53wP1ycSbAeFKF9qnhl4aNlxxofDlhdYKhxxxZNhkudnD9F9dLhx/fZtUeefQ1hyG7Ev60kvlwxtAG0udVxYIb47JKsLYyRlr+rKr2OBGMDdpOISRPfxw+VSY+j/VSJQBBiNnPiOkKcEsA3WYPMpCe/WmL0536EQ8SRQIGztTGQJ12213FDFHwkjUi4RUIniqsCWWWKLgUDkhxXLHV77ylXBkTcR+/bU4yGsd1w2x/rzCAGVf02ap6mhcwiTjbUu9XyWGbw7SHvPG59FbvEt8+lzYfzmaq8XCJfe3S7Qv/it8e+ba+jDnVuHJ2tLzn7vvbIl4ft6BoZE2b8455w4jRpQnvBXy0Il4Ens579Afdyd5psAd0JHTjVOpzjjjjIWklBJLCy1How033Lgm3R5dLCRUWW2ozZTPcD0V8ayHPtAXGJLuPDP7Exw+2Hx421LNVOgaCCdV2kDai3VA4JMnwh6L1YjnxLOH3934RMGoj7rv0rDQl2vrxYwbh+G15eC+YXdVxLMH4IA5//xfqUn81djrC3QingzD1KupDSeFhTP1mK0H25OMOHTidkpARDfccKPClsOeZMf3CnlosyGdOmAWYP0vxyZP6Jwk5NQp9XsYNgObRrQ1lgHnhdSZpAzY64z3sqaAstezMbHtRzuqOqndsBkwTr69bIYV13OqysnIAh988H7h6FE2tCFCeEdOVh7X63+qy5p8FB69+qSw2GyT15jriQoHRAniJ5l10XDohXfXSltX22rvXNU9p6Oc+UU9ntpPy8L4zAnXsp5qtxwIvWKjpSEyT2eeedbw73/f217aGbRbTGy5alsq2GYbHaQwLnN3VaIaz/l+7ZUbDtcqOhFPoDfuikCaoGUkUsbnNdZo28vznHPadoio0DosbGMl9XELk4w7OOIZd/8og8MOO6xwmMgBaTvHHZ4GJCcUANhUNthgg9Jp8CzMsrukThT1iBJnJJwWZ1qZnMUjqt/KejQj5jQCqQdvGcTE8E8/Xd62BJ5V77zSHbSZ0CaLdcRrD98WTjr2mMJL8uhjTgy3PDKWGLMPt0I8WwlV4b2f42jCQSV6geeAo1fOTiScsRDAHAwfPqI21tasjc82ByBzztjrKoSJTXWttdbq4NxTBsIMc/rHt+QmbecEJY61LAhpwrX6A52IJ06CvTN1o24FOGxu7IhndLWv0Bp4XXK/lsptIABjxQ6LeOaME159uXGePEVz4jzZhXO3JEM8qbhyiGd3W5JZpEicqWSCeK699trd7qpSD8RTDHTZuE3E08KREz4EiOeqq66eTTw9K2dXFW2S4/TWKvEU0sD8lAMhQulOUs3A89NzcoEYxC3GygCzkbvFFjXt2muvU5PaxmogSJYS0TSKy+YsZLu43DhPHuU8bsvCs3P7k4c5n5qyGKe7quBSEDzetj1B5ILd6/rry+0KUaExuKprx+i+Pq6BeFo4hTRxDy8L0oVFKge+mSRRFq7HaOSACg53X5Z48jD0/Y2IZ5Q461V6CLQFKkfVh3jawqks8+l6UndZYhvxzDNPhzXXXKv2N29XFUSApF8WFsGcXVhaJZ7iQUUC5EAoh038y4Jk6zm5QAzEbZaFvsxNLMBJaL31NgijRnX0BmZOE5dZn3SDOQVjk0s8hZKJkS4L35JDbMH4yklIItKjlTHTCjoRz+htmzOQugL1hHv5oAqtw2DQjgMlzpPNykLInk19VRaIVE46N6D+z3HVZ3LIDbughiYRIj5l4HpEsP56sYa0LWmsaASGQ52yBBqYRyxsOeo0sbA5dkj48MMPCttqrs3Ld+aExVBZd6fqrsfQJM4zB+yquWEkbGW0A2WRe32E9sphoPR9zvVgrNEgttmWOwIBJYGmqn3XuT63/42znFSQ/GlywnRAnUbzqSuwKeesFz1BJ+LJY9ZCHbM6yDQUHTAMfFwL6VQSBVk9SBMjRjC0jw4fffhu+NuVFxSxouL/ZFFxLyqxw484Mpx4wm/Cs0+2GX+feOLJIswBxydI22a0AnYFHcePF3x83HHHFtINdd+vfvWrgrjj+mIQPGMyu5uFy/l4z4suOj+8+op4n48Lw/af/vTHQpUjYw0PUd/pmdGBxSCIdXGt/o8w+N4YZ/fqy8+Fyy6/PFx44UXF4X7seMcee1ytftt9SCUGpu9wH+/l71//evWYdzYg7LnovR2XXHJpjSu7Ilx77d/HLEYkd7GxHHJi3t+BkmHI5CSpTTzxxGM2bv68wzygyu2viTsh4JX/XhWG7LFHYTvscOy+WzjhktvCjffcF3bcrn+kiM8TogSaq96v0BGdiCeCIqwE0YtH3IKMN5pMJGmZQx14uMa9zjH7rGPOW/DTe0033bThmmvaMqNccskfivCLWBYP+3VGtdPBB/+yU7lDTGlUFyHSE0/c+T7CZdqyFn0Wbr75ljDTTDN3usYRpWKEt1G5b4hZQm684fow88yd7+M7rryi7Z2pDetjWh0zzjjTGPUbgj/TTDN1umaGGWYcY0PC1S288MJjyjwjR+XVl0DYqQfZPHM3HZ4QwZZLVZsjVVUI4aHzd+0w/tNjzb0vCbf876Gw0/YV8ewLEIikypNBqEJr6EQ8NSpJUGwhtasjBueTmNis2GGkjKO/3meffQvbhAWVXUeKq5122qnwxpx99tmKRV9mFbrxE044KbxOpfTpR2HEoyMKu6pFmE2LFMsWcOihh9Xu81yhsrr11tvDnnvuVahuHLhSxmCG/UJi/OyTcO+994QhQ35UPM+9vBNbDMn4+efbsl/I5k9idQ/v5i97rFRuUcUn56V3dH/l7uHbfWu8ZmRNqnBfz3Leszin/OQn+4QnH2/zonzqqaeLtqPWdLCNuY88mVQj2onDCTumPJSrrbZaYW/g7em+QgaAd61

csILrSe6+faCEquibvffeO0w99dSFja8sqGxyVV3sMDnu8MZorju8tubaX1ZtS80Vw2cwlghnM1WpZwwbdk82gfXtVIRloF9yQlsiYqgCjUIOSDA5djJMY3r9m4/fHU4+qS0VoePU004NO665UI14zhwuePD9MPy/w4q5mAtqzqjlKQvrSY560BzOVafCq6+OKtqtLIyr3NALY41zYSO1bQrvIT8xrYl139qUA1q2nLlmHOeEnQH1e07o2TgPVWkEE7O7yVWvL9cRbd62E4Wrr0rzcH4YPvt4VO2G3ceUlVrIisQKTfBJ3jZLXcH3O3qK+nZK80n65vpn9NZzexPeB+OTmxiehiKX0+WdmePVyDMZYc8BtT4Gp+ziYeHE6JE41Wu2SAHG0s4VOd62wFkkx1sd81fvENIMFkGMXFkiHaENcrQh2qrbLEufPBW+v8yUYc51fxnM2nvuam1XFYxmbqiKvMs548z9Mcm5uPrqa7O+iXknx8EImNEw3WXsvswMc801VxGTnwv5jgkjZSFUJfdbhKoRVMriuuuurQkhW9fW0r5fM0sTzy7RBQHDYSOeJM+bbuIl6roaQfzMUVtsPuuPmMXasz6tEWnPHEdAaBoRxfEZiIwBLRNVjmcnYsOmjDMmzTtIoylTxqGGk4wyi7q4OFoOEP4Uy9RLiZZ7IlBszSR1vyP83/UWCrbtNFGBb6GWFweHY00depSRlNXz3GiP1pc2Q7ATBWnFc1OJSrl63lNdDJJr1l57rYJTt6g5r7x+gfPNznueMsQzEkPELdarJ3QcJdSxaFrY0/EWy9R1/7TMu2E4+DjwMUjLSD2e5SDJpcyFNkRw2bzdMy1zz7SfYv+K1xNK4F7K0njPWquFK/YXFz5z+P2/2hIcpN62+lDfqedvWtc48BzP1O7GZgxV8WxSpXrKU8lfmXren2YqJYbmbFovdYxSRuOgb3xLfd/H79PeNCERyvg48Lr2nmnfK9On6jmi9oD/BO2V58d71jvd6V9t4j2FpzzyyIiwxhrfqvXfqOL5ab1UKOGM5BwGmP9CynB4nvupV9/3+hcDyQ/F1nqpQMADXT3P9E7p3OadS8umTNs2mqPK1I/9y4y19trfrr1H2/2UpV7use/V04/aKycUqCfoOfHsAhYhk4XNcKDY6ir0DkwWCwe1Le6zLDiaIW5U5CQkB841VeXyKI5lthmyOEdJkkrbc5VZIFN1DhUarhYRtOVTmpWE6pN6XT31U69lE47a1ZZcXOLTOESLGfV6fJ+47ZiFU0YcTlPeX1nKRFgIBNzHejhu99pgg+/Uvv3uQh0fy+wEE2GBsoWX896ToxlTQtx2z2IV61G1RVh4lakzzzzzFN+aMhZUorEeB7d0QbOYMy+wwTNDpERJHF+sh7Ckiz1fASq/VVZZpZDYUo9gC16sl/aveEVOf56jLJXCP37q+rD0DIPCl5fbLTzT/gr6KSa8kJ3JohjNM9TMEfretzsQ26WWWqp4d7CoihOO75Pu3oQAeD/jhlNeuqsKomP8xXrp1oe+1drGJ8Hz4rPA3Ej7Po2D1ieep93UI+1GqGc3nFgvlpE8vT8nx1iGCU2JGaLn25UZW5IkrLvu+gWjYP7EekxHKROAmGlL/WLc2AIybvRA2xHr6d80obvEGNps5ZVXDosvvnjRjhH//OfNY+p5p8K81g5j3dx03hhN56//x29wRNW2MTDvvPPV+n6bov+VpfMXQfUNzmunAw74RW1t2HE8kTy7AO4EZ1oRzwkPuFdExc4NOfF0kRvNAa463Q6qGVyfk84LSFE8m9MFqSuIIZWNJTfmFlFi83zvvcaJFbqCb88J70FUcneusKiTOlOCWwYIWs6zbHPV2DY8Olx2wNo1qXOysO9FY+3brcZ5squlDFkZkF5ybOvGco4tLkJf5ozn3OvBWNPWZfuTJKfN2EnnmGOOgsEpA++Wk7gFo5r7LSRw46wsXJ/7jFbRZ8RThyCePOca7dVZYfwFyYWUJkkCSfLzApwvSSsnVrNCc3z87D/DCjMOCoPm3SjcP9YFoGXiWaF1IKK0MK3Ycz9v6DPiiethe0I8o7qrwkBGeTWHvqW2+jxtSRYJZxWO0rv4bPS74bw92uLBtzihY+q+iniOGyCg1Pi9kShnQkafSp4SQZsUOeEMZUBdwMZT5cztPYx69aVwxmkn1RieDYu8nd2B5MneR/LMyW2r3xw54IyRE6Lj+lzVsO/pLsMQmwr7TrQHut47lVHzRmA42OZSm2IzsGVykCibYcj1HJKahc3Ug41WvdQWWgZUl6kNrRm0WT3zMfr5e8Kem64Z1tpyn3D/Kx0ZuFaJpzard6hqBupnqtuycP9c1TBEJ6yyYHvNCaEB/Wms1Xv2dwWaFP2fjucogXZHQNnAtXVZMKlwQMqBsZ/z/a3M/1bRpzbPmBiex2RvglMHqYeBOddOU6EjTE7eduuvv0GYYoopi/765je/2cETrh5RbWs/z5wdPDA8xx9/fPuvcmBbzEkMz7U9JxcusMV0ldvWGEM400UfAyDsIkcK5bHIjJETqmLx4whRNr2lxY/3Y6Pk392BUwdHq9S5oww4jeSYZIwZnr1l0Srx5OjTSmL4nFy1vMZzdmGJ4GyT800EBGMwBzxTzed6T+6ugKA1SgzPpksC7SphPkepHM9W4zIn7AQkw8lJjI/W5G4M0Sr6lHjqkEknnTRrwpSBNHUWeYOwLHdVoSMQQO3I83GaaaYp2jMeSyyxRLcTL6ptcyVPnoAxG1VZSNCRQzwt5jG0pSyEkfC4rQ9TMdERlXpGgnchYpu6zDcDKWXNNdfMIp4kYd6lZcOBvLOFJp94PhVWWmnlmuSVJ0l5t5xdVWiichytOBpq51xIuJJ6MZeBcSkdaVnwSpVkJReIJ4aoLGKoSg7sqiLRf7qrSncgPa6zzjoNNRxRAt1hhx07CSrmfk7cpnGcSzyNL+a/ssBs5O5C0yr6VG0raw7phCdjb+Lmm28uFnlu312p2nJgcTRwcF4Oi2g8SBe+hbqt/lnxN3XZ+ELEvatAdRNfmsOUaDoETAsp6U4lqb1IURijnEXqyCOPCr/97W/bf5VD7i4pJM8cYgvUdYhnVKn6PqpaE73R+CKpkvByiCcC/a1vfatQj5VFJIZlzRPelUTciuQpC5jsWDnwLLuElIVF0NwtC6pUUneOqhuEVuQST1qRHEkyN6lCBGKQI62J8cWk5MCuKm1bkpWTPIcPf7TYLq9e8ozghUwCNeZT1T7JM0cqpuHKJZ7G12abbd7+qzmE9uRK6q2iXxyGcrYtKgOLv+QLOjMNeG8FuCHqJFIyNbNj4402LpJ8O6Txc4iF0ymkGouzQeA3zstfCwlJWBm1gcO1yl3rPIIlbk8GFCoinK7ziIOB1RuMQHcQwiEzEHf0eqKJkHoXqjIEtjsgLhgjoSo5cZ6PPPJoMVFz8Morr4Zhw/7d/qs5Xnzxpazrwffcdtsdxf/Z8PQXVVVX/eH6228fmtVfCABzQ46N0P0lcECsy+Luu+/OVr+aQ+ZUI7V1dxB3m5MK8Lbbbi/sXo3wyauPhX/WFkqL5T//9d/wZjsvikHJaTMQrpNr92KPzQmJYFNsJSRCe6Uxqs2AgRg69K72X+VgrN15513FOC0DbTx06J3d2rxJoPJ6k5qjBEqbIsSpLIzLmH60LKRYvfvuYe2/miM3fKYn6HPJ08Kcs9t8GViEEE8qtVwHlBSIhIWynpCMiwOBbka0WgXOUYD0Ioss0um5sgSRugSBl51sJpn3lSQBpzehwJjdfvsdwlFHHd1+pkJ/YMRNZ4d1lp5z7LiceIHwt3Y/FI45TEAVxj2sIwgoYaPyNelD4on7YRdD5HJUOykE+sq6IaMG9U3kjKPN87vf3TC88UZjVUMZIFay17jXrLPOFnbccafws/1/Fn5y4E/CLofWpMttty+kxSFHDQl77rNn2G3X3YoAYvaRmABfsgDnJIz/5cEHFaofEqXyfWt/99l737DngXuGIb/+UdhjtyGFqocHm3LSjRRvnq+tehucgUiGK6ywQtEPYxan2jH55FMUuVZ5QrsuogwBjw5DsuykmVfGZyCctAXHHpunVq7QM7xxz6Vh2VnaxuTiK69TMNzLD14uXPjfNtGzIp4DCyTQWWaZpdC25WoqJjT0GfGkcqJW5VSSY+

