六步学会用MATLAB做空间计量回归详细步骤
更新时间:2024-06-14 23:08:01 阅读量: 综合文库 文档下载
- 六步学会油画棒推荐度:
- 相关推荐
1.excel与MATLAB链接:
Excel:
选项——加载项——COM加载项——转到——没有勾选项
2.MATLAB安装目录中寻找toolbox——exlink——点击,启用宏
E:\\MATLAB\\toolbox\\exlink
然后,Excel中就出现MATLAB工具
1
(注意Excel中的数据:)
3.启动matlab
(1) 点击start MATLAB
(2) senddata to matlab ,并对变量矩阵变量进行命名(注意:选取变量为数值,不包
括各变量)
(data表中数据进行命名)
2
(空间权重进行命名)
(3) 导入MATLAB中的两个矩阵变量就可以看见
4.将elhorst和jplv7两个程序文件夹复制到MATLAB安装目录的toolbox文件夹
3
5.设置路径:
6.输入程序,得出结果
4
T=30; N=46;
W=normw(W1); y=A(:,3); x=A(:,[4,6]);
xconstant=ones(N*T,1); [nobs K]=size(x);
results=ols(y,[xconstant x]);
vnames=strvcat('logcit','intercept','logp','logy'); prt_reg(results,vnames,1); sige=results.sige*((nobs-K)/nobs);
loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid % The (robust)LM tests developed by Elhorst
LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests 解释
每一行分别表示:
该面板数据的时期数为30(T=30), 5
该面板数据有30个地区(N=30), 将空间权重矩阵标准化(W=normw(w1)), 将名为A(以矩阵形式出现在MATLABA中)的变量的第3列数据定义为被解释变量y, 将名为A的变量的第4、5、6列数据定义为解释变量矩阵x, 定义一个有N*T行,1列的全1矩阵,该矩阵名为:xconstant,(ones即为全1矩阵) 说明解释变量矩阵x的大小:有nobs行,K列。(size为描述矩阵的大小)。 附录:
静态面板空间计量经济学
一、OLS静态面板编程
1、普通面板编程
T=30; N=46;
W=normw(W1); y=A(:,3); x=A(:,[4,6]);
xconstant=ones(N*T,1); [nobs K]=size(x);
results=ols(y,[xconstant x]);
6
vnames=strvcat('logcit','intercept','logp','logy'); prt_reg(results,vnames,1); sige=results.sige*((nobs-K)/nobs);
loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid
% The (robust)LM tests developed by Elhorst
LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests
2、空间固定OLS (spatial-fixed effects) T=30; N=46;
W=normw(W1); y=A(:,3); x=A(:,[4,6]);
xconstant=ones(N*T,1); [nobs K]=size(x); model=1;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);
results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is changed
7
prt_reg(results,vnames);
sfe=meanny-meannx*results.beta; % including the constant term yme = y - mean(y); et=ones(T,1);
error=y-kron(et,sfe)-x*results.beta; rsqr1 = error'*error; rsqr2 = yme'*yme;
FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effects sige=results.sige*((nobs-K)/nobs);
logliksfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid
LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
3、时期固定OLS(time-period fixed effects) T=30; N=46;
W=normw(W1); y=A(:,3); x=A(:,[4,6]);
xconstant=ones(N*T,1); [nobs K]=size(x); model=2;
8
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);
results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is changed
prt_reg(results,vnames);
tfe=meanty-meantx*results.beta; % including the constant term yme = y - mean(y); en=ones(N,1);
error=y-kron(tfe,en)-x*results.beta; rsqr1 = error'*error; rsqr2 = yme'*yme;
FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effects sige=results.sige*((nobs-K)/nobs);
logliktfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid
LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
4、空间与时间双固定模型 T=30; N=46;
W=normw(W1);
9
y=A(:,3); x=A(:,[4,6]);
xconstant=ones(N*T,1); [nobs K]=size(x); model=3;
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);
results=ols(ywith,xwith);
vnames=strvcat('logcit','logp','logy'); % should be changed if x is changed
prt_reg(results,vnames) en=ones(N,1); et=ones(T,1);
intercept=mean(y)-mean(x)*results.beta;
sfe=meanny-meannx*results.beta-kron(en,intercept); tfe=meanty-meantx*results.beta-kron(et,intercept); yme = y - mean(y); ent=ones(N*T,1);
error=y-kron(tfe,en)-kron(et,sfe)-x*results.beta-kron(ent,intercept); rsqr1 = error'*error; rsqr2 = yme'*yme;
FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effects
10
sige=results.sige*((nobs-K)/nobs);
loglikstfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid
LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests
二、静态面板SAR模型
1、无固定效应(No fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.lflag=0; info.model=0; info.fe=0;
results=sar_panel_FE(y,[xconstant x],W,T,info); vnames=strvcat('logcit','intercept','logp','logy'); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