dIgTDFxV7uzeiyTPJ0ji0g1x5SD+nQ3Ovb32YjaFMpfVb79/EnH4f333u/uP/Hn35cEAzcFtumb/PXb+fH2Ac/+7D2u+2c8o8/qtX96P3w8eha3dEf1K6v/a6VpTAIPb+MUwDC1p0tMuLdd98r9gHlBEC1GtvQwQYtXvHcc8/vUoXWDL6N+mbKKafMsq9x04+E2j3ikRJsbRvbz0GlGNWWymIfuCat5//Os1FbcOvLxvRJ7W996i6LM9U5u1c90nfxfPCXyiq9Z32/+J3W85vdk3Qfz8eyFPF8vDe1XTRNpPesf97o0Z8Uddi56r2Au6vnt0XQc9RP4d1iPWX1baqOuo3uGd/f/2M9328+OV/g07fDSTsuWxuXE4dv7XZaeKHdAvPeq0+E59/qSDzr+zCFMs+Jz9MGkeCm9Rz17R3LqIZTJhLiPR3xGyLYB41n9V2XIq1X/zzfr90alTnnfuk9tS8HtbQvGj0v/UaHOeN8+i6uSRHv6TwNXnrftN2cTz8/OhFZX+pNBOrF5znSdsOgWnPi+6ZlXdXTj/FbGt0zreeefFdyzBw9QZ8RTx9DtWfBbkW1p2PZEOOiv+CCC46xSbDLSfvXU+Kp4WXScH95R996q7c5XAtAVG+YKB0nC5DgPL+MId37RnWJgcKGyWb70EPSipkoHxXeptvWJGY7nsS2i8fyyy9fuNj3dHDpW21vP095W8tCmAoPPZPPd7MTCytJHRvY7JRhJhA06f9irBl7iTHFiYZDTxr/JXaO5zCPVjtEpI45I0c+Vtie3dO977ijbX9WYINaeumli9An31Sf25aNWj1HDMswQUlI3sHBHp6Oce3Dtuw9vS/p3KJBPc4eYyN2XqTK5ZaNMOaVaRf3lM+UbTx6tHJSUc83yFeb4rjjflfUsR/ukCF7tp9tgzbEyDpocbxfhP1YJeumjmPzThd0fetdPNN7pN6Y2mLuuecOK620UlGWSoc8pH239tS/wnSAZueQQw5rsyc78c7w8IPFBoXJZvtuOPOS34fVF5s1zDrb7OGHv740vNZuQdAHo2vM5wMPPFR7l62KfsC4pSkYOXxZKzCitAfeKY5LTI5xoa0dKSPv3vwS1DUGaI8ifA+tVPz+1G/DHOQbIRese2JUIyzyBx10UHFee8sfm8LzOOVpmzScRrvzRtdu+vF3v2sL6dL31qjzzz+/KPMu9U538tcaW+55xBGHB7ltN9mkzRtcPW2mLtNNul4al76Ps5B8wKkkaTx7D+X77PPTwvcgQm5qKSqtKTRnsX+Bc6j+8S7GU5r39sILLyy+XT9p83T+mq/qqKs8lrmfd9NuHK0c1ogIxFv/qqfvf/nLg8OPfrRnrT0Tat9H6DPiicPWoRq4FdUeQqHBEEn3kIQ5Ek8LnPMaLBKTVkEt6/6rrbZ6jajk208N+nikHFFZGDCe71vLgrOC6xEJkuUyyywdfvrT/YpvMaHdLz3sAGLi5ARndwdtbsFl88xJVGFxEE+H80b0TVCLUjpplVHRK7MI8zaM3rYWO3FcnskUkC7m/s+2LvE5jjiVIl577fXaIvT3op57x8lO2nBviyT7ubCAdCEgwXkH9bxP5LK9Iwcz541tZWnbWkCZFpT7Tv1lEbHgiJ0z+anLldfn4cUYOq/ctYhzTDKCeXA/v+udIpg4lCECxxzTMRzIbjHqODgGeb8Ii5YsUTZGVj8FJie+izmX2sSFN6y44oo1YnhI0UbpPESwtIu6+ik6/Gy00cY1huCcMaFrHzx9XVh9qkFh8inmqC2qwqXa5vqgQV8IO/++beuyV2ptTfLGYOlf9zQGUgaQFOh5+tZfjooYD9CHPLDV00/eLQJxUaaeRTmNZ/Q9GAR1jME0UYf2wzCsuuqqxfPS8CNrgLbyPO1Z713N5IOJVZ46HKlnXDjvuOeeNqc3mh3vJlG6+zkQrxTWRefV48DDMU+oijlhDDmvD+vzN/sm50844cQiMX7KAPkm366udkgdM80D5/S9/vI9cW5oX/Uc+l4bRzAhYWzc07xP5y/mUh3t6YhaMWPL3NT3sSwlyN4ZgxGfJ0l+TvhMT9BnxNOgxZ3h6HO8bVP6g2uNBEDsoUUILDBseJtuunlt4e2Z2hZ35P5CL3Izs/QUJgxO0vPLSJ7wxhuvFRx8bJfuDtInbsyim0oUvQHSD2cjk68sSD3pbiBlYJLmTAYLM2mxGSz+OOtTTz2t6HeMXlkgsK7PYZYsKrlxnoAQ5OzPSeKpJ4LNYKGiyo8LVlkg7Kmk3gzWg/T6j577Z1h7+kFhoi8tFk6/tW0brptO2iNMURu7i2x6eEBy333rjQ4LdxnwKyCN5YAkL7lCWbi+lSQJ1kLtVha88EmNOaBpWX31NYv2LINnnnm22JQ/JWZlYFxatzDEyy23XAfGpBFoA3K+HTBKJPiykAqWpN0f6DPiaUFaY401CgmR2gEHRYXhwIHE49xzzwvnnXd+8X9l5513QWGP+9Of/lhkuomEwNY3ceHhvs92t8QSSxacxp9rA+yq664KV99zdbjhthvCFX+5olClkCQ0fuRYHLhM5yww4pQMGve3sJEo+hMWBQuK5xt83olaSWwjCQFninP0vYjILbfcHA4//MiCaPl+k4qdDjfnHlFKV04tgmtLpboUOEUcLMKKW/UsqhIedTKOaGucMEYFx+odXIOB8Y6ckDgM4SLLwr1z4hwBl6ktyoJE4l27A4lKuxtzQKLS5qk6szvoN0Sg7PVAXYawp9x9MyDOviWVhrsDBsl2TWyLOcDoGl+5JhD9kkoBzWDcpN7xn707Muy83NRh0JRLhTPvfan43ltP2TVMWRvDi2x2eGjNIt8WqpKTNg6MiZwQEnOllZAIfWlOlYX2zU0yY3xKMFG2P41J/Z+rxbOG0HgAk8IyyyzTbYpD1+fMZTCW0y3ImiG3fXuCPiOeOiKqbXtykFz9TYmnxpl22mk7XzvZJGHSySbtdN4xcYNz6bHGGmv22BaYC4tFVNsifI5JJ52k+OZJJp4kTPHFKQrVKNWshASO+L7a4+GH2wgRlYUy9Z1nW+yOi/RcMayeM9VUXyqIrSxDYj0RxBlnnLGwnZFcp5hi8uIdnP/yl/2deow9Vf10L8PxAYg/wpkjMVfoK3wa/nXCDm1jerK2cffFYnzPG465OY/4VRj3IIFy7MxlkMdX9BnxBM4h1Eh09sR1xmeH/5OaNv7e98Kq3/lOWGeTTcL3an+pTu2E/93v1s6ts06YbbbZih3OI7GIxJOUwNOTkwN9uMwtMqSsWSOApF3OHFKBuQdj+Ldrx+DauXVqB1UdValyz4s2wvXWWz+MGtXR264/EONMEailllo6rLrqamGdb68T1t98/bDuZusWdhXf5hsxIzFWU9vceEObLfnww48ozrELl+XseBl/4xvfCMsvv0JN6l2++Ov3CisMLv6ygfj/iit+s1CZL7roojXOctkwePDKhZQ8ePBKRTv2F5fXGyBd6HPMRoUBgvdfCH84avswR41pZIqZdO7lwhHn3h16ZoypMK5AE2Ztykk4Mb6iT4lnd2C4/uiDD8LLteONjz8OH7z/fqE+IDFRO3AyYJRvRDypzJwnPVFrcA6RWYaq2EFV6XA/zgRv1Y7n/K4dnku9RaXhGWI13V+cZb2Lf38gSp6kIbaKl19uc7N/r/bv3do/douXXnq51i6vF+pFqmdSoTpLLrFg2G7brWsc+0zFb15nvHDLwPdTibB3PP30M+1/n66de75QvTz11JPF/5977oVCWqNyffzxJ2rtbfeJp4vz2jbHlqqf6sMBmoHDQY4a0thplDjD2IlOPvUwJnxz2W9xvXGXY/Ok4vUdOaox91cnZ1z69uigUxbGzDPPPJ2lhgZtoL3LwvVdmRHeHjWqsLmOemfs+DWXjbtcWAty7XfGpXlWFt61lQQt5nZOPddHZ5yyEC5HfZk6B3UH6wp7Za5fhPnfyMmSNzDBpr7vRDPkOmXmfr+5Mt6HqvQGeE5G4kn6icSTbYKkVtbJpjtIVhCJZ85C0FtgDPf8Mk4uYKETzqBOesw555yFPXcgw1ZnbNQ5YO/ISdjN1iNMJEW0cXa1rywCRTtS1kaEodFfXRGCRmBP52SVem02A2LG4avsfrgWPwxUrsNQdIDKYVKAp7L2LguMar09+pPaQv/e+x+G0bWF3mL/yegaI/3BR8XusjffdFNL+WP33nufr

A0LgOPYwQePDVVpBg5JXe020h2uuuqaWruV3/WHl2nZtSHiiSeeqo21LQvmowwefXREsQ4hVDngMLTHHo2T4/MqJoGmduHLLru8cNDMAS2jcVMWHLJaGTOtYEATT7sjRCcYasS4FxwnF3Y3xLMsd9UVDj744OL+4pV40F1xxZW1iXF6+P3vTyjc6k1ChwXJYOHWT7cvfkqMnuvOOefcMdc1OzhOsRNyjuLQRAXq+WU8SqOkY5BjLDAU8803X6Gm5sk2+kMSR5700J/gbavtciCUIGfycJJCQCI4PTEFdOfYhOumxi9LDElQ1P85EqFnMDHk2IMQQ2YPHpdl4HoEOmebOLCryoorrlSTvvN2VfFuORvdY2A4pqS488z9w1dnnTXMPFObnd2x0PJ7By5Sd99xeydGqAyGDNkjm0nLTQxvrZCjOhcYXO1WFvoyx9sUhg8fGVZbbY1QdlcV66owqlxpXdxmd96zCCg7tlApiGE3OcA85Hy/9hXC2B8Y0MTTYI6Slfi1yLVbEGUu2nLL79cWvJ5ZR0g18Rnj8sgdVEACom786KN2VddnNcn5s4FLPI888shiQuXAYpsTA4vzjNeLtTRuYpKBriCJuLjVssSTWojNPo1hawZSXS7xxBjaUaKscxPmih06DdovgzbiObjWDl17SjYCQt2sbVPQ7uiTFDcfu0OYpJgDX2hzlKsdsy2ya0DGh7VIPIWcYHJzYCch8b5l8dvf/m5M/HEO/vznK2rEYIv2X82BccohtmBLslVXXb10qMojjwwvog2oYXOAeH7/+z9o/9UYVLj8SvhGIIS53yJ2E6NaFvwZmML6AwOaeJo4kbhwYolxRDoC8VxnnfVq3FWrDu1tiw2Ok6MNRxzSp/9zuRb4S7JjayUdRilv/vnnLw7XyXqkjgBz9V3rHBXqAgssUPx23rUcbhzqKpcf0mFgybpBFdsXsNBjNtgfqHzL2kT7AhIC5O5E4f3rF9zugEhxn+c4pR/LxCEimiZpWRsmGxEiXfZ6YBLAFeeqxq699vrCxlwWJPXc3fq9m0U6hxkAUn6OqhehrbdH/evYbcNEgyYJu1z4n/DR6NHhow/eC2++8U6gT9KHHNtyoZ4QrxxwcGkW4pTivvv+VxtbeWEXoC9vuOHG9l/NQaVeL603A5s3TUtZ+7oxaWzm2ryZ0a69tnne8hNPPLHw5Kepy9mFBYyvnPnPPprbXo2gTZrN7wFNPC18bJJy3LKXRUcI8WI88wR2U6H1BLgz2Tsc1AsOEi5pxOBAdHDk/i8u0sJMbUyXjxA47696rvV/k9Bk9Nt59zaZ2d7UVy52y2Gi+90XMabsUeJYEWsu5NQfuDKEoj9g8FElxiMiPdfsiGhU1ugAzIKUXjE+rtF16REnSaOyRkfu9Y50IjYq7+qIaFTW6IhoVNbVEd+tvr+aHRGNyhodEf4fn/mvY7cPE080aVhzx5+Gn+y0U/j5iX8MUXlo/HIaJIHX36u7I6JRWVdHRKOyRkdEo7LujohGZY2OiEZlXR0RZfszoi/6P/YzCdRWiASfRtd1dUQ0Kmt0RDQqyzkwLcyGUi1auzGWzqcY0MQTNH7sgAjEkzQq7CA3K0qr4I1nAJCGqZOpBmNqsvpGHQhAqBFMEjB1qUQVcR9P790fwGVSI0rY0B8H5xrZRdjNaAs4DjS6rjrG7UENd/HFbTlf/3Fk28YI6bHYDw8Jr9WEph/vsWsRf8wfwNHoXtUxfhwEIGsRtTwTFX+VRtcNlEOqU2lNjUd+NxxUrS+IasSAJ56NQIz3UZw8co3creHjmmT4QrEwe+58881fSHQSo1O95tqYIhoxBr0FKhLvinACAk/itBtCbuqyVkHlwjGKs1V/HZ7HMYH6koNXo2uqY9weMjv973/3F2PkrSf+Gy6/+MJwfm28nnfqYWGl2W2dN0044sbnwm233FTMLXasqi/H/4OpQ98zETQqHyiHseYdmX04ptLWcXRUltqFx0viSdpDGCRBKGsU7w1IbO65BxzwixoH8nzhDu43rnhchLl0B3YG78ZTNXY4PT5VhPSEFSqMc3z6Xnj8xXT+vhP2W2Wu2ridIux7WVse6woVxgWs541s9CnGa+Ip920qRvclOJXEvTfjdkcnnHBy8XuDDdbP9lTrawiH8W7iZNk6o/2Pmrt/pPXeQ3SJpwLuy7R6du4QutRdfs5WQfKX/5OHqq2v+tpxy/PspMPD1TZ0fQW2+t/85jdjdjHJwqevhF/tvl5Yfp3NCu5+sw0GF0nhJ55llfCPZz8Kvzv26E7bWvUmtJEcuPq8L/0AjCtmHn2Rkws6F/w0tBcNGempP6DtcnPvlgUfE4KJ7+kvU1MOxkviKXAWYbDjRH8RAiEGdOC8aXkzMiBvvPEmxXtwauppvGlvw/Zdkdg75plnnrDffvuHF19sy6Iy0N63K9jqi0ezvhavWTb9YCsQjK6t+uIZCJiMWL/61a8KdX+6j2dvg5clmw2PcX4BvumMM8buHdlbYHKwJ2XM9pWPD8KF+7ZtzBCPaRZcIZx09UNF6cgRwwtmQ4hPTmamssAQx4Qj+qUvIBYY0ycWO+4b2xcpLTlTmiM///nPi7/UjX290QVVZtvYyoupLQOSH2ZDCI34YA6jfQHaONpLCSVkUuOtG0PWtB+GpG1P2TZPZIlUXD9q1GvjJ/H08qQ/nqv9RQRIuxaJwYMHhzPPPLMYoJNMMnERXKyBByJwvAz1jN1xcRLPGIOWxweIpZOUHoOSbprd2/jTny4vQpEwGXfemedOXwa4aAupSbjssssWm1D3FSwIhxxyaPEXJBhBgPoCvkf4FQLRCt594cFwxZgkIn8M9z7N/PFpeL/dDCLDlED7vpIMaa4QtL6SbJ5//oVw/PFtkr8Fd4455uqTZ+nrGAZC68TDvmyGoVbgWZgBafha9fnoDuzc1ivrbG54Ww5ETZgb1nGetZyZOLQ5Ly868xcCLsc4jRRCKs1nkU+8/R4VmkAjmmRLLLF44SSkY6maBiohio5IODgB4zo/pjrkhVo2Fd24BiM97ze76JBAc2MYy4B0u+GGGxUc9JJLLlVjyvomqTUHKhOSN7Dwpf4ADYlFjsq4L4BL7wnxbIS11vpWoaoDbYZ49pVkiPG1I1FfxVmn/oDC2jjs9ZWaE8RrImiITl9I68BEhdgg0jZEZ1bpbQj1w/hjZoUlyundFxBF8ZWvfKWQcqnx+YPQKBKQFlhgwWL+xM07YuYiGj3mo4p4lgDuGjcy//xfKdKRcVTivlxvVyDyU2Np+P4KoekKOHaEB0wii1DM2CRZQ06O1f6Ad6VqFAok6xMCnwZH43SnnPJLBRPTKiwsUqp5hrykJienAHldSbb6E2N04YUXFYkQWgEu2X3jM3xT3LZNmyNipALca29ALKSMOvF5/p/a1Ti50Tb0REMjNMw36RfP8U1R2jC2JAnpTeKJSbI4A3unAPsDDjig+N3b6GviGYGZRdDS1JF9AXOGUyBGP87/3oRxZIzp72HD7glzzz1PMcaiqrO3QdKjqZEkpy8gTzrGHANAm2mDBKYtBJJvApiz5pa1097Gwv7QgYp4lgBOa+655y5Utu+++36h6yfFpbktqUiknhJfKKPQUUcd1WdhKGUg3ZhNstNdTEg79gY1GHN3auhrYDrY56S9w6iwc9RvHfbtb68bjjnmmPZf+TjnnHMKxsczTH5E87TTzij+ejbXdFyu+NhWVfEIDftWfIbn2V81BQ9oMbe9AW0U283z/D867+DWOVrxC7Do5WYQinAfYWH6xXPSb8Jk4NzZJnsL7iUUDGw6TZJqySGpBMwD2coOP/zw9jN9A+MW4wFUrK0yZ2XB3t0X38T0QCtAlWl9mXTSyYr4zVY2Bi8L7bbQQgu1/+pdMAcgisabcUxTx5kPU8BUB7QetFOS8jCBUO3KYlQRzxIQM4g73XLLtgUCt0L1RmURvSZJNSQKCzQ1owW4lS2LegskNASetMBWaFCceurpxUDZZZed+3zy9gaoltmH5MSUNYjEPHRo+RRqZWFBoCnAfbIP5+RrLQsxbtTnJCkEyM4ffQnS7he/+MWaVHB4OOWUUwqVE8/S3gb/AzZpi2lvqQlx9e7Jp8EGCBiNvtLk0BSYEzGTUW+DKpBWQxpOa4PNE

WhVenv+uZ+YbpoIGdBWWGGF7FR4ZUHKtKZYB6nUPbe3BQUmFAwTR017GUvE3xcQ886BzziLc/KSSy4u9lX+4IO2PuJRTAjh6IW5nmqqqYqscBXxbAKD0gbeJhgOxCAxkakRTHALLbUuER93RGKJqag4iYwrmKg6GdeOW8I1zTnnXIVkwvYyPoDERErD6RnApLq+BLWq5ODdxXa1CoSZZHjIIb8qmJiPP+67BP4WbM4PpMWtttq6kBipJfuCOFhQMAMcu2Lu6d7AySefXEgciBpVWV9AO9m1hKew8ZW7D2oZkPYx08LFrCO0HBIF9DYQNN7i1OvWopyt4lqFb2MKwtj2NmjuzBfMf184JEXoG3nLCRdxgw3P3WabbYv/A8IaQyK33XabghawyVbEsxtQr5hUVJ1sCNQVCCcCipCSRoWusDFRk1L70dHj9CV77yvOrwxIOJyZcEhURlQ41G+pGrdChQoVPq/gPcuPZeWVVy7WbaAt5H07dGjb2u035ooPCYwYMTIsuuhiRThbRTy7AcmHBIfzEKeHA4rEh4RJlYAoachzzz23sHU6j2uKUmiFChUqVBh4YE//y1+uDNddd3144om2tdr6TuihlYBnnnk2/PWvfys2+YgQD8oPpiKevQTbbbHJ8URkC6VqHB/sihUqVKhQIR8V8exFkEyFIPAWREwrVKhQocKEiYp49jIYlse33LEVKlSoUCEPFfGsUKFChQoVMlERzwoVKlSoUCETFfGsUKFChQoVMlERzwoVKlSoUCETFfGsUKFChQoVMlERzwoVKlSoUCETFfGsUKFChQoVMlERzwoVKlSoUCETnzviKSN+7lGhQoW+R6O51+yoUGFc4XNJPOvR3STsumxkOH7woDD4+JHtvytUqNAT9HRuXrtzZ+K687XthRUq9DK6HpkTKOonHDQ6F9Fl2bU7F2UV8axQoXfQs7mJmd05pLRy5PGDi2sqAlqhL9D1yJxAUT8Z/W50RKT/LzDy+DA4ua4inhUq9A7q51qcY/VHRPr/xrg27KxORT0r9AGajb4JDvWTr34CNvs9Fm0TsyKeFSr0Dnpvbka0mVYGDT6+9r8KFXoXzUbfBIc44dKJ1+hcRNcTtCKeFSr0JnpvbrYjaokqybNCH6DJ6Jvw0NWEyz1fEc8KFXoXvTc32xAdiCraWaEv0P3omwBRP+H8jufS/0fU/x6LinhWqNCbaDT34rn0/xH1vzug3aGvkjor9BW6GX0TJuIkjEcjlLmmIp4VKvQuysy7MteMUddWts4KfYjPJfGsR3cTscsJWhHPChV6Fb0zN9vm5aBBHcNWKlTobXRFGSZYdE0Mu568jVERzwoVehM9n5vthLOSOCv0A7oerRMo6iec37mTtg0V8axQoTfRs7lZEc4K/YuuR+YEiq4mY1cTtdO5uiQJ8aiIaIUKPUOnudaOOMfq0eFcF/MyHpXfUIXeRuPROgGj0cRqdlSoUKHv0WjuNTsqVBhX+FwSzxxUE7RChf5BNTcrjD8I4f8ByfYpoypYcgEAAAAASUVORK5CYILoj4HkvJjnvZE=

(1)为了比较准确地测量电阻Rx的阻值,请根据图1虚线框内电路图的设计,甲表选用__________(填或A2),乙表选用__________(填Al或A2). (2)在电阻Rx上加一个竖直向下的力F(设竖直向下为正方向),闭合开关S,记下电表读数,A1的读数为I1,A2的读数为I2,得Rx=__________(用字母表示). (3)改变力的大小,得到不同的Rx值,然后让力反向从下向上挤压电阻,并改变力的大小,得到不同的Rx值,最后绘成的图象如图2所示.当F竖直向下(设竖直向下为正方向)时,可得Rx与所受压力F的数值关系是Rx=__________.(各物理量单位均为国际单位) (4)定值电阻R0的阻值应该选用__________.

A.1Ω B.5Ω C.10Ω D.20Ω

12.如图所示,水平绷紧的传送带AB长L=6m,始终以恒定速率V1=4m/s运行.初速度大小为V2=6m/s的小物块(可视为质点)从与传送带等高的光滑水平地面上经A点滑上传送

2

带.小物 块m=lkg,物块与传送带间动摩擦因数μ=0.4,g取lom/s. 求:(1)小物块能否到达B点,计算分析说明.

(2)小物块在传送带上运动时,摩擦力产生的热量为多少?

13.(18分)如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒

2

ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s. (1)求导体棒cd沿斜轨道下滑的最大速度的大小;

(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;

(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.

(二)选考题、考生从以下三个模块中任选一模块作答【物理——选修3-3】 14.下列说法正确的是( )

A. 气体扩散现象表明气体分子间存在斥力 B. 液晶具有流动性,光学性质各向异性

C. 热量总是自发的从分子平均动能大的物体传递到分子平均动能小的物体 D. 机械能不可能全部转化为内能,内能也无法全部用来做功以转化成机械能

E. 液体表面层分子间距离大于液体内部分子间距离,所以液体表面存在表面张力

15.如图所示,在两端封闭粗细均匀的竖直长管道内,用一可自由移动的活塞A封闭体积相等的两部分气体.开始时管道内气体温度都为T0=500K,下部分气体的压强

52

p0=1.25×10Pa,活塞质量m=0.25kg,管道的内径横截面积S=1cm.现保持管道下部分气体温度不变,上部分气体温度缓慢降至T,最终管道内上部分气体体积变为原来的,若不计活塞与管道壁间的摩擦,g=10m/s,求此时上部分气体的温度T.

2

[物理-选修3-4]

16.一列简谐横波在某时刻的波形如图所示,此时刻质点P的速度为v,经过0.2s后它的速度大小、方向第一次与v相同,再经过1.0s它的速度大小、方向第二次与v相同,则下列判断中正确的是( )

A. B. C. D. E.

波沿x轴正方向传播,且波速为10m/s 波沿x轴负方向传播,且波速为10m/s

质点M与质点Q的位移大小总是相等、方向总是相反 若某时刻N质点到达波谷处,则Q质点一定到达波峰处

从图示位置开始计时,在3s时刻,质点M偏离平衡位置的位移y=﹣10cm

17.如图所示,折射率为的两面平行的玻璃砖,下表面涂有反射物质,右端垂直地放置一标尺MN.一细光束以45°角度入射到玻璃砖的上表面,会在标尺上的两个位置出现光点,若两光点之间的距离为a(图中未画出),则光通过玻璃砖的时间是多少?(设光在真空中的速度为c,不考虑细光束在玻璃砖下表面的第二次反射)

[物理-选修3-5]

18.下列说法正确的是( )

A. 氢原子从第一激发态向基态跃迁只能辐射特定频率的光子 B. 若使放射性物质的温度升高,其半衰期可能变小

C. Th核发生一次α衰变时,新核与原来的原子核相比,中子数减少了4 D. α粒子散射实验能揭示原子具有核式结构

E. 太阳辐射的能量主要来自太阳内部的热核反应

19.如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连;质量为m的小滑块(可视为质点)以水平速度v0滑到木板左端,滑到木板右端时速度恰好为零;现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,以原速率弹回,刚好能够滑到木板左端而不从木板上落下,求

的值.

宁夏银川一中2015届高考物理一模试卷

D、P、Q电势相等,所以a、c两点电势相等,若将某一负电荷由P点沿着图中曲线PQ移到Q点,电场力做功为零.故D错误. 故选:AB. 点评: 本题的关键要掌握电场线的分布情况,能根据曲线的弯曲方向可知粒子的受力方向.通过电场线的指向看电势的高低.

8.1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,加速过程中不考虑相对论效应和重力作用( )

A. 粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比 B. C.

粒子从静止开始加速到出口处所需的时间如果fm>

22

2

:1

,粒子能获得的最大动能为2mπRfm ,粒子能获得的最大动能为2mπRfm

22

2

D. 如果fm<

考点: 质谱仪和回旋加速器的工作原理. 专题: 带电粒子在磁场中的运动专题. 分析: 回旋加速器利用电场加速和磁场偏转来加速粒子,带电粒子在磁场中运动的周期与带电粒子的速度无关.根据洛伦兹力提供向心力得出轨道半径的公式,从而根据速度的关系得出轨道半径的关系.粒子离开回旋加速度时的轨道半径等于D形盒的半径,根据半径公式求出离开时的速度大小,从而得出动能.

2

解答: 解:A、根据v=2ax得,带电粒子第一次和和第二次经过加速后的速度比为:2,

根据r=A正确.