2、空间固定效应(Spatial fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
11
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.lflag=0; info.model=1; info.fe=0;
results=sar_panel_FE(y,x,W,T,info); vnames=strvcat('logcit','logp','logy'); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
3、时点固定效应(Time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sar_panel_FE(y,x,W,T,info); vnames=strvcat('logcit','logp','logy'); prt_spnew(results,vnames,1)
% Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
4、双固定效应(Spatial and time period fixed effects)
T=30;
12
N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sar_panel_FE(y,x,W,T,info); vnames=strvcat('logcit','logp','logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
三、静态面板SDM模型
1、无固定效应(No fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.lflag=0; info.model=0; info.fe=0;
results=sar_panel_FE(y,[xconstant x wx],W,T,info);
vnames=strvcat('logcit','intercept','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1)
13
% Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
2、空间固定效应(Spatial fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=1;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sar_panel_FE(y,[x wx],W,T,info);
vnames=strvcat('logcit','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
3、时点固定效应(Time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to
14
turn on
% New routines to calculate effects estimates results=sar_panel_FE(y,[x wx],W,T,info);
vnames=strvcat('logcit','logp','logy','W*logp','W*logy'); % Print out coefficient estimates prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
4、双固定效应(Spatial and time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.bc=0;
info.lflag=0; % required for exact results info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sar_panel_FE(y,[x wx],W,T,info);
vnames=strvcat('logcit','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
wald test spatial lag
% Wald test for spatial Durbin model against spatial lag model btemp=results.parm; varcov=results.cov; Rafg=zeros(K,2*K+2); for k=1:K
15
Rafg(k,K+k)=1; % R(1,3)=0 and R(2,4)=0; end
Wald_spatial_lag=(Rafg*btemp)'*inv(Rafg*varcov*Rafg')*Rafg*btemp prob_spatial_lag=1-chis_cdf (Wald_spatial_lag, K)
wald test spatial error
% Wald test spatial Durbin model against spatial error model R=zeros(K,1); for k=1:K
R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k); % k changed in 1, 7/12/2010 % R(1)=btemp(5)*btemp(1)+btemp(3); % R(2)=btemp(5)*btemp(2)+btemp(4); end
Rafg=zeros(K,2*K+2); for k=1:K
Rafg(k,k) =btemp(2*K+1); % k changed in 1, 7/12/2010 Rafg(k,K+k) =1; Rafg(k,2*K+1)=btemp(k);
% Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp(1); % Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp(2); end
Wald_spatial_error=R'*inv(Rafg*varcov*Rafg')*R prob_spatial_error=1-chis_cdf (Wald_spatial_error,K)
LR test spatial lag
resultssar=sar_panel_FE(y,x,W,T,info); LR_spatial_lag=-2*(resultssar.lik-results.lik) prob_spatial_lag=1-chis_cdf (LR_spatial_lag,K)
LR test spatial error
resultssem=sem_panel_FE(y,x,W,T,info);
LR_spatial_error=-2*(resultssem.lik-results.lik) prob_spatial_error=1-chis_cdf (LR_spatial_error,K)
5、空间随机效应与时点固定效应模型
T=30;
16
N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,[x wx],N,T,2); % 2=time dummies info.model=1;
results=sar_panel_RE(ywith,xwith,W,T,info); prt_spnew(results,vnames,1)
spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
wald test spatial lag
btemp=results.parm(1:2*K+2); varcov=results.cov(1:2*K+2,1:2*K+2); Rafg=zeros(K,2*K+2); for k=1:K
Rafg(k,K+k)=1; % R(1,3)=0 and R(2,4)=0; end
Wald_spatial_lag=(Rafg*btemp)'*inv(Rafg*varcov*Rafg')*Rafg*btemp prob_spatial_lag= 1-chis_cdf (Wald_spatial_lag, K)
wald test spatial error
R=zeros(K,1); for k=1:K
R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k); % k changed in 1, 7/12/2010 % R(1)=btemp(5)*btemp(1)+btemp(3); % R(2)=btemp(5)*btemp(2)+btemp(4); end
Rafg=zeros(K,2*K+2); for k=1:K