知,带电粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比r2:r1=

:1.故

B、设粒子到出口处被加速了n圈解得2nqU=而

,且T=

,及t=nT;

解得:t=C、根据qvB=m

2

,故B正确. ,知v=

,则带电粒子离开回旋加速器时获得动能为

222

Ekm=mv=如果fm<

,而f=,解得:最大动能为2mπRf.

22

2

,粒子能获得的最大动能为2mπRfm故C错误,D正确;

故选:ABD. 点评: 解决本题的关键知道回旋加速器加速粒子的原理,知道带电粒子在磁场中运动的周期与交变电场的周期相同,以及掌握带电粒子在磁场中运动的轨道半径公式和周期公式.

三、非选择题:包括必考题和选考题两部分.第9-13题为必考题,每个试题考生都作答;第14题-19题为选考题,考生根据要求作答.(一)必考题(共129分)

9.某同学用如图1所示的装置测定重力加速度:实验中所用电源的频率为50Hz,实验中在纸带上连续打出点1、2、3、…、9,如图2所示,由纸带所示数据可算出实验时重物下落的

2

加速度为9.80m/s.(结果保留三位有效数字)

考点: 专题: 分析:

验证机械能守恒定律.

实验题;机械能守恒定律应用专题.

根据连续相等时间内的位移之差是一恒量求出重物下落的加速度.

解答: 解:根据得,加速度a==9.80m/s.

2

故答案为:9.80 点评: 对于纸带问题,需掌握纸带的处理方法,会通过纸带求解瞬时速度和加速度,关键是匀变速直线运动两个重要推论的运用.

10.下面是一些有关高中物理实验的描述,其中正确的是( ) A. 在“研究匀变速直线运动”实验中,不需要平衡摩擦力

B. 在“验证机械能守恒定律”的实验中,必须用天平测物体的质量 C. 在“验证力的平行四边形定则”实验中,只用一根弹簧秤无法完成

D. 在用橡皮筋“探究功与速度变化的关系”的实验中不需要直接求出合外力做的功 E. 在用欧姆表“×10”挡测量电阻时发现指针偏转角太小,应该换“×1”挡进行测量

考点: 探究小车速度随时间变化的规律;验证机械能守恒定律;探究功与速度变化的关系. 专题: 实验题. 分析: 通过实验的原理确定各个实验中的操作步骤是否正确,知道欧姆表的刻度盘与电流表、电压表刻度盘不同,指针偏角较小时,可知电阻较大,指针偏转较大时,电阻较小.

解答: 解:A、在“研究匀变速直线运动”的实验中,研究速度随时间变化的规律,不需要平衡摩擦力,故A正确.

B、在验证机械能守恒定律的实验中,验证动能的增加量和重力势能的减小量是否相等,质量可以约去,不需要用天平测量物体的质量,故B错误.

C、在验证力的平行四边形定则的实验中,沿研究合力和分力的关系,运用一根弹簧秤可以完成,故C错误.

D、在用橡皮筋“探究功与速度变化的关系”的实验中不需要直接求出合外力做的功,运用相同的橡皮筋,通过功的倍数研究.故D正确.

E、在用欧姆表“×10”挡测量电阻时发现指针偏转角太小,可知电阻太大,应换用倍率较大的档进行测量,故E错误. 故选:AD. 点评: 解决本题的关键知道各个实验的原理,通过原理确定所需测量的物理量,以及实验中的注意事项,难度不大.

11.半导体压阻传感器已经广泛地应用于航空、化工、航海、动力和医疗等部门,它们是根据“压阻效应”:就是某些固体材料受到外力后除了产生形变,其电阻率也要发生变化的现

象.现用如图1所示的电路研究某长薄板电阻Rx的压阻效应,已知Rx的阻值变化范围为几欧到几十欧,实验室中有下列器材 A.电源E(3V,内阻约为1Ω) B.电流表A1(0.6A,内阻r1=5Ω) C.电流表A2(0.6A,内阻r2约为1Ω) D.开关S,定值电阻

R0png_iVBORw0KGgoAAAANSUhEUgAAAc8AAADOCAYAAABYU4k6AAAAAXNSR0IArs4c6QAAAARnQU1BAACx

jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAKemSURBVHhe7d0HmF1F2QfwIEVAkN47SpFelBKkC9JUOugH0nsUEAQFQQEpUhTpvYMoKChNQAEpAYKIUkNC7yX0ToD57u/sTjJ79+7eM3dLNuH885xnc8+cOWXa298ZFCpUqFChQoUKWaiIZ4UKFSpUqJCJinjWMHz48HD33XeHjz76qP1MhQoVKlSo0DU+98TznXfeCRtttFFYeOGFw8MPP9x+tkKFChUqVOgan3vi+corr4RlllkmzDjjjOGmm25qP1uhQoUKFSp0jc898Xz11VfDcsstVxDPW2+9tf1shQoVKlSo0DUGBPF8//33w4MPPhgeeuihcN9994VHHnkkPPXUU+GDDz5ov6LvEInnzDPPHO666672s63h008/DZ999ln7rwoVKlSoMKFiQBDPt956KwwZMiR8+ctfDrPNNlv4xje+ERZaaKGw3XbbFQS1LxGJ50wzzRSGDh3afrYzRo8eXTgVnXjiieH0008P5513XjjllJPDGWecEc4+++xw5plnhv/85z/tV1eoUKFChQkZA4J4ktgQn0GDBoVvf/vb4c477wz/93//V/zeY489wocffth+Ze8D8VxhhRXC9NNPH+644472s51BOj711FPDtNNOG77whS+EpZdeOqyyyqphgw02CEsuuWTxrkceeWT71RUqVKhQYULGgLF5Ijxf/OIXwxFHHF78vuaaa8KUU04ZllhiiYLA9RU4DH39618P0003XfjnP//ZfrYxHn7wvrDQwguHueaaK/z9738PTz31dHj55ZcLoktavvbaa9uvrFChQoUKEzIGBPGkEt10001qBGz68I9/tHm8UoVOPvnkRRgJqa+vgPiRHL/yla80Vbte//erC4L+3e9+N7z33nvtZ9vwt7/9Lbz22mvtvypUqFChwoSMAUE8n3jiifDVr34lzD///OGxxx4v1LZLLbVUmGyyycKVV17ZflXfIIaqLL744mHkyJHtZxvjyCOPKtSzxx13XPH7+eefD7fccktB3CtHoQoVKlT4/GBAEM9LL700TDXVVIU9cfXVVw9zzz13kbSAKrcvpU6Ikue8885bePp2hfffeydstdVWYaKJJgoHHXR

QoVb+4Q9/GDbZZJPw7rvvtl9VoUKFChU+DxgQxHOvvfYqJLotttii8Hz1/3PPPbe9tG+BeLKrfvWrXw33339/+9nOePLxR8Kiiy4avvSlLxVSKinZe2655ZaFw1OFChUqVPj8YJwTT+nx1l577cJh59FHHw1nnXVWQZQOPPDAfiFKkXgusMACRaxpV7jmmmvDxBNPHLbddtvw3//+N1x99dWFxBpVuBUqVKhQ4fODcU485ZNFuBBQxJINEZHyW/xnxBtvvBGeeeaZQkXKMQfR7Q1Eb9tZZ5212wxDBx98cEHUTznllOK3d73qqqvC448/XvyuUKFChQqfH4xz4vmXv/ylsHX+7Gc/K36PGDGiCPsQtpImLbj55pvDt771rSL+U/KEG2+8sb2kZ0jT8/3jH/9oP9sRdltZd911i0QKXV1ToUKFChU+PxhnxBNB4nTDfhhth5yDJETYe++9i3OrrbZauPfeewspTzgLAoaoUu2SRHvDw5XalmfvPPPM02WoCkcixJUz0+uvv95+tkKFChUqfF4xzojnm2++WaS248G66aabhl/+8pdjkiHIbfuTn/yk8Ga94oorinOAeCJyTz75ZPuZnmPUqFFFhiHetv/73//az44Fwr3DDjsUxJwH8L///e/2kgoVKvQl+CDccONNIXzwUhh2/enhrPMuDpdeekk4+4zTimxfZ5xzfrj1ge7DyyIwwGkGMb8vvPDCwvxz333/Lf7/9ttvt5dWqNAc44x4khpJnyRNCeBJlvVwziFJ/B//+Mew8cYbhznmmCMce+yxha0y4pNPPil+N7pHM5AkV1lllcLmefvtt7efHQv3Fkrz29/+Npx//vlNY0ErVKjQO/jOd74TBn1hkvD0iHvDPTeeFbZdYeo2LdW+vykY752+OWuYeuZ5w/F/f7S9RmNIaDJ48OBw+OFt2csee+yxQpMkzAzxvPvuYYXD4g9+8IOivEKFMhjnNs8yuP/+B8LJJ59aJE8waTj2xPhPkuHxxx9fJDpYffXVwg+33jocduihhS0Vd9ksL+5LL71U2DynnnrqKr1ehQoDBKTAGA521TV/L85du99Std+zh0sfbM/u9eStYfXJBoUpvvLTMJaV7gwhaDKD0WgBD3n3TXdR2mmnncKkk07aq1qtChM2xgviSaLsKlmC3U2mn2GGYjKkx5STTRZmn32WsNZaa4Wf//znhVrmrrvuDs89+1T46MN3CokSouQpScP1119fnOs/jA7vvf1yeOXll8JTtUn7Ro2QV6hQoS00bI455ix8HHbfY0hx7rK9lqjN7TlqxLN9LXjy+vCN2lyfa6PjQ3e+9yeccEIhxX788cfFb5tNWCMiMYV99923OMfbv0KFMhgviGdXEGvJBmrQr7zm98JOQw4P6++ya5h/tTXCVLPPWTs/cVEWj5lmnj58c6Xlw6477xQOOeSQcPnllxfEd8EFFyzUNn6/++57Lal/6/FZ7d/oz0YX4TYvvPBCEZLDe/jqa64Op196ejjltFPCUUcdGb6/5RZh5RrxXrz2Dgduv32V5q9ChRpojS644PzCJ+Lmm9sI2mV7LV2bx18OW+17VDjj7AvCYUOWCRtvdWgY9vhHRfnoV54JV51xVrj3f/eGay+7ObzQTmOXX375cMwxx7T9qOGSSy4p1oN//etf7WdC4V8xzTTTFI6IFSqUwXhLPBGi6Km78YYbhuFPPxnMFUra/731bvjj0HvCoYedEbbfbruw4oorFCn/vjjpXGHQxDOPIaaOSSaZpPhrL1FS6tZbbxN2332PcMQRRxQcK4clz7KXJzVPPKiQ2Ug5Idx2220FIb/ooosKtfKBPz8w/PjnPw677blb2GzTzQovXR697LXxeY2Ob6688hiJuEKFzzuGDRtWqFMj/rQnte0sYbf99g3rL27OTB4O+/NY6XH0q8+Gc3f5VvjFiaeEv1x2W3jpgxAef/yxsOyyy47ZF5ijoiQnwt4OPfTQ4hztE9MNhlq+aqagChWaYbwknmwY9tNEcNZff4Pw9NPPtJc0JjzPPPN0QfD+dOkt4cyLrgs//fVh4Tvrr19suG0fTwno5aytJ2YOdhAbdM8555wF8UsPTkaOmWeeubhHo/oO+3+6DwJNUhbHut566xXqI+okqinXyXQ0fPjw9reuUOHzDYzpNtts0/4rhL/sTW07d7iqNt1Hj/hzWGWS2vyabvlw2n1vtl9Rw6fDw5At9wlxFv36178ukqBEPPvss4XXPomW9zzNEMbXOiB+XKrQSvtToQzGO+JJ/YlrRGw2rEmcTz75VHE+d7yPeu21Ih0gL97ZZ5+9UNn89Kc/DSeeeGI48MCDahLo1sWkk/1I3tt4ILjCWhBNDg329vTbtbYqUw9RxMW6l/tzRLrhhhsKe8oDDzxQeA/LkoRQfu973xtDYBHg3/zmN+1vWKHChIpPw2s1aW+HIQeFk/50d/u5z8IjD14TVl155XDOzW0hY0NrxHPb7bav/e+j8MqzD4cjN6Y1mjj84oLbwqtvhfDoJUeH2TCo864ULr7jyfDG62+FZ+68LZwwZMewzSG3hA9Gh3DqKaeECy64oLhfxK9+9auC+ZbFzHxkull++eXCSiutFP71r66zjFWokGK8Ip6PP/boGMIpNjOqYky8VvHGG28WOWpJj9EG8umnnxUOSmyV1DjCYOIhFvXpp58uCK8EC7x1/Y0pA9XjmFCGez3ssMOKb0F8ZU7y/xVXXLG4f4UKEy4+CP/8101hmskXDdsf3BbH/fxNp4avzzpxWKvGEO99aZsq9s6hd4Ttdti5Nr1fDleeulvYcbuta/Nkq7DDTnuFS/7Wpm36yzlHhC032yT8cLffhNtuuiecfdT54bqb/xx+uP8p4akage1KBStMzjxlJvF/x+jRlcmkQnmMN8QzqlsQGLub3HRT26bZPcVLLz5XqEunmGKKQn3TX2BDJdVS5x5++BFjdpb52te+VkjXFSpM6Nh4xfXCjocKD3svHLrpV8Psy2wf3qwRsFfbHX2obbfddqzatkKFgYTxgniS5nbbbbeCuFCTUoH2Fl5+6dkiRnTKKb8U/vrXv7af7Vuws3CE8D0YgoMO+mVhV6U6lni+jNMQj+DKsaHC+IzvLLdu2OXI2lz+9Pmw1ZKDwreH/ChMOdXU4fxrbivKC7XtttsW/69QYaBhQBHPxqrOj8LJJ59cONvYbUVart6C54169YXCld39//73tmDsvoYcutTEEuJzUuC4wGGJLWZChri65557rki79qMf/Sjst99+xTen+YLlMnbewW7MM9IB1PTs0spsWZdme7Ljjs0FlEntSK0e8dRTTxe74rTV3b9IxxZBFa/e/vvvX9RL8xtT0XM4UY9mIKZ3M26uvvra4p7q7bPPPrWxM5ahow5ku1bPd9rEAKPDe9TzjGF1PO/Pf/5ze622+/Lwdt4h0QcthDrANifv85577hnOOeec4lzEeeedX9zTe8r9nDJgMmR5D+XmUhqKRdviWeIcJQ+IsZDAVp+WpenreJp7lnJeq+mG8LQqsZ+00Ysvvth+/p7at7xa9FXtY8N3l18v7PabWru9+UJYfaqJwuzzTBe++IUvhoWW37+4fujQsQ5Djz46oojXdk9/x5psQmFacT4+017A8ZnMKt5PmXe95557ivMgNacxpg/VS8tkJdL32kzbpWEt77zzbjj22OPav3+fDkx3TNqinr5K04sqO+2004p6jssuu6y9pC2T2SmnjB0XF1xwYXGeSeh//3sg/OlPfwo//vGPi3r1ex3/4Q9/KMaEfjr99NOLcDtpRI0nz1DHfb2X74oghKin/He/+12HhDLGrDra7YgjjqzN0bEhPPpem/g+7cdkFeG5sR/MUe0fwdGzba4p+0Vt/j7WXhKK5BTeX1/o35isgilMZjfnlLl3mkZVP//iF78Y8zzv/dBDDxtefY4+JZ5sdxdffHE488wzi0FjAhrIUt39/ve/L9JlOXfSSSeFo48+ulg4xGPJcytU5KyzTg977TmkiMEkpe26665FKr/ewqeffhIeuP++Qm07+eSTF4kUPvmk76U5TkTUtVKExThVhNRAJnlqA4Mytpu2MiksgmJRTQhOEMpMHL+189lnn13U8dcCbaF0XrlnOq+9LQrKTUKLcHoItdEO7uv/zvl/eo17Of72t78Vzk+NmZ7O8Fx9bfFEXHyXbxA+EMGJyiRXhgggGDFc4YknnigmuTLfRpUfwT7t3pEZSe3GJpjv/f3vj6/VP75GxMd6NNM

CsD3rB+PRrj4R3ss7eJ73jYQVMVt55ZWLcew9tKnQpQgLoff2HepZULyDkCX30B++Q710lx7tKNzJfR0czNjC9TlYpNUxPmyHF6H5//rXq4oyY8oikvaJBcX8ck+LcKqx8AyLD62H903rCcFyT+d9T7oNIEcbDnOIm3GVLspiNGM/afe4uPIsP/PMc2pj+Yzi98aDvxv2OPaWED54Pqwy9aCw3Tm3hTvPPS6sMPO8RTkP+Sh5Pvnk07X7nVDcUz8bdxGYHGuH91Qm6YmxC/oqziHtli68YjrNK++45pprFsQpwjrju9zzqKOO6sBUab/vf/8HxTjz3FtvHZvWU5n5E/vXblAptLV2U5YmZeFn8ec//2VM31999TXF+SuvvLIYA+5jLClL+x70r/t5JoZrxIjHat/zreL7EEjfrUx8a7p+al/3Q5A4QqZbQGIk1PH9Z511docybei8/hQjnzJVGOTY99oGgxJhLpln+qh+/mKA1FNHufkM5gefFNe7p2tSxhhz4bxDn2uHzTffomjPvkafEk+dLS0WiZE3KSLhmHjiSWqS1tjf8UjDRXieTjHFlMX/ERZcUMGx1tAbSQxAmj8JChBOz6YSPuGEk/q04a+88qraQG2TNBHQ+L1p+3R1uMahPR3xXH37poe40kkmmbRW3jFhhCNt7/T/9YeyePjtefpHViYTsywQxnTgl4GFkcRWFiSgNHNMWZB4y4IZwcKTA8SF5JpKaGVAiiOtlwWiFjdYyIHn5IIk0VXmr0YgsURC+t47b4S1llojbPXzP9QknlFh77VmD+scUWP0fn9wWGnxpYtrUuKZA/2P0cqBNtZ2ZWFxz30GIDQ5z8F03Xnn2K0Zy+CDD94vYtNzBA39z2kqB8ZZqgFoBt9C65QD7ZwyLs2AmLYylltBnxJPorTFVjID0sNWW/0g7LjDNuFHQ3YNu+y8fdjq/7YstiJzkBgcQj2+//3vFxy0uggbbqIvQGXm/pEg+EuFUcbmWBY4+Xg/i8ciiyxSPFMuXc8T4ynhPZWFxNRCV/yV8UQsmvZw+L922mKLLYry7bffvrjGuY033iRsuunGYcstNhlzqOMax9ZbfT9ssfnGxfGD729W+71l2Pr/tqhxtD+oXbtxrb03H9PukmV7B3/tduPwjPgu8Rrf4f2pUypUyMMn4XcHbFSMH8ef77wnjH753rDUDFPUfs8Qzr6jzWGusnlWGMjoU+KJIJgccTeDsqAmJG06TqyJ8O+8Q2XQ++pU9qSYfJpURZK6/PKxdojeAOJJUsZBSYzgWWJCv/SlLxWEk90gVYeNL6C28S0Tup22Ql/gszDyobvCX//21/DXK68Iz7VLyg/ceku44oa7wjvtU73N27YinhUGJvpF8vzdb0mO5aS56667bowdUP0x+Kx3VLUpqDVikgIHacp2RX0BNkpqWgfPWs8j1Y2PuTQxBGxFvoHNpCzYP3JVitScOWpL6tFoLykLzA0bWmoL7A6uZ0Ioez3QPqjTbJeferAFvfnmWHtTM7D1pjbkMuAk9Pjjj2er7XxPjtrW9TmqxFaJJ/Xga6/lbVrPNqpeWZi3L7xQ/voIatucOG6MdW7ct/7kcFPWvKXfXZ+rcRMj//zz5eda7rcDW2tqG20G10fzXl+jT4knxwUL7CmnnFz71XyhYUPhvKMO9WT0MkydGHobxx77uzGp9TbYYIMOnp+9BbY++wl6Bhuwv3LtsrmOr+DY5DtybJ6M/pw3ckDVzcuuLHhFdmC6SsBks0iXXdjZVXbZZZcOTjLNwOuQ+jt1SGoGi5nnROeRZkDMfQenkRxgTr7zne/WFra8RYcDX+qF2gw77rhjlq24VeLJP+LCCy9u/1UOxiZHxbI488yzws9+lm+y4KW98847t/9qDsKEjGU5kHVtk0026+Cs0x1GjBgZNtts8w5OQWVw+eV/DkOG/Kj9V3MwkxkDOeAoZQ6UhYiJ3PZqFX1KPNnDLLAchxrBZI/cO853jTXWKK7n+ZazyPQECFj05uVV19uE2oA0YNyfWpgDD3sn78XxGUceeWTxTTxoy4L6nrdcDngL5ky43OsB8eQ5WFaKIg2yU+eo23Hcq622WpYzk7nBxhy9bZvB9Qg0j9ocPP30U2HFFVeqSd/lOXzwbtdcU46wA7NF6l3cDOam78nFkCFDwhlnnN7+qxxssI/oloXUm7vvvnv7r/LgKavdyoJX+2abbdb+qxyGDx9RG2trhFdf7W6X07GgbbMpRq4WjFdxmnu4GXiZ51wPxhcfi7LQvvwz+gN9SjzF9Fhgm0knOF8N5Frp6Uig/QVu9dSobJ7CMHobOlMYgG+LTkk77LBDh3i68RGIpm9BRMsiutrnwGKbw3ly/8/h7IHKNod4UgtvvvnmWZ6zxjimMId4UrtR7aexoN0B8UTUhSTkAGGX1zUN/ygDhI1kVBYbbbRRp9CN7vDZZx8Xkm2OahgwTzFUpSysUfwPysI4lrglF5df/pewxRblGQKMUy4DIVRl9dXXLE08H374kWJs5qr7EU9hNGUhDItGMQdijXPqCOfKeaeeoF+IJxVfV7CoxLyucrzGQPT+AnWamD3SZw5XXAZUwFTBKeGM6ff6UhXdH4jEk7ReFlz0c9z0wfj45z//2f6rOdhHqHpzQP2KySlrI7KYe6ccG5Fn4KJzuHvEkBoqBoyXgffK1dqQoMXsvvtunuOa+aJ/ykI8IpX3GHz2brj1yrPCxdf8u/g5+u23wtU1BpZq35px+eVDw9tvv9chjrAMbrnl1uwUlxj2228vHxIicUcrZhcatptuKs9ACIfJYVCAtkudsmYI9mHjP9fmbZzddFP5zcOph//xj/JzGYx9BLQsMIC0T/2xvo5T4onTEW7hGl6vY2w1NY4zfPJe7W95h4xWYYESJIyo5XLenaDDPm1zCBldW1gPOuigImdujI+cYYYZikQHEwIEJfsmyRwqVCgLjMdDD48Id/3z0vD7w4eEOaccFL709b2KsndHDA9fq42pQbX5whN96aX3rBHbN2qMx/jnjV5hwkc/OQx1Jp44VjZRwf2SE3TkrmpE81NcUP9IZ9I/ye5TVvLoAO9ZvGsbPmv3Cv7TZZeNsaU6OArJ8oJYTwjgPey7MAgVKpQFCU+qvffffTOMGvVCOHD3tcJ0y7URz3dGjghL1cbUP6Lm4JNPC0k1V/KsUKE/0KfEUyqqRsQTkWKXihl2qE07Z7ioSZ/9IHkC9SonkJZQEE/qkbGEfuSjD4bll1+h+LaY+YeTQG52mYGMGKoid2lZ+H6hGrwA9bfMQTL7pOolGWikBlNONUbNGW0x+sl5h3rpokr16H7qyGKSeg4qk6VEPfdOPao9W9kjjzxclKWhNN5VKrL4zJink0rI/72D856bjh8MUlovqjZ9h3uye8Z69W71MrbEemyRvjGGt1CTxbJ61SynD+epK2lQUrUV1V+s59kpA8fD1nfzCPfsVBXNtusd1UP00jAb3+96PgPaL2U8hXzEespj//p+xHCsDfOz8Jt91w3TfGPP4te7j40My9XG1MaDB4fdf3lyeLL2uNdHvVqMG30Y21u6w9Q+p9zz4jN9f/Qp8Kz//Oe+4rwjevCD9cZ44QHs+1LvafW9e6yXhj8pk1fZOFOWhlJod6aJ+C5p/yrzbtrNM9OwOGWyb8XnxTLv6Ntj/zrqs3TpX+khPVP/64toHkj73nPTfjIuvYf2pE5Ox0V936c+GvpePe2jHdJ129yKfeG+qb1aP3k/91SWzl/zNdZz+Gbwvto39r0jzaWrz4xfdfw1vvprne0Xta2A+hQm07LLLluUxYPaFkE9+ZRTw3/uq3Gen+YZr8c93gsPPPS/cMVfrhjj/BQJp7hVnQ7pojY+g13Kt+UQT+EA1NYWWx5xDs5AkSgBm3fMriTJBueXmMVIvZhtScaq1K5lQdlxxx2LvKa2eksdc0xwYRXq8fYz0SJMtk022TTMOedchROQfK4RCCknEvU8l80OLEw2Ymerj++ahodYTHhuOu9gTzThZXuyEHGcimWp17WxIfez856njEkh2uJl2vJM5fVzStuqM8cccxReoOkiKUdrfB5bdboQXnLJHwqnJJu7S/adLoSSmsf2Fv6Thj6wrc4333xFvl6JzNOFkNNWrKfdI/Pgvbz3WGLzcTjiJ+uMJZ4jHw1Ltq8HjmW+v1945bU3im/R1xzt3NPfuFkAIEgxO5nQFl7NMVk75k