Rafg(k,k) =btemp(2*K+1); % k changed in 1, 7/12/2010
17
Rafg(k,K+k) =1; Rafg(k,2*K+1)=btemp(k);
% Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp(1); % Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp(2); end
Wald_spatial_error=R'*inv(Rafg*varcov*Rafg')*R prob_spatial_error= 1-chis_cdf (Wald_spatial_error,K)
LR test spatial lag
resultssar=sar_panel_RE(ywith,xwith(:,1:K),W,T,info); LR_spatial_lag=-2*(resultssar.lik-results.lik) prob_spatial_lag=1-chis_cdf (LR_spatial_lag,K)
LR test spatial error
resultssem=sem_panel_RE(ywith,xwith(:,1:K),W,T,info); LR_spatial_error=-2*(resultssem.lik-results.lik) prob_spatial_error=1-chis_cdf (LR_spatial_error,K)
四、静态面板SEM模型
1、无固定效应(No fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.lflag=0; info.model=0; info.fe=0;
results=sem_panel_FE(y,[xconstant x],W,T,info); vnames=strvcat('logcit','intercept','logp','logy'); prt_spnew(results,vnames,1)
18
% Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
2、空间固定效应(Spatial fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.lflag=0; info.model=1; info.fe=0;
results=sem_panel_FE(y,x,W,T,info); vnames=strvcat('logcit','logp','logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
3、时点固定效应(Time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
19
results=sem_panel_FE(y,x,W,T,info); vnames=strvcat('logcit','logp','logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
4、双固定效应(Spatial and time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sem_panel_FE(y,x,W,T,info); vnames=strvcat('logcit','logp','logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=0;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);
五、静态面板SDEM模型
1、无固定效应(No fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N;
20
wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.lflag=0; info.model=0; info.fe=0;
results=sem_panel_FE(y,[xconstant x wx],W,T,info);
vnames=strvcat('logcit','intercept','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
2、空间固定效应(Spatial fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=1;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sem_panel_FE(y,[x wx],W,T,info);
vnames=strvcat('logcit','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W);
3、时点固定效应(Time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]);
21
x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x);
info.lflag=0; % required for exact results info.model=2;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
% New routines to calculate effects estimates results=sem_panel_FE(y,[x wx],W,T,info);
vnames=strvcat('logcit','logp','logy','W*logp','W*logy'); % Print out coefficient estimates prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sdm(results,vnames,W)
4、双固定效应(Spatial and time period fixed effects)
T=30; N=46; W=normw(W1); y=A(:,[3]); x=A(:,[4,6]); for t=1:T
t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:); end
xconstant=ones(N*T,1); [nobs K]=size(x); info.bc=0;
info.lflag=0; % required for exact results info.model=3;
info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
results=sem_panel_FE(y,[x wx],W,T,info);
vnames=strvcat('logcit','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1) % Print out effects estimates spat_model=1;
direct_indirect_effects_estimates(results,W,spat_model);
22
panel_effects_sdm(results,vnames,W)
23
正在阅读:
各有各的好作文400字06-16
母亲平凡的一天作文600字07-14
三菱凌云LEHYII无能量反馈C语言小分类故障显示04-28
2014年中央经济工作会议精神08-31
人教A《必修5》综合训练11-09
楼盘业主答谢会开场稿05-16
初中化学粤教版《九年级上册》《第四章 生命之源―水》精品专题03-22
蚁群聚类算法研究及应用03-20
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 计量
- 步骤
- 回归
- 学会
- MATLAB
- 详细
- 空间
- 高二学业水平测试语文字音字形题
- 软件项目外包投标书 - 图文
- 海珠区华光小学务教育规范化学校评估体系 - 图文
- 我的儿子
- 郑州大学远程教育《工程经济学》第01-09章在线测试答案
- 如何运用材料
- 美术概论
- 2019中考语文复习【综合性考查】专题训练解析卷一
- C语言第一二三章习题
- 一年级语文上册第五单元试题
- 104型电空制动机常见故障分析与处理研究
- 放疗词汇翻译对照表
- 北京初三二模25题阅读操作十区
- 计算机组成原理题库 2
- 探讨乌兰察布市的农田水利工程问题与对策
- 黑龙江省哈尔滨市第三中学2018届高三年级9月月考材料作文“语言
- 年产3万吨再生橡胶粉项目可行性策划书
- 最新审定新人教版第一学期小学六年级数学上册第六单元检测题及参
- 原煤缓冲仓带式输送机钢栈桥吊装方案修订
- 2013湖南政法干警面试 - 应对突发事件能力篇