DognrKU3u4vvfNxo3NsVPPcX0s1616jnS7QoSbY5bctp6bmmIwHzRusV7qvIU4cTLi26Fe6tSkHv+BWI83L+h7bc+ZMZbVO2Dq3zgueA0jmFtv/cOCsNAQxXq0RJEogTGrvdZff/0ixj1lSIzZWM8YTAmWeRDnmh2p0nGBiMe+N7dTppLDkG83Z8xfDFuE/o3PUz8yCOaqMD+0QT1lcS0FzIl3UU8/myMHHHBAv6yz/UI86z0ycSOS/bJr8HL8xje+MWbCOBZZdI6w186b1AjRXwqOaCAC12UQWWBOPfnE8KOf7RGWXHbJMMXkUoyNdRASnhLTC+rQCYV4RsmTdqEshKrkxIWCRTrHe1af5HjnwosvvhS+970NO3DJ3cGCgHiWvR5Mchu5pwtGGVgwynrbAkIoJCAHvkeYWMrElIE0kTk7EZnrEtGPxegxxLOYFR++H+6/6YbChPODH2wYZptphhqBe6mDRFgGCKINEnKAqGMCykIyeSExuZDoXbuVhbCjXA/V4cNH1vpzrdLeto8/LlTlW9lxnjLBxU0bykDYTW6oCmehnFAdjk8TlLdtvUdmlDxJZhYHHJhFFWc+//zzFXUcX6oRHhwhzgIH1WOHnhaBY7Sw4HhIAwaMXQhsK5baNSevMQMzzTxTkXSBk5C/uL1ULTmh4He/a3MYyrF54uzZfXPAc46kURYW85zrAWHDfadqye5AkmqFeH7zm9/sIC03g3FHi1E2zhNjhnhapHLwzDNPF2aGp5/Oi/O0qOV4gtq7tt5z+rifbRCmXeGnxf9f/eDTMLy9SY85ev8w9dTTFNJhLvEkgSBuObD+8HsoC/HKuUwa8LjOIYb6Up/mQJznSiutEl55JfFs7ga8YEnrOZ7gYE3OZQSs9znQXuZaWWBOcpmNVtEvxNM2Mymojag9ItEhyq+zzjqFhEFVR+3BRkgtJKlAQZgmn7zIPkRs5+GpUanj2FdSVUSroBrCeXGNZq+iehLLhYvFMSPiVGIkyfje/s8RyF6gnJ4WW2yxwms3qmtJGjmppcYnnHPOucU35iSGJ62nW0KVAdtLThYb7d1RumkOKkccbtnQE8yQ8ZGqRpsBAaD6S+2tzYB4IjZlU5ohnjfddFMxL3Lg+//ylz9nzyOMSmrTawaEFgM82rZ/o58IO/7f2mG6qcylL4Vl190jXHTdf8NcCyxWMNbzLzBrWGWVzWvE89Va2+XZsKj+c3fvYRLICZOjfm8lrE5f5kjr2jc3hO7tt98JV1xxZWmmw16dri/LPEawwxpvZUGLmPst2iunjmdE80pfY5wQTzDwSKSyjsQkAg5ORPaIYxMgqSCoq666apHIAKFCsBBS17HT2MjaNWwCFlmLswnqwLXiphBFi5bf9PMWF9dSh+GG2Bfc49vf/nZhLyNNega1slATvz0bUfRXyAkbAUcnafYigXd4P/UwBDlc+fiG6G2L0alQoSwwN6+Mqkk4n74QDt5v57DV1tuGHbf7Ydh058PCQw8+Hk7ed6tC0jrlvAtqTPan4ZXanE3tqRUqDBT0KfGUk9QC210WGtw+7truHPThyy23XCHJRWKEcDEYUyuQPO1IQqJjrP7KV75SEF4ELl7v/wggosqOQ+Qnxn/3u98t6qy99tpFeYy9jAfCOP300xdED6GeZZZZCimSQwSiykY700wzFTu9pPWoZmefffbivb0/aZXKCPdTVpIZHxEdhnJsnhUqmBM5EjvPyVxbXIUK/YE+JZ5xS7KyKdmonXCmpEHqwO99b6Mw+xxzdCBWiCMVKu5USqlFF100fPWrXy1UvCRWhI8K1e+U0JEOET/E1oGAIshSXzEws3nJBuQv9SvvX/d1HUky3gcx5+BErSyR9BlnnBluuP6a8Pzz/ZPJf6AgEs8cyZONMMdOCB9++FEYNWqsp18zRNf+XFigyzpzuS53QUc0aEFyGCrP4eWYYzP3Xrnqt/huZb8/gndm6p3bDK7PIZz8DHh95voMkFRz7aSuzxk3rk29U8tCe+XUi+akHOhH/ZmGnnQH1+VcH2Eu55ghjMvcNlMnR/NgrLTSL62gX4gnN/pW8NqoUeGuof8KF198UeFoYvsw0mEkZA7qWypWRA3hnHPOOQvHDHk0SawIKWlyqaWWKoijc347uFkjoCussEJBKBFX90rvTyJVtuGGG9WI5SGFAwu9em/YWcdntCJ5cqmXkCIHXN8PPrj8bhdCEXL3GOVtyrZdlugIYeGZmcMIIAQc4oQRlAWixomlrM3H4mfO5djUgF2Zq38ay1gGwnHS0J5mEPqRhgk1A9t1blJ04NWdmxyf2Scn1aTrW9nL9oYb/hH23ru8V6++z9lVCJ555tmw7bbbdQgv6Q6PP/5EMTZz1eMYmxwPZX4Cwl5yYD7nJOxng81tr1bRL2rb7nLb5gB3JDiccZ+3GzUpdSzPV1ImQkod66/NpkmpQkb89n/qYOejQ09KINkySZkcmQwIizy7qIBn9lPcTCZjPkGDh7S2y5E8DzvssDFhO2XRtktKee/ZXO9ciN62ZYkhYos5y2GgPIPtfqDuqrLCCoNr4zxPe+JZHPfKgrdtjjPH7be3tiUZRkgoVQ542+YQAn4SrSSGR3ByEr2LIW3F23bVVVcvHarC8YcWz/qaA34POaEnxnHO9cCRj8NmWYjvzdm1pifoF8nzpJNOaj/Tu+C1yybCIwuRM9BMAINNwDuu1VY7gwevVEidJuJ2221feOxaYBF3k0aDW9QQSdxXrvri8wjMhb7NyW2LeOZw94AY4orLwmTLXXCFniCeZVV9iCctSC7xpBGR5aUsqOwQ6b7eVeWpp54Myy779awE9OBZOcSTc6BdVT4d/XE45aTfh/U23iS8UceRPnP3ZeG731krnHXnK+HB++5piXhy/ssNVeGXkbMPpGQEEkDkgsd1TigFRiiXeEp/uMoqq3bIptQdOFDy7cglntaAHM2AuNCc0BYwn821spD4wdrfH+gX4nnEEUe0n+k/RMeEd995K7z68rPhvTE7Rky4Tjz9iehtm2ZlaQYe1tSwObCgx2wxZYCRoh7KATtUWekOMGwSEeQwWexWMqyU3aA4wmKQE3ZBssmRbgHTcPHFF2fboxGCnFAsMYsvvvh8eOKFN8KgiWYJ000zdXihrg1/d/DOxbja/29PhZEP/qcl4mnBTTMQlYH0bznjxvU5YRoRxmcOwyGphkQsOWCH1J9lmUFaNUQ611ZOC5jzLQ899GCHTE1lQCrO+X7XmwP9gX4hnmwQ4xZj05HJalKh57CXn77N2c8zgsaAhE9yQ4hSRxVlzseyFAUzVDsXy1LnE4TMOQsAxil1zPF/ZZ7pb6MyqC8DC1B81zStHbz33vtj3jV9F4gOKOrWO9Vwaoj3rHeGQcDiPbuq56hfGH23Otqynqi7Z1fP84x4L2VpX3DWiu/iHmmZep6jTv27pP2krP593q191kG7/TzMO/204fmkbPSLd4at158nfHHa+cMhVz8ZHn3g3jEqePdwL9/h3ml767P4fbEvI2K9WNZozCir71vfGuu5d31fKPdc5R980JHopH1Yf1911FWWEqu2542tV99Pad/Xl7lP/P76vojjwtGoDxvVgXQeNqqXtklalva9v/V9H7/dM9Oy2Jbx6DwP2+7pSNs07UN/+xP9QjxjnsYKEw6kP9O3VLG54ARBnU5VylElVS+xM7NjK6OuSlWJQ4cOLZJpUP/JvJPuDUr1RMXJPkJFnyZjkNWHKkc95Wl+UypYqid1lacJFkiJFm/nPZdEE/HGG2+G7bffoTgvlCm1M1pA2MOUCauiroqwaOyzz76F/U8bpHPDQiCPqeexQdn2LQUNjvupV6/NwcQIw3JfWZ/SxYfZRD3lvNjTxUc/KqMa49CTLugXXXRxUcex++57FMH0ESQIz4rmEItpBGlEmWPLLX9Qk7Y621IvP+7oMNuXp0mI59vhmC2WCFtutHD4ztprhl9c+WR4Yvj9Y2xk+jr2EXWxxOIRpA3jQd9qc8k4Ikh6vOmd9x2pzZWDFDWiseZgIojwPfreN+gLmWsiaBG0lW93z3PPHZufWLtb97ynULlzzz23vaStTN/EMZP6guj7X/zioOJ+sX9TosTc4T30Vb22R/+6n4NDTkqUjC/n3VOe

5pTAUO9T13pXjmkpUSa5quddZVRLN0zQv+7n+2V/k6gmwvxRR3uyPaZJNO64Y2itTlsfmY9pti39a967p35My9hwN910szFjKt1HlQOee3lefVlfo18chnLtDxUGPo477ndF3/7yl+UTw1uYcasmGwIqvpe3ZjppJbKgDnOYiOwwuEpAZC1w6rGdpS7pFjTnqN7qM/m4DlF2T89Nc7jiqk04qh5lqcepMoQ21osJzi1OPBmVOe+d0hzMyu06ocyBAXDu3XffK75/2LB7im9QL1XJWiypA2MZ+yhiGzl8WW0s/u5Zn+YPs6CORV4ayXQBpV5TR11EJyWsns87l2rcO6f1nnzyiaKOg7qdJBqB6VBHXe0Q3xEQrPie2j0u2P5Gye/CGnGYfZqxxPOPF50e5lvsh+HxJ28I239r5bDj2f8LB+67Z+EBbyFXN44L/Zx6khof+lCZ51qwIxOgzDt4F2PDe0cYd8af9sYYpX3oezBrytwzVU8r8zzjTNkTT4ytpw+1sXqel/ZvHBf6yPvUq+Opmt1PP0bG0LN8ux1cnFduHKSg2o39a/y0jbU2qS8ts+tI2vcIj3dUZq6lUjmGxPPU1b/pHDVHnNdm6qaSq7nlnL7QRrHvwfyJ80wfpnPUPHdOu6kb5zZGj/ewMvUcKbMd+zft+/SZfYk+JZ4xw1BvedtWGDggcerbHG9b7v3UvTlACMTTloUFKNejl5SRE3Jj8ua63Es+v8suu9YIy1PtZ8qBFGPBKAsOXKlkXQYWP84yuQ4jdoDJSbdI8ok7YvzxmGPCHNNOG4onfvpG2H2DxcIS39snnHzaIWG5hb4aBs2ydDjsl78onGs4jOWEONm1Jjc5PqcsHvxlwRZdv7NNGQwdemfRbmWBgOWGXjz33PM1iXCn0qEq4qj32mvvMUxqWSC4OT4PxnGuwyA/iZy5ZuyjO/2BfiGeZZMkVBg/gLumXtS3OYnhqaJyxwJuMmfnBosNVVIOSErURSTNMiC9UBPmcLg4YjHFOc48pARhDel2Z92BpEFV1kqoyoorrtRSqEqqym4GbUwaMX5+W1sQZ5l66jCsJv28+/qjYf/vzR7mmWPm2phq2+N3hplnKTRWxhmtgoTiGINUldkVqFTT7b7KgNd9TjyhlKO2WMsFaT0nVEVf5nqPPvqoRO9rlA5VoZloJVQFIyxyoSwwKNKu5sD4oqYvC5ItU1B/oCKeFVoCaVDf5m5JxsU/B7nEkBoxJ7QFhCixmeQQT2kfUztfMyCe0kPm7KqCeCLSZaUo13uv/FCVp8Jyy60QnnwyTypmK87xtmTTuvLKvxaLtbETjz/efHNR/vwLL4eD9/5hmHemGcN+lz8aHn3g32NsnqQi40AoWjMCqv9zE7OQVnPiNlvdVeUvf7kiK7yDh3LO9fDww8PDSit9szTxHD780YKxyyWeubuqUL/nMgLGV06oDpX4BBHnGYln7oJZYeCDg4q+pVYsC2qeXJUiO1S62XAzcBwqK6lFsK/golObT3cgcVoI6j0puwPp6fTTzyxsumVBkrRAsXeVAaJy/vkXhHvvHeswUwZsT5IK5DADgEjn7OBy4YUXhYceeriwp33lq18N8843X5EB7Ib/3Bfefufd8MtDjwwjh54f9vz+puGovz8Tht9/b4dQFe2NwDUjoPqfbTEHbJ85IQ7sbLkhJOD7jZ2yYLPM3WJOf3IEK6sZefXVUeGss87u5MXbDByzckK8mFRy5jKwC+d8Pz+B3PZqFf1CPHP04hXGD+hTfWvX9goVcoFRicwKBzJewNEe6vynNeLI3lUf54loIqDsp2VUuBUq9BX6hXiO+zjPCr0N9id9m5NhqEKFerz/3vuF05mUm/XoKj0fD1Qp+BDQChXGFfqFeLYSSF9hYIPDhL7NSY5NUsiVFlyfhkGUQSsSSSvvlYtW6+TUy70eWqkD1Mo5qL9++M0Xhp/+fL8xEufHrz4czq2Nq5PPvabwwh12Z/e5bTnsKK9XN/ZXG7TSZtDTdiuD3O/pj2dAK9fn1GnlnVpFnxJPHKUFtpVA+goDG+edd17RtzkOQ8IN0oQBZSA2LYf5cn1uOkihJxi9NEFAd5A8gZqxrIMRsHXutddehWdvWVjQzB224jJw/cEHH1zExOXgpZderBGiIbV3LOdgEuFZObZFnrP33tcWo/jnsw8I888wKPxgyFgnnd9vvGoxphzHnHN+eOiRh8N23RBPNlCJDDh7pX0nhCQ3RRtbXE5IHXtnTmhLhHjZnFAVfamdc/Dss88VoSdvvlnOAUjcJk/j3FAVMaI5oSfGca4WUnvlmIbYrvtLG9anxFMYg4lQSZ4THmwRp29zYjAtGq0kho8p2sqAt62whhzwhLUAp8He3YG3rbCLnMXGM/p6VxXettz6c0NVJIZvZVcVz8rJVSqzzK233VEjuHeH/XffKBz7663DLvuP3cnk4I32DHvs//Ow0HRfDhv9ZM9w28iRYcduiGdEzAIVmRkJ2wfqripXXXVVljcoos7jOgePPJK/q4rMRa142+bskuJbZHvKAW/bnF1VMDW5Hr2tok+JJ+7cAmuhrTBhIdo8c4gnFW8uI4UY5kzQ6667LjvOS/YYqcjKSpIypUgFlhPnSeK0q0punCciXZYYIrauz/HmBMRz6aWXrf0tn+QdhMUgBmVhUbMmLPy1r4WRjz0VHvvXCWGbH43dmeTFZ18Pb7/xZlh2vjnCFrvuG/4zckTYvgTxBGEsiDOGhoSfm5gFU5cTtyl1ot1bciHOMydukaZGO+dAnOfgwd8Mr7xSzrMb8cTY5RJPmqQcYuhbcnaUgZgGsix4WufuQtMq+sXmmaOmqDB+wGKTSzypeaTRygFXdbuRlIWUYzm7sACimfMMoS1nnXVW+69yED4g6D9NLVYGsjKluVqbgZt+zrZnQOI+4wyhDeXV0CD+NGcbM9+CgFoXYNhfDwvb/nis9PbB038NK0z8hTDxdEuGK/8xMjz0v46hKs0gP6tYUhJOIwek7kD9nCNFMw/kJIiIENqTk/1I39tEPgeIIOahbOgRhkMO3txQFSFUac7fZsi9HtTJmWvGPom4P9CnxJOu2gLLM67ChAVqMX2bk2EowsKGaxdkztaSphGT7k2qOCoxEkSaa1ZOT9IBtRwVW7pwC/QfMmRIUZdtDRGNsFO+ZOzqKU+Tikt47Xpj1TtF5xWwCLHpek9ZjtIYVQRHHfdUnqbQIwFiKtSx+KeLMtscFaFnKU8TGnB0kFpQGUmqXoLU5lSUytKE44D4uZ82Q6RJrREIaqxXn2xe1hffcOCBBxQMURq7SgXmnt6HrUqsaoQcpNpbP2m/VIUtxMR59xUHjHEQfiLpeZpq7u4rD+1APN98+KIwd21MDZrzB+HpTz8I9w27a4zWQbzjj3+8Z3FPfx94YCyDYIx4Du9bm+JLdh4JgTAYz9RHjrR/o63bPY2ndKMB30NK9u36UKarCBoHDnNxzKT2VX0f+1ebp7Gg+uS0004r2ktfpDGP6knsoJ42r09jiYB4Dxl63COFcRL7ybNT0Fp4lnJjK7UN09JIKKGvjBnvEHHttdcX7bXrrrsUczzdSk/OX/ezrrPJpwyhMu3pnvokjWumddGm7qvMnI3AVMR6viONH9a/+ke5I52/+te91HPkMJo9RZ8Sz6jayzV4Vxj4wNlONNFELcXwmhicOuwGYdKmHDIVknsjFMrS3RwQRIuWMunX0t0cJKR2PVuURSgtM7ktPhYdz0wTcnu2gHL3tbikalULKNWUeohOKtFZhGKZe0rIHYEIKnNPTiXpZOc5bEHzjd5VuroUiJn7Oepz2iLCvs27sAWnuO6664v7eSbuPiWenqG9PdNinnojcrBQz2ExT+shNO6nXS3QqU0YI+M9ZA/TF6nKGxHyntqGFIDYUL3V25XriefoUf8Lx9cI4DIzzBDW2WGfcP09D4Wdd2hL5yZf66mnnl70/SmnnFobC2MX3pjkQVv7BrlQ7cDCzqwPSW7KvW/av/qe45v39I0yH0X4HmNGu/jGlLAizKRH36083aNW22JWYh9q3wjESftrU0fqCKYejYl2Uy8l1uC379OPTBkp3EcddT07JYLKfLe+ZztPmaNhw4YV76+eMdmx7+8pyrSNNkoZJ23onupp23SDBnMk9r32SVXB5q/z+sKcSzdoM

F/Vc/jOdP4iwOrEPkznL8Y7lqmb9mFfYwzxTCdUb0HKKwusvxUmLJiIX/jCF7KSsJM+0glaFrmhKn0NcyUnu1CEOrnzTHv1xdzsT3BGaWQjfvSm48KuicNQbNFhh28eBi26UTjmsjvCj3fNy1McgfBtvPFGHRbo8REIYf74/6yYa+P7uAHjP2UGyqCVudkKCuLp5aI4j+Mizkslhou77LI/1biyM2qc5yUdtuVp48ovLCQPCygOM6rfvDxOjVcZ4slRAjfx+9+fGP7wh0vHXIfzw0V51nnntXHquB0eVpFjwfEwNHsGrgvngQPFpUV1AU7QO+Oe2NVwhVQp7h3VBgYTVdOJJ55UcCnUZZ7r3jhUMLlxY+xy6roHSQCXHyehgcxbkGHaM72ra9SJEhTu2nuQPjzHtRwr2EhIVqCdXaON43Nc635R5ehZpBbPUT/XoN+X8D65WgVcse/MATWMPi8LEqCxlgPjiDNT2UXK+GXHz7ERqUNllROqYuHgYJVKNt3BPKZiM85zYGxT96bqtzKgsuvOtqg97ftIXevdDjvs1zWJpk0K/88dV4W9tl83LLfySuHMc88tCOfPTriskPI2/8bsYb51fxTOvfGBsPtOeYnE4dhjjws333xLMdaiBNoMf/zjZcX6UhYkSFJULu688+4sYYIaNNfJ7oUXZGw6oINE2B3st9pKqMqNN/6j9m7lvedpUg49NC9s0XqcE3rGtNJfwlonyZNI/JWvfKVYGOuPdFGir66/LqoaGNMXXHDB4tzEE0/c4RpHNJi7fsYZZ+xUTqKJHoYWw+mmm67TNZNOOukYuwBRvdF9Jp988sJJASwQiy22WKdrHMR9kEd1iSWW6FTuPnFisZ8ttdRSna5xRBsVAtnVs6LnMXvd4osv3vSaeeedtzjne3McGvoaCKH3yonBYjfLkVQhN1QFQ5JzPbSSGN6inLPYWMBbSQwvKXicC82AQPE0TG1pZeD7l19+xdp4K0/YgfMPZq8RMONxw+TIlGjj629ocxg7Yq9vjRnvU0w/fcB2Lr3kkmPODf7+z8LVwx4Pu+xQ3mEoYueddxpD2KgceaumasBGOPro3xQ23LLA0LHd5eKKK66s9Wn5UArzLNd71ObRK6+8aulQFeunjbtzmXMCU45nO0ElJ5E8GF8530+oyn1Gq+hk82TnsAGtIxqvt956q8JYnXK0JELOFBYRg5MLckxgzbjP7oCAkDwR0rhbvx3ro66f3cRC57yDC7e/POZIW2BicxLhEs24zYHAdTotBmjjmN3HedcoExtE8o0B4wYG7sq9vQO3duokMVTRESQGv6vrvGcxtjNER8aAdEra9s224/EMz9VhuCTwLG0Td0xn5DcAbEXEmQJIqTgkC8yKK65YG+yrFBy666OdhL3P9kqRMciV2voSUfLk/FAWA3VXFUxKK8SzXg3ZHXpCPMv2u+s33HCjDk5IZWCO9eauKpgK7VMfYrTBBuuHf97cZuM9dv/vjCGUM841V8CG7Lzeim3nplg4XFZjgh6srQ853rYRiGAqFVrkzdfunEnMRdJ3WRAkWiGeubuqYJxyrofhw0cWxLOsJqFtV5XVWyKeOYSK0JRL2GjrckJ1xumuKgYYSQ9hiRwjNWwjlRZO1wJislh46nXsxG3EkzcUVabDterEa6m+4rl4+J16hVG5er7n+b86aTk45/7xGvdJF0PnECznEX5qNIPLgLHogHfyHM93r3i+HvG7Xes9XF+vwtNm8T7uq7y+Dd3f88UNPv/8iwXxdt8U6iPeFpVcN+++BG9P75TjbYvg5krPiE2OqzpvXWr5HHA4IRE3GuONYPzQRJS9HqjQPCP1Hm4G44MZI3VG6g7G5XHHHV9azRsR1dbRnFIWCFT9ji/afumllx4TjpKCJ+gD7de/8PTwQiU5tMZM3lP7PjPtzScfLM79+/62NhpaY2pbIZ4XXHBhB2ccuOSSS2uM6trh3/++p/1MRzCdXHBB+XAlzD2zTC6GDbsnnHxy+RhUfc8ZKAdMVb/5zdFjzEjNwBnr6KOPKc08Rugrjkhlcdddw2oS+wntv8rBTizMeWWBfnH+qqdFfYFOxJO0Q2o0absiHmVBHTrZZJN10ln7sP74uAkF7GsIVW78Yl/CAPVOlSd1hQiEk8klJ2Vjd7ijReLZFWihqJFzY0ArVGiETsQTSE0ktZ4SOCo6troczqHCWGh/DIzFCKEaSGpbKhvvlGPzrDDhAuGcZJJJSuUV/XT0x+GOPxwdVlthhXDQJe2EbPR74dwDti1MGBtutEl49c2Pw7B77w7bbtN7xBOYRJhtoomlQoVW0ZB49hZ441lgc7zY+hscCXgG40odvGY5PKVBweMatABzzDHHGDvwQABnLX3bSD1X4fMFMXs0TGVjfp968OHw3YVnCLNOPU3Y8ND2Mf38P8KSM7bZQB2r73pquOqe+8Mu7XGevQl+B9/73oa1v0Pbz1SokI9OxJO+nI6dl1dP1bbsKCbCQEsML+RG+IiMJLzMeA1PNdVU4Utf+lKYeuqpw3zzzVckmvb+OFVSOPS0PVqF97Vzfa5Nqi8RJc+c1IskZ+2eAzbMHM0FGxFmIwc8sWUEKmvDZKc2pnNsRJgxzCRno7Iw3jCemLkycD0TSZoJqQzMeVl4chlGQfAyv/CoL0M4SaUkvvfefje8+vhVYYtlFw8bH9LucPTsreGOWy4LQ4feGX67/RJh0CLrh6Muvb2lOE+22PokEvX4179uDWut9e3w97+3XSduOcdWznaPacgFh8wcj3NOkbmbKcTxnCY26A7GpLWu3t+iGWIChrKwluZcD+ZzTm50c4XGc5zYPG+55dYwySSTFp6B9U4wuYjqxtzO7ysgPhaw5ZdfvlAxRS6XVOd7xaPOP//8BRcdy2aZZZbCW5ancY6DyIQO4RDaJyfDUCu7qogNy/GepTnI9YK02LCFlUX0ts2ZoOI7V1tttcITPQc8ucvuqgK83nOuBwnEl19+hfDii3kJBdZcc82CcJZ1aOFZPsZu/9kjYcOvfTVsfGh7ftikKR89d5sw7Yr/F06++t4wZOc8z2mQNq6MIwtCziOeJz3/jJw0ohi6VtKO8gbPSaZOiMndVUVi+FVWWa3o1zLgxKYvc71trQE53rM8h3Nt2JgUEQhlwSkxN/l8q+hEPG+44cYwzTTTFN62uZxIPWJ6voEgeVq8dHQkiqRLg1+H8ui0gFLhinmyYFsQdIJcma4XLmLhj1Jof4I3qPjbnjIzvQlu59olZ38+3K0geN6dJGmcKykpleD0g/MOXDpCEENVSEaxHi42ney8Wd3L+yBSqZSOA1emnvqeEcGb2RhYZpllCrV4Gg+ovXH+sR6vaLDY0FgI04j3Fe4RQQL07rGepBe0Bxg03oMOZY401RhizJnFeSn1EFrhTTEumnkh3tM9ItTj9ep8TEiSEnbp1JSpqx6v3IjHHnu8uP+CCy4U/va3qzpoV8Q9x/dEaNLxFx3GvB8PxzSri2+N9bRPXEeEYiEeBd6/L2y4yAJjiWc73nz14bDJN+YNPz6j1v//eyDssF3bYpv2vbZJpWR977xy40JoA6kYeJxS08byem9ncaBzzTVXEaqUjmVe9LyWY700uQUmmsSN4fK8mNQEtLu2Us8Rk6KAdv/tb48PK630zaJeGrakntC9WC+mgkQ8EQ/rkvdw6MO0f42TWI+m5qGHHqmNg1Vq68ZrY+opI8Wl/eS99Y9kN8sss2yH+WQ8x3uaA+kc1b/en8lGHmFzKEL7xnr6KaUh2tr16npu+jxrXKzn8BvMyZVWWqm43v18SxqCI6LB/dTh/Xv66WfU1u0tO7RPX6EB8byhIJ62aOrpYm0wmmDjknhqRNzLcsstV7zL1772tUI9owOaEUIdY2CKd1XXwbu0vwmoxXCGGWbIzhzTl5AQQnvkZP+QlYVd2eSX4Fn8rkUonQyIjtAcZWJu9V1Mgo6wkCqViX9NpTiLlKTvpFQLepqHVi5dMXwxqXwaykFlqX/F0vlrAkZYoL2Dep4bc80aF87HRNXeN413tLgK4Yn1hBipg/lCyKiV1FE33c3F4mrOOK8ezl6YTsyNSzqK9VL1lzFOVe287xCzmBJB7afM+3h2On5l1vHdm2yycfFNqXYF4xLrUQPGxQ7h/OIXv1hI395HvTSbDek/9

qF2j6pqWooxjjoNiee7Yc8tVg6DplyqSJpw7913jpFUMA7uF4+UeUDkPc93+EtTFOOpxfAaY+poU4tvhL6nHVPOdJMm1/A9VNm+3zGG6NeAGfPNJEj3TR35tDsm0Xs4Ui0AwkX7ghiql4ZgqUdFH+tF4q/vqaGFxXh/76Lv0/5lQon1qDiff/6FIvOPvlQW+9BcTYmZ+agsJpU3RiNIcLGedkjnqHXIs7Szuikzeuuttxdl6vmL0EZoQzH4ztsBJ03+bi6bv3FTiMhYYC4xzwQd5x1prmhMTaxjTTjtNHluz6jNpXFAPGVoQTypM3qqpjRZxHmOS+KJc4lZejRys0wjjYALZadgD6Xu9V25MVE9wYEHHli8f26MZF8iZhgq412ZohWOMJWUKvQNyvYLjQyzRv2uLmXQ8RlPhS0WXzh8/7g2IlcjH+HMvTYICy2+SrjpgTamfdhdd4RtetnbtitYhGkGcmKK+wvV+B+Y6EQ8ZXRAJKhtqTx60nHj2uYpq0u0b+JKyhrQGwHXKNUf9a10faSAVghBKyDtasdW9g/sK9hNwTvlJEmoMH6DHVGft0I4U7xXk2BPP3yvsOjMM4bF1t4unHnVv8Mjd10TZplsUFh6ue+GE078fTj6/KvCn66/Pey8Y77Ns1WQhFZYYYVCvVihQjN0Ip70yjxPBw8eXKguekI8LazjinhST/Cm9XyqvLLZNprhuON+WxDj2WefvdC19wci8aRKGSiINi8qqgoTPqiFqWp7SjjhheHDi7ETj8lW/1U48+C2zdXHHDOsHg77w+1hr912aq/VPyCByl3dX8nFK4y/6EQ8EUx6ecbg+hR4uWAXMBHGBfHkQTfFFFMUjkG56coao03KfOet18KW329zPJIntz/Ut5F4DqQMQ7hz75Rj82QXZBbIAdtHjiTAcSZ3gWfbZG9KnSm6gzlCfZlj1lCHvTE3PR9pr7ucrCmi7TO125aBrGK80LsKhaJl0df16ei0QX16vu7AVjfyscfCe6+/Ho454IBifXD89o93hPtvvysc2v7b2nPASX8Mf7ju9rBLC5Kn92R3zQGTSLQ/c7JZYIEFuh3b7Hf1G1aXwb333lfY5cqCnT/N01sGL7/8SjjmmGNLCwy8rI866jcdHH/KgBNPTno+/gxlPbMjOFHlPIM9NCfkqCfoRDzBIpLrttwI40pta6FilPds0mcz9apyDiepUbw73H770DDjjDMVcaH9IQ3GdhxIatsY51m/c313wJTlXA+ILceEsrCo5brD8yxk4y/LCPG6laUmdbBoBhINr8HUw7IZEE8bCkRv22agJeJpmp8Y/snw9a8v13BXFUwFH4hG49y75djhOSE2i79MMezO1myenFVoRnJgjeLEEsHRhRMRpqIROPFxlsmFxPA5oSd2IhGulINHHhkRBg/+Zm09KxeqIjH8Kqusmr3mY1JyQ1VyE8NjuHlClwXnvJzQlp6gE/E0AXmqWbR66lUa1bY50klvgDcY1fM888xTKsDcoLFDStlMSLyQeeb5Ngt7Xxv0B6LDkAXaO+XktrUQ5QQ8Q+6WZIhn7q4qFko76ZQlnjHOM4d4trqrCgJVNi2jccjbtpUtyZZbbvlOu6qQEvg/MOU0glCuHIbOIhg9lsvAOtRKbttWiCc1bUo8AUONgDZavxBPHp65MId5g5cFx7z8XVVGhFVXXb30lmS8lVuJ80Q8c3YwQTytszkwvjCqZcGDeJzFeWpIOn+xcj1xsIFIPHOy0PQGLNKey/26DHQQKVLcVtksPhYBXoeSKpTd9aJVkNZmm222IpZpoCB621KzlYXJkxvA30qGkbJMUISYMqEYZc0Urs/1uKYapY4sszFzBOLJU72s2cH15lzuOHnppZc7hQxJAvDlL3+523vpl5wk69YBISdlcXuLxFP/N9oqrTtgUKin64Gx+upXv9opGUirm2FjCHLsqVSj9c9uBqEqck7TwJWBbxSOksMMgjUwR6soTC3XlkzVm0M/xKTm7hncKjoRT1IbQkLF0lN7XkyS0J+SJ+4Jhz/llFMW2ww1gwGGG/Ke9jBN48C6g5AXnrx2kchdrHMhmNlA7Q1Vem8hetvmTuwKAx/NJM7ewJsjbw3HHfHrcPnQKO1+Vmi6br7lX+E3tcWPzuuuoUNbIp69DQIFAtpKRqEKEy46EU+5R6k8icotOwx91hbAe+QRbVtpdWU36AvghOecc86w8MILF0HQzYATtGl3jAW19ygOvhmoyKI6tTe9eccX4CB9e+Q8+ytsp0LfoozE2RNYU54e8WS48nfbhaVnnSGsfUA7g/vR0+H0Iw8PSy+2fph2ikmLzbHvqUkRA4F4AkevnXfeNRx88EH9niSlwsBEJ+JJrUZqk34sV4xP8e67bxTZJCywOLYPPuh7r1SgGvT+6Wbe3UHiBFI2D83pp5++SNVVVsIj2fq+73zne32atJ36nJ2trDdoXyESSDYyNj/fbnHjpTeu361CzyGrTV9LnP/5z31hxOPPhU8+fiBssvjCYeNDo3r10/DRBx+EMw76ZZhrhukHHPGM2Gefn9YY7J9WzGKFxsRTiAebZ6vE8+OP3itsSPbylGEIURIPGDk2A6+vnGyiqpgjT7MFfeTIxwuXdHYl6lvfLIaT3rwMSLmeteSSSxZp1/oKbJ7s0Dn2or7CRx99XHhAaid9K2EEp6Ey0jrbMrOAfqH2drCzpWOBM5ZztAb+ytXJsxdILfG8I2WOjC12RfZBu12kfe//6sW6aT3vjRkQRsEemZYZp+4Z68Z0leYF+xiGJpbV54EW/hK/EXNBM6EOCQZzJqWZevV+BcqcV49tlXpcG4Brlalbz+C5v3t7BjtZCvXcT92YMzTCe/tG2hMSJ7tUhHvG91Svvp8QW+n21E+JyYcf6sOx/RTnvXfjAPbW2+/VOuzBhrltzz/ssDBHbb2oJ56xf+P31/d9PO/v2WefO0Zy1vfqeQ9lqSlKvfiOvDQx3hGx72Mfxnqe++Mf711juNcuvKBfeeXVWvuO1TrVj5n6cSHsSLspS/tQ873+elvfO6K9Ut8bA/oivkt937s2frsyz7dmqOP58Z4Y/LQPlaknOYSc02moiv/HevV9r0ybcSo99dTTO8x94yLW8x5p2bBh94RTTjm1eKb6aR+mc1R5nL9CoWI61Vge5yHEcaHcnLN2e0Y6HvsKnYgnQ7gFsSeS57C7bw/zzNOmBrXI+jvTTDOHvff+SUFEebXJ+MNILZTEb44nytKDPc3h/4iiA1GmBqYu5PFmkAjloG61iC+77LLF85xr1oCHHHJY4YgjvsvCzMFI3Z/+9KftV7RBpzjqwZnF9SRd+RcRYe/KwO3wf4uyOCXqMIf3ZVOykHC48H3ymfo230UdGg8xe66J38Q13kBS12D3PHVd41qGcu3i8Hxlnue5yhEVh+fH94ll7qe+OuqbsOLYpCtj09XW5557Tthvv/3DVFNNXbxP7NuZZ565FGH3fd5fXlKaARI/bz0TIsKiZzs4oSNs0bwmhwwZUpRxHlh33XWLcu776TPlxhSmseiii4bpppuuiA+L4OGqzD15fKaSlWdLVo1htOtHSjxMStoT9SQ1j97OFiGZaDiYOdSLBB5MfGPJefe2KLuXb+bQtN9+PyvK/E7j3ixQHHc8Tz3tjqiZk2CMqONIbc3GubblMak/6kN7jEHz2TdwWorEDHhNY8zUU56CNib20y677Fb77rGEFyOEOcZ8GpfpWnHttdfVvqGtn4QNxKTq3/nOd8Npp50R3n2vtvh9dH9D4nlubdw2Ip7GDFOS/teHqRe9xT+W0Ygw2cRYX2W8L5X5vjQ/NEIkdEJdph5rSITv0Y7qYKrTrfT0JS9c837NNb9Va8Ox3s3alheu5+mP+nR/2oOjoT4W9xvxySef1tbAA4vnGRuxfz2Xt7lx4j2MC+tKCuNE/+qnAw88oEgMv9pqa9SIYxuTF/veOpv2k/zUnvX1r389zDrrrAWxjeCx7X7e0xhEnCKELSkTQy+MKZ2/4mvVMS94Cce+B+ugNUOZNk/jl81X40Xf+htzU1sPRE3wUFZPu6bMIXu0e6njGnTkhz/ctjaXxgHxtNBInq7jcRxlJIp6XHrpH4utikgmGsv/Tc7+PHbfbdfaqtK1zdZAkSxe52t8k4jtU13fH3fQAJx7vYQAkXg2O7RDmXPdHWkb5tZNj7J1OULpu0gg47n4/1jmnAPn3gwWBERY25s4FkScZ

cqB4pyVOUjzCFaMp9MHsQxHnnL1/u9+FivhHelCoMzkjHVTFbtnm6Arr7xywbXWl5nEsZ5FEyy6EmQIyPYeNBDORSCCiLn3UYaTNp4sfgj+iBEja/f7T1GWjjNEUIB+rGfhsSBED2ULhTHnXUjLKWKZxbXeC5Q3pfs5hF+kTKXFho/D4osvXjw3hW9Sx7s+/PAjY6QB0BYWZc/yrSlBJo3FNtO/0XcCQb3++huL/4cP/xs2qhHPTQ4bm3AdzmuXPMlA/06Ip773fu6pzdP5SBLSv8r93WKLzcckVicxavP4PqnUFvvX/TAt++yzT3tJm0bC+It9kRIIwHBiuKyT9TvjxD7UH2n/AqK++uprFO+iX1I8/vhjY/pJQnvAeBkDaR/Gsoj6/n3kkUeLUBVjmTbFeyjzXul6Hvv36quvKXbjSdvGmFVW34dAkFCGQbd2pvMXzVAn9kUqJWLGEWvt7UgJuf+r41AW57bc5Iixd4jlad/rX+c80/OEz+Rs+dYTdCKeJj4Onz3PoGwmvTWCRQi3EBdZf+WE3XvvfWoS1THFInrUUW0S48EH/7ImHf22JvEcUZxLD9fhtrnf4wod++23XyF9/vrXhxd1cGGuPfroYwuumuTheeuuu054/72uJWcqh6WXXrrgvA0E0oh0exZFk6JMoDmC4VkkHZKNd/O+JiFpCQdqUnpvf9lXSdx+u8aOEw7nHc6nuweQytVbYoklCqLXtmPGMYWE7VoScrx3+sy4o4HfUbL32y4J8fAedmn44Q9/WDxbfdemdeN7GYwkMETMd0499Zc79C0vZW3YDCR8Qd85cN+cUBUTKNdVHaE1FsvC4sFZLAeIjb6uJ3rNYKznpIE0H1LpqjvQOmAUqbqNo3p1YDPQfFjUysL8uOee9h0xRj8QNl50wbDp4R2TJlx4+OFhzhrxtFTfW1uHWrF5kuhyQ1Uuu+zymgRXfqNmcx+jZp0wN+qJa1e4++57whFHlN8ow7pkDOTgueeer421vUv356hRr4X99/9ZB2JWBsZldBgsA2tubuSFsWlNLQvXG5f9gU7EM6IVohmBQ9WoQl4srnJimjippJAL7xOPrqDssMPaPHyporpKheb9SJpUfylHBeIXEapGZSlw2giQZ+EMLY7x3fzFhODy4jvHc4763+l5f9WLdXF11Caek0p38R7pkdZ1pPf2LQ7n3dP7+41B0h7xHo3qusbEcv61116tEd9dCpWVdiK5Y25SqaQreF7KpZaB9/T8svCOqV2rLHIYRdfljmV1vJf3y0Hss7JwfZm+oMqde+65x0hNGIiy3x/hWcZHWWgzz3i1JlF/c+6ZizE9aJIvh+W2PSm8+/GTYf/1vh6mbGfI5qwx37+qSXd7tKvsc+C9Ukm4DD788KNa/4yVkppBG8dnUI1ibFOtRVf47LO2uVgWueMfPIPEl9Of3im3/43L3G8pMzZTuD5nPntG7hrTKjoRT41OF87mlduYKXzwNttsU0wENodGas++wF//elVtQZ+2kHS78hpkr7Hwe7/IbcVFgK7fO7NLdJd6D2GWbs217IV9CdKg5+DcBgJeevG5sMMOOxXvtMMOO4Y33+yfvq3QO6BypBnKkRp7E+/UJPfD990vHPCLg8IBP/tpOPSsf4QPP3k1/Om3vwr7/exn4aCDDy40IafX1qFddt21vdbAhjZlzywrgVYY/9GJeLL/TDvttEW6slwuuR7EbQtsjmjfU4wa9XpYfvkViudS49YDQ8CozaFDwvF6iQPBpQY1EVLvu3ogZGxFJK/o0NFXsJD4nlxVVF+Cl513ysn+UWHcg81ZTHO6kfhAxT3DhhUM7viCKIFG23iFCRudiCfVIKJgEOSoZBohpufrLx10BCcIz2XPSXcrh7LSNMm5O5VEjGHlLVrv/t/bYNv0rNTjb1yD16x3yslti2nJ3caNA0TZ3K6gv3NTANKK8JYtq1Ki4nR9jnpIOIH9YFOvxWYwVpkRykqI5ivNSVeez7wdeVbW59d9443Xg50+cjUI7H2cUMqCI+F7GarRu+4c2lJieEymEJocGJfyIpcF21qjDGYcqHgop05EKbSXPi0LfV/G/yIFG+bZZ59T2rRg/TI2c80dnHRy5hrnrJy5DJi8uNtNGXhGTvv2BJ2IJ5UmBxhEoaeSp/yKFtjUrb4/wI2dPcezEfCegio79RozKCVTkNc2hrBYHKlsLN6cQvyfV5ztoTgxcRaJsVu5QKB8y0BKDE+b4J1yskdxfMh1GLCg5UgfvPNyd27gkcj1vqxtiQclD8AcB4tWdlVBDDGx3WlAUpivHN4aJYanVhSukHoFR8RdVZ56qnzeXfCsMikwI3bYbpNw5j4bhj8ee2jYdcOlw8rrbBBeSxj0f197ZlhjySXCkt9YPZz098fDHUOHhR22zyeeHNtytrEC45kPQ1mwGXeVO1s42De+8Y2GjIVtBfVpWSCcPFpzwNt2pZVWrknA5VTI1qxVV83fVYXmLsez1bfkJm235glPKQvEOXcXmlbRUPIULG3bnJ4aXi2WuQtsbyFKa8JPeqqi4rIe74E7M/jd2wIaob2ocHGdnJVkapH71qB07QwzzNDB4ScHUYLP2c6prxFV8jmerTGONQe5u6pQp+eq+rj6iyEry3lLjsCskUM8EWhhJDnJNBBPjEBZ7h7xtHDUE0/SkLHqvRsB8Vx++RVrBL5j6EQzCAnKMSXsuMMPws0XHx82W2qhsPwCX64x6TOGF8YQz9fCCkvPV4yp4vjS/OHYky8IP/7R7u3l5cFHIIaqlAUPXeaRshB3yRO9KwiZIOXX9zc/ihwCQorKIbZgV5VVVlmtRjzLaTlod4SQ5BJPoSc53tC+hcYuB4S5HObBGsuBsz/QiXjiJBEBk7Ylte2n74fXX3u1NiGfHqPatJghPrmeVj2BQSt2zfOFZuR6rDWCxYlzEE9Tkmeq5kEkxTsC7sdzxSuB/0ui0Ar0AU9l9+hN4skrrScOYWyd3okNrSyohnJUMCDsKceumrsLA9AS0AyU9Rxk0xLakaPmIvFZbNOg8WbQ90Joym7s7Hp2/nScCEdBOLtzZOH8tu2229feMc/ZhXlEbuiyOPiXvwofjA7hnddeDn/Yb70wx3Qzh+fb15jnbjomzDb55GGbY68IZ/98zfCF2tj6zW9Igx23CSsDDFquiQMhyBnLtAHNfDk4XSKgqQRKPazdysKm/pLJ5AATtPPOuxTq+DKgScFwpLHRZYBxqk/Y0B1sbpFj5gHt1ch3pSvY2CMn7Kwn6EQ8Y2J4KokctS0375tvuqH2ofvXOIUNw4orDq5JsG2ZaISqiFUkQSA+dlPvycJdFrhDWVBkTBKX1xOPXwslVQ2Vtm866KCOHUS1IJGBGEnB464RE4lo+j8CngttZEE0edyjN9W2VM89UcuTIr1TjiSJYLfyzP5kusrCt+RAX7aiydFerc4V4586ukwIRX/A98cvuXif9cLsBfH067Pwp/2+E2aZe/NQhP8/+dew0vSDwqFHHp2lSk2R2z99BVqARhJoWZj/rYyboq37YY3taxj/2iAH/bVedCKetr+iXhJAX2YAfhbeDdf+66qw6cabhhlnnKlYUOMh5ROX+BjvGQ+p+370ox93aVTvLeCkJAhA1BzSvdVn5ygDnJn2IHF6/003lXKso33IIoVQ0+sjoK7DZZG2/L8r+0gZUAEts8wypbdLK4OeLMrqxR1lWtlujvqQepWERKpKHRtefPGl4rzy+jISXyyTCEAu0AhOD8ocuPU0nSJ1lHupp0z2lAgaCffCFStPY4OVaXPnHanUaILyzI5lVF8RJjtbdyxLJQ9zinQcy+pNCrIWxbIHHhjrKKTNZYqJZbKqpOAk5LxvsVBj9DB0JE7vFutxpEkXI+8W28w7p8xNWk9ZKplrC3XU1Q7pAs/mH+vx3u/suPJJuPAn67YRz2IIfhbO/fFaYY6V9gtFj74yNGy2wETh4MPHEk8MQOwjf1OPVkxxfBflKbMg76yUi/F90v7FEMc+VD/N+KN/ST2xXprcQjtwGFJHWX2GIdoS572Pe5JAF1pooSLhh0xQ8Z4xBR2ox1cjlunfdH7SYsWy+oQknIpimXuk9YyFWHbXXXfXvmvsms7WGdusvu/RgVhPO6Q+H0wQzvt+ZakGRvsqc19jMTVtGIvOKfc37Sf/V8c9HakTpnU81nNNOn+NrTi3leU45PUUnYgnmD

本文来源:https://www.bwwdw.com/article/sbz7.html

Top